Environmental Nanoremediation and Electron Microscopies

  • Chapter
  • First Online:
Nanotechnologies for Environmental Remediation

Abstract

Cleaning up the environment from various sources of pollution is a commitment to not only preserve ecological health but also human health. Pollution in the environment can be remediated using a range of techniques including nanotechnologies. Environmental remediation techniques use various approach to remove or degrade environmental pollution in soils, waters, groundwater, and air. There are two different strategies to apply the nanotechnologies to environmental remediation: ex situ techniques that consist in the removing pollutant from sites and then treating; in situ techniques that make up of cleaning up directly in the polluted site. Both strategies are highly efficient but it’s necessary to know the nanomaterials used to nanoremediate the environment, so the electron microscopy offers an important tool to characterize and quantify NMs in environmental; evaluate NMs transformation in the environment and consequences for bioavailability and toxicity; analysis uptake and internal distribution of NMs in model animals. Research addressing these key topics will reduce the uncertainty in ecological risk assessment and support the sustainable development of nanotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 96.29
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 123.04
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bardos P, Bone B, Daly P, Elliott D, Jones S, Lowry G, Merly C (2014) A risk/benefit appraisal for the application of nano-scale zero valent iron (nZVI) for the remediation of contaminated sites. WP9 NanoRem

    Google Scholar 

  • Battin TJ, VonDerKammer F, Weilhartner A, Ottofuelling S, Hofmann T (2009) Nanostructured TiO2: transport behaviour and effects on aquatic microbial communities under environmental conditions. Environ Sci Technol 43:8098–8104. doi:10.1021/es9017046

    Article  Google Scholar 

  • Bekçi Z, Seki Y, Yurdakoç MK (2006) Equilibrium studies for trimethoprim adsorption on montmorillonite KSF. J Hazard Mater B133:233–242

    Article  Google Scholar 

  • Bennett P, He F, Zhao D, Aiken B, Feldman L (2010) In situ testing of metallic iron nanoparticle mobility and reactivity in a shallow granular aquifer. J Contam Hydrol 116:35–46

    Article  Google Scholar 

  • Berry D, ** C, Raskin L (2006) Microbial ecology of drinking water distribution systems. Curr Opin Biotechnol 17:297–302. doi:10.1016/j.copbio. 7 May 2006

  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343

    Article  Google Scholar 

  • Bogner A, Thollet G, Basset D, Jouneau PH, Gauthier C (2005) Wet STEM: a new development in environmental SEM for imaging nano-objects included in a liquid phase. Ultramicroscopy 104(3–4):290–301

    Article  Google Scholar 

  • Callow JA, Osborne MP, Callow ME, Baker F, Donald AM (2003) Use of environmental scanning electron microscopy to image the spore adhesive of the marine alga Enteromorpha in its natural hydrated state. Colloids Surf B Biointerfaces 27(4):315–321

    Google Scholar 

  • Chekli L, Bayatsarmadi B, Sekine R, Sarkar B, Shen AM, Scheckel KG, Skinner W, Naidu R, Shon Lombi HK, Donner E (2000) Analytical characterisation of nanoscale zero-valent iron: a methodological review. Langmuir 16:2230–2236

    Article  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211–212:112–125

    Article  Google Scholar 

  • Daniel SCGK, Vinothini G, Subramanian N, Nehru K, Sivakumar M (2012) Biosynthesis of Cu, ZVI, and Ag nanoparticles using Dodonaea viscosa extract for antibacterial activity against human pathogens. J Nanopart Res 15:1–10

    Google Scholar 

  • Darkin MG, Gilpin C, Williams JB, Sangha CM (2001) Direct wet surface imaging of an anaerobic biofilm by environmental scanning electron microscopy: application to landfill clay liner barriers. Scanning 23(5):346–350

    Article  Google Scholar 

  • Decho AW (2000) Exopolymer-mediated microdomains as a structuring agent for microbial activities. In: Riding R (ed) Microbial sediments. Springer, Berlin, pp 9–15

    Google Scholar 

  • Diallo MS, Balogh L, Shafagati A, Johnson JH, Goddard WAI, Tomalia DA (1999) Poly (amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ Sci Technol 33(1999):820–824

    Article  Google Scholar 

  • Ding Z, Zhu HY, Lu GQ et al (1999) Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Inter Sci 209:193–199

    Article  Google Scholar 

  • Dini L, Panzarini E, Mariano S, Passeri D, Reggente M, Rossi M, Vergallo C (2015) Microscopies at the nanoscale for nano-scale drug delivery systems. Curr Drug Targets 16(13):1512–1530

    Article  Google Scholar 

  • Doucet FJ, Lead JR, Maguire L, Achterberg EP, Millward GE (2005) Visualisation of natural aquatic colloids and particles—a comparison of conventional high vacuum and environmental scanning electron microscopy. J Environ Monit 7(2):115–121

    Article  Google Scholar 

  • Douglas S, Douglas DD (2001) Structural and geomicrobiological characteristics of a microbial community from a cold sulfide spring. Geomicrobiol J 18(4):401–422

    Google Scholar 

  • El Abed S, Ibnsouda SK, Latrache H, Hamadi F (2012) Scanning electron microscopy (SEM) and environmental SEM: suitable tools for study of adhesion stage and biofilm formation

    Google Scholar 

  • Elliott DW, Zhang WX (2001) Field assessment of nanoscale bimetallic particles for groundwater treatment. Environ Sci Technol 35(24):4922–4926

    Article  Google Scholar 

  • FarrĂ© M, SanchĂ­s J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30(3)

    Google Scholar 

  • Ferry JL, Craig P, Hexel C, Sisco P, Frey R, Pennington PL et al (2009) Transfer of gold nanoparticles from the water column to the estuarine food web. Nat Nanotechnol 4:441–444. doi:10.1038/nnano.2009.157

    Article  Google Scholar 

  • Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. doi:10.1038/nrmicro2415

    Google Scholar 

  • Fu F, Dionysiou DD, Liu H (2014) The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. J Hazard Mater 267:194–205

    Article  Google Scholar 

  • Grassi M, Kaikioglu G, Belgiorno V, Lofrano G (2012) Removal of emerging contaminants from water and wastewater by adsorption process. In: Green chemistry for sustainability

    Google Scholar 

  • Grieger KD, Hjorth R, Rice J, Kumar N, Bang J (2015) Nano-remediation: tiny particles cleaning up big environmental problems. Blog entry for IUCN

    Google Scholar 

  • Hawari AH, Mulligan CN (2006) Biosorption of lead(II), cadmium(II), copper(II) and nickel(II) by anaerobic granular biomass. Bioresour Technol 97:692–700. doi:10.1016/j.biortech.2005.03.033

    Article  Google Scholar 

  • Hochella MF Jr, Madden AS (2005) Earth’s nano-compartment for toxic metals. Elements 1:199–203

    Article  Google Scholar 

  • Hu Z, Hidalgo G, Houston PL, Hay AG, Shuler ML, Abruna HD et al (2005) Determination of spatial distributions of zinc and active biomass in microbial biofilms by two-photon laser scanning microscopy. Appl Environ Microbiol 71:4014–4021. doi:10.1128/AEM.71.7.4014-4021.2005

    Article  Google Scholar 

  • Huang YY, Liu F, Li HD (2009) Degradation of tetrachloromethane and tetrachloroethene by Ni/Fe bimetallic nanoparticles. J Phys Conf Ser 188:012014

    Article  Google Scholar 

  • Ikuma K, Madden AS, Decho AW, Lau BLT (2014) Deposition of nanoparticles onto polysaccharide-coated surfaces: implications for nanoparticle–biofilm interactions. Environ Sci Nano 1:117–122. doi:10.1039/c3en00075c

  • Ikuma K, Decho AW, Lau BLT (2015) When nanoparticles meet biofilms—interactions guiding the environmental fate and accumulation of nanoparticles. Front Microbiol 6. doi:10.3389/fmicb.2015.00591

  • Jaisi DP, Saleh NB, Blake RE, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42:8317–8323. doi:10.1021/es801641v

    Article  Google Scholar 

  • Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298

    Article  Google Scholar 

  • Kanel SR, Greneche JM, Choi H (2006) Arsenic(V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050

    Article  Google Scholar 

  • Karn B, Kuiken T, Otto M (2009) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Environ Health Perspect 117(12):1813–1831

    Article  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lion DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behaviour, fate, bioavailability, and effects. Environ Toxicol Chem 27(9):1825–1851

    Article  Google Scholar 

  • Kroll A, Behra R, Kaegi R, Sigg L (2014) Extracellular polymeric substances (EPS) of fresh water biofilms stabilize and modify CeO2 and Ag nanoparticles. PLoS One 9:e110709. doi:10.1371/journal.pone.0110709

  • Labrenz M, Banfield JF (2004) Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217. doi:10.1007/s00248-003-1025-8

    Google Scholar 

  • Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM et al (2000) Formation of sphalerite (ZnS)deposits in natural biofilms of sulfate-reducing bacteria. Science 290:1744–1747. doi:10.1126/science.290.5497.1744

    Article  Google Scholar 

  • Lecoanet HF, Wiesner MR (2004) Velocity effects on fullerene and oxide nanoparticle deposition in porous media. Environ Sci Technol 38:4377–4382. doi:10.1021/es035354f

    Article  Google Scholar 

  • Lehtola MJ, Miettinen IT, Keinanen MM, Kekki TK, Laine O, Hirvonen A et al (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779. doi:10.1016/j.watres.2004.06.024

    Article  Google Scholar 

  • Lin Y-T, Weng C-H, Chen F-Y (2008) Effective removal of AB24 dye by nano/micro-size zero-valent iron. Sep Purif Technol 64:26–30

    Article  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(1338):1345

    Google Scholar 

  • Mansoori GA, Bastami TR, Ahmadpour A, Eshaghi Z (2008) Environmental application of nanotechnology In: Annual review of nano research (Chapter 2), vol 2

    Google Scholar 

  • Muataz AA, Fettouhi M, Al-Mammum A, Yahya N (2009) Lead removal by using carbon nanotubes. Int J Nanopart 2:329–338

    Article  Google Scholar 

  • Mueller NC, Nowack B (2010) Nanoparticles for remediation: solving big problems with little particles, Elements 6:395–400. doi:10.2113/gselements.6.6.395 (1811-5209/10/0006-0395$2.50)

  • Naghizadeh A, Yari AR, Tashauoei HR, Mahdavi M, Derakhshani E, Rahimi R, Bahmani P (2012) Carbon nanotubes technology for removal of arsenic from water. Arch Hyg Sci 1(1):6–11

    Google Scholar 

  • Nalbandian MJ, Greenstein KE, Shuai D, Zhang M, Choa Y, Parkin GF, Myung NV, Cwiertny DM (2015) Synthesis of photoactive TiO2 nanofibers and Au/TiO2 nanofiber composites: structure and reactivity optimization for water treatment applications. Environ Sci Technol 49:1654–1663. doi:10.1021/es502963t

    Article  Google Scholar 

  • Narayana RL, Matheswaran M, Abd Aziz A, Saravanan P (2011) Photocatalytic decolourization of basic green dye by pure and Fe, Co doped TiO2 under daylight illumination. Desalination 269(2011):249–253

    Article  Google Scholar 

  • Nassereldeen AK, Muataz AA, Abdullah A, Mohamed ES, Alam MD, Yahya N (2009) Kinetic adsorption of application of carbon nanotubes for Pb(II) removal from aqueous solution. J Environ Sci 21:539–544

    Google Scholar 

  • Nevius BA, Chen YP, Ferry JL, Decho AW (2012) Surface-functionalization effects on uptake of fluorescent polystyrene nanoparticles by model biofilms. Ecotoxicology 21:2205–2213. doi:10.1007/s10646-012-0975-3

    Article  Google Scholar 

  • Nurmi JT, Tratnyek PG, Sarathy V, Baer DR, Amonette JE, Pecher K, Wang C, Linehan JC, Matson DW, Penn RL, Driessen MD (2005) Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics. Environ Sci Technol 39(5):1221–1230

    Article  Google Scholar 

  • Nutt MO, Hughes JB, Wong MS (2005) Designing Pd-on-Au bimetallic nanoparticle catalysts for trichloroethene hydrodechlorination. Environ Sci Technol 39:1346–1353

    Article  Google Scholar 

  • Ă–tker HM, Akmehmet-BalcioÄŸlu I (2005) Adsorption and degradation of enrofloxacin, a veterinary antibiotic on natural zeolite. J Hazard Mater 122:251–258

    Article  Google Scholar 

  • Part F, Zecha G, Cuson T, Sinner E-K, Huber-Humer M (2015) Current limitations and challenge in nanowaste detection, characterisation and monitoring. Waste Manag 43:407–420

    Article  Google Scholar 

  • PEN (2015) The project on emerging nanotechnologies. In: Nanoremediation map. Available: http://www.nanotechproject.org/inventories/remediation_map/

  • Phenrat T, Kim HJ, Fagerlund F, Illagasekare T, Tilton RD, Lowry GV (2009) Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified FeO nanoparticles in sand columns. Environ Sci Technol 43:5079–5085. doi:10.1021/es900171v

    Article  Google Scholar 

  • Ponder SMD, Darab JG, Mallouk TE (2001) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zerovalent iron. Environ Sci Technol 34(12):2564–2569

    Article  Google Scholar 

  • Prasad A, Leada JR, Baalousha M (2015) An electron microscopy based method for the detection and quantification of nanomaterial number concentration in environmentally relevant media. Sci Total Environ 537:479–486

    Article  Google Scholar 

  • Priester JH, Horst AM, Van De Werfhorst LC, Saleta JL, Mertes LAK, Holden PA (2007) Enhanced visualization of microbial biofilms by staining and environmental scanning electron microscopy. J Microbiol Methods 68(2):577–587

    Google Scholar 

  • Putra EK, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res 43:2419–2430

    Article  Google Scholar 

  • PyrzyÅ„ska K, Bystrzejewski M (2010) Comparative study of heavy metal ions sorption onto activated carbon, carbon nanotubes, and carbon-encapsulated magnetic nanoparticles. Colloids Surf A Physicochem Eng Aspects 362(1–3):102–109

    Article  Google Scholar 

  • Qiu SR, Lai HF, Roberson MJ, Hunt ML, Amrhein C, Giancarlo LC, Flynn GW, Yarmoff JA (2016) Removal of contaminants from aqueous solution by reaction with iron surfaces. Anal Chim Acta 903:13–35. doi:10.1016/j.aca.2015.10.040 Epub 2015 Nov 6

    Article  Google Scholar 

  • Quinn J, Clausen C, Brooks K, Coon C, O’Hara S, Krug T, Major D, Yoon WS, Gavaskar A, Holdsworth T (2005) Field demonstration of DNAPL dehalogenation using emulsified zerovalent iron. Environ Sci Technol (39)

    Google Scholar 

  • Reith F, Rogers SL, Mcphail DC, Webb D (2006) Biomineralization of gold: biofilms on bacterioform gold. Science 313:233–236. doi:10.1126/science.1125878 (Res 5:323–332)

  • Reith F, Fairbrother L, Nolze G, Wilhelmi O, Clode PL, Gregg A et al (2010) Nanoparticle factories: biofilms hold the key to gold dispersion and nugget formation. Geology 38:843–846. doi:10.1130/G31052.1

    Article  Google Scholar 

  • Rether A, Schuster M (2003) Selective separation and recovery of heavy metal ions using water-soluble N-benzoylthiourea modified PAMAM polymers. React Funct Polym 57(2003):13–21

    Article  Google Scholar 

  • Rezaei M, Salem S (2016) Photocatalytic activity enhancement of anatase–graphene nanocomposite for methylene removal: degradation and kinetics Spectrochim Acta Part A Mol Biomol Spectrosc 167:41–49. 5 Oct 2016

    Google Scholar 

  • Rickerby D, Morrison M (2007) Report from the workshop on nanotechnologies for environmental remediation, JRC Ispra. Available at www.nanowerk.com/nanotechnology/reports/reportpdf/report101.pdf

  • Saggioro EM, Oliveira AS, Pavesi T, Maia CG, Ferreira LFV, Moreira JC (2011) Use of titanium dioxide photocatalysis on the remediation of model textile wastewaters containing azo dyes. Molecules 16: 10370–10386. doi:10.3390/molecules161210370

  • Schlekat CE, Decho AW, Chandler GT (1998) Sorption of cadmium to bacterial extracellular polymeric sediment coatings under estuarine conditions. Environ Toxicol Chem 17:1867–1874. doi:10.1002/etc.5620170930

    Article  Google Scholar 

  • Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14(12):5140–5147

    Article  Google Scholar 

  • Schwartz T, Jungfer C, HeiĂŸler S, Friedrich F, Faubel W, Obst U (2009) Combined use of molecular biology taxonomy, Raman spectrometry, and ESEM imaging to study natural biofilms grown on filter materials at waterworks. Chemosphere 77(2):249–257

    Google Scholar 

  • Sharma VK, Filip J, Zboril R, Varma RS (2015) Natural inorganic nanoparticles formation, fate, and toxicity in the environment. Chem Soc Rev 44:8410–8423

    Article  Google Scholar 

  • Stokes DJ (2001) Characterization if soft condensed matter and delicate materials using environmental scanning electron microscopy (ESEM). Adv Eng Mater 3(3):126–130

    Article  Google Scholar 

  • Stokes DJ, Donald AM (2000) In situ mechanical testing of dry and hydrated breadcrumb in the environmental scanning electron microscope (ESEM). J Mater Sci 35(3):599–607

    Google Scholar 

  • Tiede K, Tear SP, David H, Boxall AB (2009) Imaging of engineered nanoparticles and their aggregates under fully liquid conditions in environmental matrices. Water Res 43(13):3335–3343. doi:10.1016/j.watres.2009.04.045

    Article  Google Scholar 

  • ĂœzĂ¼m C, Shahwan T, EroÄŸlu AE, Hallam KR, Scott TB, Lieberwirth I (2009) Synthesis and characterization of kaolinite-supported zero-valent iron nanoparticles and their application for the removal of aqueous Cu2+ and Co2+ ions. Appl Clay Sci 43:172–181

    Google Scholar 

  • Walker JT, Verran J, Boyd RD, Percival S (2001) Microscopy methods to investigate structure of potable water biofilms. Methods Enzymol 337(2001):243–255

    Google Scholar 

  • Wang C-B, Zhang W (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156

    Article  Google Scholar 

  • Watanabe K, Matsumoto Y, Kampling M, Al-Shamery K, Freund HJ (1999) Photochemistry of methane on Pd/Al2O3 model catalysts: control of photochemistry on transition metal surfaces. Angew Chem Int Ed 38(15)

    Google Scholar 

  • Wen MQ, **ong T, Zang ZG, Wei W, Tang XT, Dong F (2016) Synthesis of MoS2/g-C3N4 nanocomposites with enhanced visible-light photocatalytic activity for the removal of nitric oxide (NO). Opt Express 24(10):10205–10212. doi:10.1364/OE.24.010205

    Article  Google Scholar 

  • Wu X, Yang Q, Xu D, Zhong Y, Luo K, Li X, Chen H, Zeng G (2013) Simultaneous adsorption/reduction of bromate by nanoscale zerovalent iron supported on modified activated carbon. Ind Eng Chem Res 52:12574–12581

    Article  Google Scholar 

  • Wuertz S, Muller E, Spaeth R, Pfleiderer P, Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial flocs with the fluorescent complexing agent Newport Green. J Ind Microbiol Biotechnol 24:116–123. doi:10.1038/sj.jim.2900784

    Article  Google Scholar 

  • Yan W, Herzing AA, Kiely CJ, Zhang WX (2010a) Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118(3–4):96–104

    Article  Google Scholar 

  • Yan W, Herzing AA, Li XQ, Kiely CJ, Zhang WX (2010b) Structural evolution of Pd-doped nanoscale zero-valent iron (nZVI) in aqueous media and implications for particle aging and reactivity. Environ Sci Technol 44(11):4288–4294

    Article  Google Scholar 

  • Yan W, Vasic R, Frenkel AI, Koel BE (2012) Intraparticle reduction of arsenite (As(III)) by nanoscale zerovalent iron (nZVI) investigated with in situ x-ray absorption spectroscopy. Environ Sci Technol 46(13):7018–7026

    Article  Google Scholar 

  • Yuan GD, Theng BKG, Churchman GJ, Gates WP (2013) Clays and clay minerals for pollution control. In: Developments in clay science (Chapter 5), vol 5A. p 587

    Google Scholar 

  • Yunus IS, Harwin, Kurniawan A, Adityawarman D, Indarto A (2012) Nanotechnologies in water and air pollution treatment. Environ Technol Rev 1(1):136–148

    Article  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  Google Scholar 

  • Zhang F, He S, Zhang C, Peng Z (2015) Adsorption kinetics and thermodynamics of acid Bordeaux B from aqueous solution by graphene oxide/PAMAMs. Water Sci Technol 72(7):1217–1225. doi:10.2166/wst.2015.328

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Dini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Carata, E., Panzarini, E., Dini, L. (2017). Environmental Nanoremediation and Electron Microscopies. In: Lofrano, G., Libralato, G., Brown, J. (eds) Nanotechnologies for Environmental Remediation. Springer, Cham. https://doi.org/10.1007/978-3-319-53162-5_4

Download citation

Publish with us

Policies and ethics

Navigation