Solar Thermal Energy for Heating, Cooling and Power

  • Chapter
  • First Online:
Low-Carbon Energy in Africa and Latin America

Part of the book series: Lecture Notes in Energy ((LNEN,volume 38))

Abstract

This chapter shows that solar thermal energy is growing moderately around the world in part because solar photovoltaics is acting as a very competitive alternative in terms of costs and O&M. There is a significant penetration of solar thermal systems for heating water in some African and Latin American countries but challenges remain to produce the technologies involved locally with local qualified manpower, particularly in the vacuum technology and hot water plumbing sectors. No solar cooling systems for direct building air conditioning have been reported in Africa and limited opportunities are reported in Latin America with no detailed information on capacity and/or location. Some solar sorption refrigeration have been reported in Africa and Latin America since the late 1970s, but mostly devoted to research and development activities and not to wide-scale application. Finally, solar cookers hold significant promise in both regions but to date have limited wide scale adoption in either region because of dependence on weather conditions, cultural habits and maximum temperature limitiations  by with many of these devices, which are not compatible with basic food recipes in many areas. Concentrating solar power (CSP) has tremendous promise globally but continues to grow at a measured pace, as Africa and Latin America have very limited CSP, with 2 GWh and 8.6 GWh, respectively. CSP plants require water for cooling and for the condensation processes which can be problematic in many desert areas of Africa and Latin America where the sun direct radiation is high enough to produce high power outputs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauthner F, Weiss W, Spörk-Dür M (2014) Solar heat worldwide. Markets and contribution to the energy supply 2014. Solar heating & cooling programme. International Energy Agency. 2016 Edition

    Google Scholar 

  2. IEA (2008) Energy technology perspectives

    Google Scholar 

  3. Hoogwijk M, Graus W (2008) Global potential of renewable energy sources: a literature assessment. Background report. Ecofys. http://www.ecofys.com/files/files/report_global_potential_of_renewable_energy_sources_a_literature_assessment.pdf. Accessed 13 Feb 2016

  4. SCS-IEA (2011) New method to calculate solar thermal output. Solar Update 54

    Google Scholar 

  5. Sparber W, Napolitano A, Melograno P (2007) Overview on worldwide installed solar cooling systems. 2nd international conference solar air conditioning, Tarragona—Spain, October 2007

    Google Scholar 

  6. IEA (2015) Cooling position paper. Task 48 quality assurance and support measures for solar cooling. Solar heating and cooling programme. http://www.iea-shc.org/data/sites/1/publications/IEA-SHC_Solar-Cooling-Position-Paper_Sep2015.pdf. Accessed 12 Feb 2016

  7. N’Tsoukpoe KE, Yamegueu D, Bassole J (2014) Solar sorption refrigeration in Africa. Renew Sustain Energy Rev 35:318–335

    Article  Google Scholar 

  8. Lecuona A (2014) Cocinas solares, cómo reducir la pobreza y el consumo energético. Universidad de La Laguna

    Google Scholar 

  9. International Energy Agency database (2015) http://data.iea.org/. Accessed 30 Nov 2015

  10. IRENA (2015) Resource. http://resourceirena.irena.org/gateway/dashboard/. Accessed 30 Nov 2015

  11. NREL data (2015) http://www.nrel.gov/csp/solarpaces/by_technology.cfm. Accessed 30 Nov 2015

  12. OECD/IEA (2010) Technology roadmap. Concentrating solar power

    Google Scholar 

  13. Henning H-M (2011) Solar air conditioning and refrigeration. 2010 Annual Report. SHC-IEA 2011

    Google Scholar 

  14. Guerrero-Lemus R, Martínez-Duart JM (2013) Renewable energies and CO2. Cost analysis, environmental impacts and technological trends. Lecture Notes in Energy 3. Springer. ISBN 978-1-4471-4385-7

    Google Scholar 

  15. N’Tsoukpoe KE, Yamegueu D, Bassole J (2014) Solar sorption refrigeration in Africa. Renew Sustain Energy Rev 35:318–335

    Article  Google Scholar 

  16. Bouzeffour F, Khelidj B, Tahar abbes M (2016) Experimental investigation of a solar adsorption refrigeration system working with silicagel/water pair: a case study for Bou-Ismail solar data. Sol Energy 131:165–175

    Article  Google Scholar 

  17. IEA (2012) Energy-efficient buildings: heating and cooling equipment. Technology roadmap

    Google Scholar 

  18. Lecuona-Newmann A (2016) Cocinas Solares. Fundamentos y aplicaciones. Herramienta de lucha contra la pobreza energética. Editorial Marcombo, Barcelona. ISBN 978-84-267-2372-7

    Google Scholar 

  19. Introduction to solar cooking. Solar cookers international network. http://solarcooking.wikia.com/wiki/Introduction_to_solar_cooking. Accessed 30 Nov 2015

  20. Brown LS, Lankford WF (2015) Clean cooking empowers women. Nature 521:284–285

    Article  Google Scholar 

  21. Bauer G, Vukelich S (2016) Solar ovens beaten by rain and tortillas. Nature 524:161

    Article  Google Scholar 

  22. Masera O, Edwards R, Arnez CA, Berrueta V, Johnson M, Bracho LR, Riojas-Rodríguez H, Smith KR (2007) Impact of Patsari improved cookstoves on indoor air quality in Michoacán, Mexico. Energy Sustain Dev 11:45–56

    Article  Google Scholar 

  23. IEA (2012) Technology roadmap. Solar heating and cooling

    Google Scholar 

  24. Boroze T, Desmorieux H, Méot J-M, Marouzé C, Azouma Y, Napo K (2014) Inventory and comparative characteristics of dryers used in the sub-Saharan zone: criteria influencing dryer choice. Renew Sustain Energy Rev 40:1240–1259

    Article  Google Scholar 

  25. Naouel (2011) A study on optimum insulation thickness in walls and energy savings in Tunisian buildings based on analytical calculation of cooling and heating transmission loads. Appl Energy 88:156–164

    Article  Google Scholar 

  26. Nematchoua MK, Tchinda R, José AO (2014) Thermal comfort and energy consumption in modern versus traditional buildings in Cameroon: a questionnaire-based statistical study. Appl Energy 114:687–699

    Article  Google Scholar 

  27. Uemoto KL, Sato MN, John V (2010) Estimating thermal performance of cool colored paints. Energy Build 42:7–22

    Article  Google Scholar 

  28. Dabaieh M, Wanas O, Hegazy MA, Johansson E (2015) Reducing cooling demands in a hot dry climate: a simulation study for non-insulated passive cool roof thermal performance in residential buildings. Energy Build 89:142–152

    Article  Google Scholar 

  29. IEA (2015) 2014 Highlights. SHC task 52. Solar heat and energy economy in urban environments. Solar heating and cooling programme. http://task52.iea-shc.org/data/sites/1/publications/IEA_SHC-Task52-Highlights-2014.pdf. Accessed 12 Feb 2016

  30. BCG (2011) Evolución Tecnológica y Prospectiva de Costes de las Energías Renovables. Estudio Técnico PER 2011–2020. Boston Consulting Group

    Google Scholar 

  31. Omri E, Chtourou N, Bazin D (2015) Solar thermal energy for sustainable development in Tunisia: the case of the PROSOL project. Renew Sustain Energy Rev 41:1312–1323

    Article  Google Scholar 

  32. IRENA (2010) Africa 2030: Roadmap for a renewable energy future

    Google Scholar 

  33. World Bank data (2015) http://siteresources.worldbank.org/DEVMARKETPLACE/Resources/205097-1128108124421/Rural_Milk_Preservation_Paper.pdf. Accessed 30 Nov 2015

  34. Energy Concepts LLC (2015) http://www.energy-concepts.com/_pages/app_isaac_solar_ice_maker.htm. Accessed 30 Nov 2015

  35. OECD/IEA (2014) Technology roadmap. Concentrating solar power

    Google Scholar 

  36. Hernández-Moro J, Martínez-Duart JM (2012) CSP electricity cost evolution and grid parities based on the IEA roadmaps. Energy Policy 41:184–192

    Article  Google Scholar 

  37. Kearney AT (2010) Solar Thermal electricity 2025. STELA

    Google Scholar 

  38. NEF (2009) New energy finance. Guardian cleantech summit. 23 Nov 2009

    Google Scholar 

  39. Muren RB, Chapman DJ, Arias DA (2010) Yearly performance modeling of concrete and phase change material thermal energy storage systems for concentrated solar power plants. Proceedings of ES2010 ASME Energy Sustainability 2010 May 17–22, Phoenix, Arizona, USA

    Google Scholar 

  40. Escalante KN, Belmonte S, Gea MD (2013) Determining factors in process of socio-technical adequacy of renewable energy in Andean Communities of Salta, Argentina. Renew Sustain Energy Rev 22:275–288

    Article  Google Scholar 

  41. Best R, Pilatowsky I (1998) Solar assisted cooling with sorption systems: status of the research in Mexico and Latin America. Int J Refrig 21:100–115

    Article  Google Scholar 

  42. Balghouthi M, Trabelsi SE, Amara MB, Ali ABH (2016) Potential of concentrating solar power (CSP) technology in Tunisia and the possibility of interconnection with Europe. Renew Sustain Energy Rev 56:1227–1248

    Article  Google Scholar 

  43. Malagueta D, Szklo A, Soria R, Dutra R, Schaeffer R, Borba BSMC (2014) Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system. Renewable Energy 68:223–235

    Article  Google Scholar 

  44. Dalvi VH, Panse SV, Joshi JB (2015) Solar thermal technologies as a bridge from fossil fuels to renewables. Nat Clim Change 5:1007–1013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Guerrero-Lemus .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Guerrero-Lemus, R., Shephard, L.E. (2017). Solar Thermal Energy for Heating, Cooling and Power. In: Low-Carbon Energy in Africa and Latin America. Lecture Notes in Energy, vol 38. Springer, Cham. https://doi.org/10.1007/978-3-319-52311-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52311-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52309-5

  • Online ISBN: 978-3-319-52311-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation