IQ

  • Reference work entry
  • First Online:
Encyclopedia of Animal Cognition and Behavior
  • 104 Accesses

Introduction

Intelligence is the ability to think rationally, learn effectively, understand complex ideas, and adapt to the environment. Accordingly, intelligence is best seen as a general ability that can influence performance on a wide range of cognitive tasks. IQ (the intelligence quotient) is the quantification of an individual’s intelligence relative to peers of a similar age. IQ is one of the most heritable psychological traits, and an individual’s score on a modern IQ test is a good predictor of many life outcomes, including educational and career success, health, longevity, and even happiness (Gottfredson 1998). Like humans, several species of animals express a “general cognitive ability” that influences performance on broad and diverse cognitive tasks, and moreover, animals exhibit a wide range of individual variations in this ability.

Intelligence and Intelligence Testing (IQ) in Humans

It has long been recognized that intelligence varies across individuals. Colloquially, we...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Banerjee, K., Chabris, C. F., Johnson, V. E., Lee, J. J., Tsao, F., & Hauser, M. D. (2009). General intelligence in another primate: Individual differences across cognitive task performance in a new world monkey (Saguinus oedipus). PloS One, 4(6), e5883.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkart, J. M., Schubiger, M. N., & van Schaik, C. P. (2016). The evolution of general intelligence. Behavioral and Brain Sciences, 1–65. https://doi.org/10.1017/S0140525X16000959.

  • Carey, S., & Bartlett, E. (1978). Acquiring a single new word. Proceedings of the Stanford Child Language Conference, 15, 17–29.

    Google Scholar 

  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450–466.

    Article  Google Scholar 

  • Deary, I. J. (2014). The stability of intelligence from childhood to old age. Psychological Science, 23, 239–245.

    Google Scholar 

  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. https://doi.org/10.1111/1467-8721.00160.

    Article  Google Scholar 

  • Galsworthy, M. J., Paya-Cano, J. L., Monleón, S., & Plomin, R. (2002). Evidence for general cognitive ability (g) in heterogeneous stock mice and an analysis of potential confounds. Genes, Brain, & Behavior, 1(2), 88–95.

    Article  Google Scholar 

  • Gottfredson, L. S. (1998). The general intelligence factor. Scientific American Presents, 9, 24–30.

    Google Scholar 

  • Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings National Academy of Sciences U.S.A, 105(19), 6829–6833.

    Article  Google Scholar 

  • Jung, R. E., & Haier, R. J. (2007). The Parieto-frontal integration theory (P-FIT) of intelligence: Converging neuroimaging evidence. The Behavioral and Brain Sciences, 30(2), 135–154.

    Article  PubMed  Google Scholar 

  • Kolata, S., Light, K., & Matzel, L. D. (2008). Domain-specific and domain-general learning factors are expressed in genetically heterogeneous CD-1 mice. Intelligence, 36, 619–629.

    Article  PubMed  PubMed Central  Google Scholar 

  • Konecky, R. O., Smith, M. A., & Olson, C. R. (2017). Monkey prefrontal neurons during sternberg task performance: Full contents of working memory or most recent item? Journal of Neurophysiology. https://doi.org/10.1152/jn.00541.2016. pii 00541 02016.

  • Light, K., Kolata, S., Wass, C., Denman-Brice, A., Zagalsky, R., & Matzel, L. D. (2010). Working memory training promotes general cognitive abilities in genetically heterogeneous mice. Current Biology, 20, 777–782.

    Article  PubMed  Google Scholar 

  • Mackintosh, N. J. (1998). IQ and human intelligence. Oxford: Oxford University Press.

    Google Scholar 

  • Neisser, U., Boodoo, G., Bouchard Jr, T. J., Boykin, A. W., Brody, N., Ceci, S. J., ⋯ & Urbina, S. (1996). Intelligence: Knowns and unknowns. American Psychologist, 51(2), 77–101. https://doi.org/10.1037/0003-066X.51.2.77.

  • Pilley, J. W., & Reid, A. K. (2011). Border collie comprehends object names as verbal referents. Behavioural Processes, 86(2), 184–195.

    Article  PubMed  Google Scholar 

  • Raven, J. C., Raven, J. E., & Court, J. H. (1998). Progressive matrices. Oxford: Oxford Psychologists Press.

    Google Scholar 

  • Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E., Hambrick, D. Z., ⋯ & Engle, R. W. (2012). No evidence of intelligence improvement after working memory training: A randomized, placebo-controlled study. Journal of Experimental Psychology General, 142, 359–379.

    Google Scholar 

  • Riley, M. R., & Constantinidis, C. (2015). Role of prefrontal persistent activity in working memory. Frontiers in Systems Neuroscience, 9, 181. https://doi.org/10.3389/fnsys.2015.00181.

    Article  PubMed  Google Scholar 

  • Shipstead, Z., Redick, T. S., & Engle, R. W. (2012). Is working memory training effective? Psychological Bulletin, 138(4), 628–654.

    Article  PubMed  Google Scholar 

  • Simons, D. J., Boot, W. R., Charness, N., Gathercole, S. E., Chabris, C. F., Hambrick, D. Z., & Stine-Morrow, E. A. L. (2016). Do “brain-training” programs work? Psychological Science in the Public Interest, 17(3), 103–186. https://doi.org/10.1177/1529100616661983.

    Article  PubMed  Google Scholar 

  • Spearman, C. (1904). General intelligence, objectively determined and measured. American Journal of Psychology, 15, 201–293.

    Article  Google Scholar 

  • Sternberg, R. J. (1985). Human Intelligence: The Model Is the Message. Science, 230(4730), 1111–1118.

    Article  PubMed  Google Scholar 

  • Thorndike, E. L. (1911). Animal intelligence: experimental studies. New York: Macmillan.

    Book  Google Scholar 

  • Thorndike, E. L. (1935). Organization of behavior in the albino rat. Psychological Monographs, 17, 1–70.

    Google Scholar 

  • Tolman, E. C. (1924). The inheritance of maze-learning ability in rats. Journal of Comparative Psychology, 4(1), 1–18. https://doi.org/10.1037/h0071979.

    Article  Google Scholar 

  • Tomasello, M., & Kaminski, J. (2004). Like infant, like dog. Science, 325, 1213–1214.

    Article  Google Scholar 

  • Tryon, R. C. (1940). Genetic differences in maze-learning abilities in rats. Yearbook of the National Society for Studies in Education, 39, 111–119.

    Google Scholar 

  • Wass, C., Denman-Brice, A., Rios, C., Light, K. R., Kolata, S., Smith, A. M., & Matzel, L. D. (2012). Covariation of learning and “reasoning” abilities in mice: Evolutionary conservation of the operations of intelligence. Journal of Experimental Psychology. Animal Behavior Process, 38(2), 109–124.

    Article  Google Scholar 

  • Wass, C., Pizzo, A., Sauce, B., Kawasumi, Y., Sturzoiu, T., Ree, F., ⋯ & Matzel, L. D. (2013). Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training. Learning and Memory, 20(11), 617–627.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis D. Matzel .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Matzel, L.D., Sauce, B. (2022). IQ. In: Vonk, J., Shackelford, T.K. (eds) Encyclopedia of Animal Cognition and Behavior. Springer, Cham. https://doi.org/10.1007/978-3-319-55065-7_1080

Download citation

Publish with us

Policies and ethics

Navigation