Future of Drug Development in Space: Unmanned Satellites and Vehicles

  • Living reference work entry
  • First Online:
Handbook of Space Pharmaceuticals
  • 88 Accesses

Abstract

The microgravity environment of space provides new opportunities for drug discovery and development. Until recently, the majority of studies in the microgravity of space have been conducted by astronauts aboard crewed spacecraft, particularly the International Space Station. This landscape is now changing, with the development of miniaturized platforms consisting of integrated automated systems for control of environmental conditions, flow, monitoring, and signal detection and transmission. Such systems can provide a more affordable alternative for the ISS, enable specimen exposure to hazardous conditions, and prepare the ground for deep space human exploration. The chapter presents opportunities and challenges related to experimentation aboard satellites and uncrewed space vehicles. The first part describes the experience gained through the use of uncrewed spacecraft by space agencies worldwide which set the ground for currently used platforms. Next, it reviews recent innovative systems for microgravity research flown aboard nanosatellites. The final section of this chapter provides an outlook into future technologies that will enable upscaling the experimental work conducted in microgravity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Amselem S (2019) Remote controlled autonomous microgravity lab platforms for drug research in space. Pharm Res 36:183

    Article  CAS  PubMed  Google Scholar 

  • Braddock M (2019) From target identification to drug development in space: using the microgravity assist. Curr Drug Discov Technol

    Google Scholar 

  • CalPoly (2020) The CubeSat Program, Cal Poly SLO. CubeSat Design Specification Rev 14. https://static1.squarespace.com/static/5418c831e4b0fa4ecac1bacd/t/5f24997b6deea10cc52bb016/1596234122437/CDS+REV14+2020-07-31+DRAFT.pdf. Accessed August 28

  • Camirand A, Goltzman D, Gupta A, Kaouass M, Panda D, Karaplis A (2016) The role of parathyroid hormone-related protein (PTHrP) in osteoblast response to microgravity: mechanistic implications for osteoporosis development. PLoS One 11:e0160034

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chayen NE (1995) Microgravity protein crystallisation aboard the photon satellite. J Cryst Growth 153:175–179

    Article  CAS  Google Scholar 

  • Chemla S (2020) Jerusalem Post. Israel makes history, launches DIDO III satellite into space. https://www.jpost.com/health-science/israel-makes-history-launchs-dido-iii-satellite-into-space-640918. Accessed September 17

  • Cook AM, Mattioda AL, Ricco AJ, Quinn RC, Elsaesser A, Ehrenfreund P, Ricca A, Jones NC, Hoffmann SV (2014) The organism/organic exposure to orbital stresses (O/OREOS) satellite: radiation exposure in low-earth orbit and supporting laboratory studies of iron tetraphenylporphyrin chloride. Astrobiology 14:87–101

    Article  CAS  PubMed  Google Scholar 

  • Cop**er B (2017a) BBC Future. The reusable spaceplane launched inside a rocket. https://www.bbc.com/future/article/20170411-the-reusable-spaceplane-launched-inside-a-rocket. Accessed August 31.

  • Cop**er R (2017b) SpaceNews. ESA aims to privatize Space Rider unmanned spaceplane by 2025. https://spacenews.com/esa-aims-to-privatize-space-rider-unmanned-spaceplane-by-2025/. Accessed August 31

  • CSA (2020) Canadian Space Agency. What is a CubeSat. https://www.asc-csa.gc.ca/eng/satellites/cubesat/what-is-a-cubesat.asp. Accessed August 28

  • Cullen DC, Longley J, Kingston J, Lee D, Black M, Pearson D, Waring C, Pink RC (2020) BAMMsat – a platform for beyond LEO space environments studies on biological systems in CubeSats and CubeSat-like payloads. https://bammsat.com/about

  • Dong W, Duan W, Liu W, Zhang Y (2019) Microgravity disturbance analysis on Chinese space laboratory. NPJ Microgravity 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Dose K, Bieger-Dose A, Dillmann R, Gill M, Kerz O, Klein A, Meinert H, Nawroth T, Risi S, Stridde C (1995) ERA-experiment “Space biochemistry”. Adv Space Res 16:119–129

    Article  CAS  PubMed  Google Scholar 

  • Elsaesser A, Quinn RC, Ehrenfreund P, Mattioda AL, Ricco AJ, Alonzo J, Breitenbach A, Chan YK, Fresneau A, Salama F, Santos O (2014) Organics exposure in orbit (OREOcube): a next-generation space exposure platform. Langmuir 30:13217–13227

    Article  CAS  PubMed  Google Scholar 

  • Elsaesser A, Merenda F, Lindner R, Walker R, Buehler S, Boer G, Villa A, Hallak Y, Aguado F, Alberti E, Wood B (2020) SpectroCube: a European 6U nanosatellite spectroscopy platform for astrobiology and astrochemistry. Acta Astronaut 170:275–288

    Article  CAS  Google Scholar 

  • Erdmann VA, Lippmann C, Betzel C, Dauter Z, Wilson K, Hilgenfeld R, Hoven J, Liesum A, Saenger W, Müller-Fahrnow A, Hinrichs W, Düvel M, Schulz GE, Müller CW, Wittmann HG, Yonath A, Weber G, Stegen K, Plaas-Link A (1989) Crystallization of proteins under microgravity. FEBS Lett 259:194–198

    Article  CAS  Google Scholar 

  • ESA (2006) European Space Agency. Foton. https://web.archive.org/web/20060323090947/http://www.spaceflight.esa.int/users/index.cfm?act=default.page&level=11&page=facfoton. Accessed September 13

  • ESA (2017). The European Space Agency. M-Argo. http://www.esa.int/ESA_Multimedia/Images/2017/06/M_Argo. Retrieved September 13, 2020.

  • ESA (2019). The European Space Agency. Space Rider. https://interestingengineering.com/reusable-spaceplanes-through-the-ages. Retrieved August 31, 2020.

  • ESA (2020a). N° 25–1993: EURECA, the European retrievable carrier ready to be brought back. Retrieved September 13, 2020.

    Google Scholar 

  • ESA (2020b). The European Space Agency. Space Rider: Europe’s reusable space. https://www.esa.int/Enabling_Support/Space_Transportation/Space_Rider_Europe_s_reusable_space_transport_system. Retrieved August 31, 2020.

  • Eyal S, Derendorf H (2019) Medications in space: in search of a pharmacologist’s guide to the galaxy. Pharm Res 36:148

    Article  PubMed  CAS  Google Scholar 

  • Feng M, Peng J, Song C, Wang Y (1994) Mammalian cell cultivation in space. Microgravity Sci Technol 7:207–210

    CAS  PubMed  Google Scholar 

  • Giulianotti MA, Low LA (2019) Pharmaceutical research enabled through microgravity: perspectives on the use of the international space station U.S. National Laboratory. Pharm Res 37:1

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez F, Cunisse M, Perigaud A (1991) CROCODILE: an automated apparatus for organic crystal growth from solution. Acta Astronaut 25:775–784

    Article  CAS  PubMed  Google Scholar 

  • Gray T, Garber S (2004) A brief history of animals in space. National Aeronautics and Space Administration. Accessed August 2

    Google Scholar 

  • Grindeland RE, Ilyin EA, Holley DC, Skidmore MG (2005) International collaboration on Russian spacecraft and the case for free flyer biosatellites. Adv Space Biol Med 10:41–80

    Article  PubMed  Google Scholar 

  • Harding RC (2013) Space policy in develo** countries. Routledge, New York

    Google Scholar 

  • Harvey B (2018) Biological experiments in space, China. In: E. Seedhouse and D.J. Shayler (eds.), Handbook of life support systems for spacecraft and extraterrestrial habitats. Cham (Springer International Publishing).

    Google Scholar 

  • Henning M, Visanji M, Weber W, Janczikowski H, Plaas-Link A, Betzel C (1994) COSIMA – protein crystal growth facility for automatic processing on unmanned satellites. J Cryst Growth 135:513–522

    Article  Google Scholar 

  • Hilgenfeld R, Liesum A, Storm R¨d, Plaas-Link A (1992) Crystallization of two bacterial enzymes on an unmanned space mission. J Cryst Growth 122:330–336

    Article  CAS  Google Scholar 

  • Horneck G, Eschweiler U, Reitz G, Wehner J, Willimek R, Strauch K (1995) Biological responses to space: results of the experiment “Exobiological Unit” of ERA on EURECA I. Adv Space Res 16:105–118

    Article  CAS  PubMed  Google Scholar 

  • Huaxia (2020) China’s reusable experimental spacecraft back to landing site. **nhuaNet. Accessed September 13

    Google Scholar 

  • JAXA (2020) Japan Aerospace Exploration Agency. About H-II transfer vehicle “KOUNOTORI” (HTV). https://global.jaxa.jp/projects/rockets/htv/. Accessed September 9

  • Kitts C, Ronzano K, Rasay R, Mas I, Williams P, Mahaek P, Minelli G et al (2007) Flight results from the GensSat-1 biological microsatellite mission. In: 21st annual AIAA/USU conference on small satellites

    Google Scholar 

  • Kitts C, Ronzano K, Rasay R, Mas I, Acain J, Neumann M, Bica L, Mahaek P, Minelli G, et al (2009) Initial flight results from the PharmaSat biological microsatellite mission. In: 23rd annual AIAA/USU conference on small satellites

    Google Scholar 

  • KTH (2019) KTH Space Center. The Student Satellite MIST. https://www.kth.se/en/sci/centra/rymdcenter/studentsatellit/studentsatelliten-mist-1.481707. Accessed September 17

  • Kulu E Nanosats Database. https://www.nanosats.eu/#info. Accessed September 19

  • Kuzicheva EA, Gontareva NB (2003) Exobiological investigations on Russian spacecrafts. Astrobiology 3:253–261

    Article  CAS  PubMed  Google Scholar 

  • Lendon B (2020) China launches and recovers reusable spacecraft, state media says. CNN World. Accessed September 13

    Google Scholar 

  • Li N, Wang C, Sun S, Zhang C, Lü D, Chen Q, Long M (2018) Microgravity-induced alterations of inflammation-related mechanotransduction in endothelial cells on Board SJ-10 Satellite. Front Physiol 9:1025

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhu H, Zhang F, Dong X, Hao T, Jiang X, Zheng W, Zhang T, Chen X, Wang P, Na J, Wang C, Zhou J (2019) Spaceflight promoted myocardial differentiation of induced pluripotent stem cells: results from Tianzhou-1 Space Mission. Stem Cells Dev 28:357–360

    Article  CAS  PubMed  Google Scholar 

  • Lü D, Sun S, Zhang F, Luo C, Zheng L, Wu Y, Li N, Zhang C, Wang C, Chen Q, Long M (2019) Microgravity-induced hepatogenic differentiation of rBMSCs on board the SJ-10 satellite. FASEB J 33:4273–4286

    Article  PubMed  Google Scholar 

  • Lundager Madsen HE, Christensson F, Chernov AA, Polyak LE, Suvorova EI (1995) Crystallization of calcium phosphate in microgravity. Adv Space Res 16:65–68

    Article  CAS  PubMed  Google Scholar 

  • Lynch SV, Matin A (2005) Travails of microgravity: man and microbes in space. Biologist 52:80–87

    Google Scholar 

  • Massaro Tieze S, Liddell LC, Santa Maria SR, Bhattacharya S (2020) BioSentinel: a biological CubeSat for deep space exploration. Astrobiology. https://doi.org/10.1089/ast.2019.2068. Online ahead of print

  • Matin AC (2020) Bacterial resistance to antimicrobials in microgravity/countermeasures/drug development. In: ISSR&D conference

    Google Scholar 

  • Matin AC, Wang JH, Keyhan M, Singh R, Benoit M, Parra MP, Padgen MR, Ricco AJ, Chin M, Friedericks CR, Chinn TN, Cohen A, Henschke MB, Snyder TV, Lera MP, Ross SS, Mayberry CM, Choi S, Wu DT, Tan MX, Boone TD, Beasley CC, Piccini ME, Spremo SM (2017) Payload hardware and experimental protocol development to enable future testing of the effect of space microgravity on the resistance to gentamicin of uropathogenic Escherichia coli and its σ(s)-deficient mutant. Life Sci Space Res (Amst) 15:1–10

    Article  CAS  Google Scholar 

  • Mattioda A, Cook A, Ehrenfreund P, Quinn R, Ricco AJ, Squires D, Bramall N, Bryson K, Chittenden J, Minelli G, Agasid E, Allamandola L, Beasley C, Burton R, Defouw G, Diaz-Aguado M, Fonda M, Friedericks C, Kitts C, Landis D, McIntyre M, Neumann M, Rasay M, Ricks R, Salama F, Santos O, Schooley A, Yost B, Young A (2012) The O/OREOS mission: first science data from the space environment viability of organics (SEVO) payload. Astrobiology 12:841–853

    Article  CAS  PubMed  Google Scholar 

  • Meneghin A, Brucato JR, Poggiali G, Nascetti A, Anfossi L, Mirasolik M (2019) AstroBio CubeSat: a mini laboratory payload for space environment astrobiology experiments. 19th European Astrobiology Network Association (EANA). sciencesconf.org:eana2019:281529. https://eana2019.sciencesconf.org/281529/document

  • Mesland DAM (1995) Preface. Adv Space Res 16:1–3

    Article  CAS  PubMed  Google Scholar 

  • Minelli G, Hines J, Ricco A, Agasid E (2010) O/OREOS nanosatellite: a multi-payload technology demonstration. In: 24th annual AIAA/USU conference on small satellites

    Google Scholar 

  • Ming G, Guang-heng Z, Yi-dong G (2018) Progress of Space Sciences and Application Projects in China’s Manned Space Flight. Space Science Activities in China. National Report 2016–2018. http://english.nssc.cas.cn/ns/NU/201809/W020180906583001262971.pdf

  • NASA (2009) National Aeronautics and SPACE Administration. PharmaSat Nanosatellite. https://www.nasa.gov/pdf/331108main_pharmasat_Fact%20Sheet_FINAL.pdf. Updated 1 Apr 2009. Accessed 9 Sept 2009

  • NASA (2010, October 29, 2010). Organism/Organic Exposure to Orbital Stresses (O/OREOS) Nanosatellite. An Astrobiology Technology Demonstration. https://www.nasa.gov/pdf/467036main_OOREOS_FactSheet_FINAL_2010-10-29.pdf. Retrieved September 9, 2020.

  • NASA (2015, March 4, 2015). National Aeronautics and Space Administration. Biosentinel. file:///C:/Users/owner/Desktop/HUJI/SpacePharma/Book%20chapter/biosentinel_fact_sheet-16apr2019_508.pdf. Retrieved September 9, 2020.

    Google Scholar 

  • Nicholson WL, Ricco AJ (2019) Nanosatellites for biology in space: in situ measurement of Bacillus subtilis spore germination and growth after 6 months in low earth orbit on the O/OREOS mission. Life (Basel) 10(1):1

    Google Scholar 

  • Nielsen KF, Lind MD, Lindegaard-Andersen A, Gerward L, Groth-Andersen L (1995) Growth of calcium carbonate crystals on the European Retrievable Carrier flight. Adv Space Res 16:59–64

    Article  CAS  Google Scholar 

  • Padgen MR, Lera MP, Parra MP, Ricco AJ, Chin M, Chinn TN, Cohen A, Friedericks CR, Henschke MB, Snyder TV, Spremo SM, Wang JH, Matin AC (2020) EcAMSat spaceflight measurements of the role of σ(s) in antibiotic resistance of stationary phase Escherichia coli in microgravity. Life Sci Space Res (Amst) 24:18–24

    Article  Google Scholar 

  • Park J, Salmi ML, Wan Salim WW, Rademacher A, Wickizer B, Schooley A, Benton J, Cantero A, Argote PF, Ren M, Zhang M, Porterfield DM, Ricco AJ, Roux SJ, Rickus JL (2017) An autonomous lab on a chip for space flight calibration of gravity-induced transcellular calcium polarization in single-cell fern spores. Lab Chip 17:1095–1103

    Article  CAS  PubMed  Google Scholar 

  • Parra MP, Ricco AJ, Yost B, McGinnis MR, Hines JW (2008) Studying space effects on microorganisms autonomously: GeneSat, PharmaSat, and the future of bionanosatellites. Gravit Space Biol Bull 21:9–18

    Google Scholar 

  • Poghosyan A, Golkar A (2017) CubeSat evolution: analyzing CubeSat capabilities for conducting science missions. Prog Aerosp Sci 88:59–83

    Article  Google Scholar 

  • Ratke L (1995) Coarsening of liquid Al-Pb dispersions under microgravity – a EURECA experiment. Adv Space Res 16:95–99

    Article  CAS  Google Scholar 

  • Reichert P, Prosise W, Fischmann TO, Scapin G, Narasimhan C, Spinale A, Polniak R, Yang X, Walsh E, Patel D, Benjamin W, Welch J, Simmons D, Strickland C (2019) Pembrolizumab microgravity crystallization experimentation. NPJ Microgravity 5:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reuters (2018) China to offer commercial recoverable satellites in next two years: **nhua, Reuters. Accessed September 12

    Google Scholar 

  • Robson D, Cappelletti C, Segal J, Williams P, Szewczyk N (2020) The University of Nottingham. Development of a CubeSat platform for biomedical and pharmaceutical LEO experiments. Presented at the 5th IAA conference on University Satellite Missions and CubeSat Workshop, Rome. https://www.gaussteam.com/wordpress/wp-content/uploads/2020/03/IAA-AAS-CU-20-03-03-Development-of-a-CubeSat-Platform-for-Biomedical-and-Pharmaceutical-LEO-Experiments-min-min.pdf. Accessed September 17

  • Ryder P, Braddock M (2020) Harnessing the space environment for the discovery and development of new medicines. In: Patnak Y, dos Santos MA, Zea L (eds) Handbook of space pharmaceuticals. Springer Nature, Cham

    Google Scholar 

  • Santa Maria SR, Marina DB, Massaro Tieze S, Liddell LC, Bhattacharya S (2020) BioSentinel: long-term saccharomyces cerevisiae preservation for a deep space biosensor mission. Astrobiology. https://doi.org/10.1089/ast.2019.2073. Online ahead of print

  • Selva D, Krejci D (2012) A survey and assessment of the capabilities of cubesats for earth observation. Acta Astronaut 74:50–58

    Article  Google Scholar 

  • Sgambati A, Deiml M, Stettner A, Kahrs J, Brozek P, Kapoun P, Latini V, Mariani M, Rabbow E, Manieri P, Demets R, Elsaesser A (2020) SPECTROModule: a modular in-situ spectroscopy platform for exobiology and space sciences. Acta Astronaut 166:377–390

    Article  CAS  Google Scholar 

  • Shi L, Hongling Tian, Peng Wang, Ling Li, Zhaoqi Zhang, Jiayu Zhang, Yong Zhao (2020) Spaceflight and simulated microgravity suppresses macrophage development via altered RAS/ERK/NFκB and metabolic pathways. Cell Mol Immunol. https://doi.org/10.1038/s41423-019-0346-6. Online ahead of print

  • SNC (2020a) Sierra Nevada Corporation. Dream Chaser Spaceplane. https://www.sncorp.com/what-we-do/dream-chaser-space-vehicle/. Accessed August 31

  • SNC (2020b). Sierra Nevada Corporation. Shooting Star Transport Vehicle. https://www.sncorp.com/media/2922/snc_shootingstartransportvehicle_brochure_2020.pdf. Retrieved September 16, 2020.

  • Thimann K (1968) Biosatellite II experiments: preliminary results. Proc Natl Acad Sci U S A 60:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tryggvason BV, Duval WMB, Smith RW, Rezkallah KS, Varma S, Redden RF, Herring RA (2001) The vibration environment on the international space station: its significance to fluid-based experiments. Acta Astronaut 48:59–70

    Article  Google Scholar 

  • Wilson JW, Ott CM, Honer zu Bentrup K, Ramamurthy R, Quick L, Porwollik S, Cheng P, McClelland M, Tsaprailis G, Radabaugh T, Hunt A, Fernandez D, Richter E, Shah M, Kilcoyne M, Joshi L, Nelman-Gonzalez M, Hing S, Parra M, Dumars P, Norwood K, Bober R, Devich J, Ruggles A, Goulart C, Rupert M, Stodieck L, Stafford P, Catella L, Schurr MJ, Buchanan K, Morici L, McCracken J, Allen P, Baker-Coleman C, Hammond T, Vogel J, Nelson R, Pierson DL, Stefanyshyn-Piper HM, Nickerson CA (2007) Space flight alters bacterial gene expression and virulence and reveals a role for global regulator Hfq. Proc Natl Acad Sci U S A 104:16299–16304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zagalsky PF, Wright CE, Parsons M (1995) Crystallisation of alpha-crustacyanin, the lobster carapace astaxanthin-protein: results from Eureca. Adv Space Res 16:91–94

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Gao W, Yan S, Zhao Y (2012) Effects of space flight on the chemical constituents and anti-inflammatory activity of licorice (Glycyrrhiza uralensis Fisch). Iran J Pharm Res 11:601–609

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Li L, Jiang Y, Wang C, Geng B, Wang Y, Chen J, Liu F, Qiu P, Zhai G, Chen P, Quan R, Wang J (2018) Space microgravity drives transdifferentiation of human bone marrow-derived mesenchymal stem cells from osteogenesis to adipogenesis. FASEB J 32:4444–4458

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Sara Eyal is affiliated with the David R. Bloom Centre for Pharmacy and the Dr. Adolf and Klara Brettler Centre for Research in Molecular Pharmacology and Therapeutics at The Hebrew University of Jerusalem, Israel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Eyal .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Glick, Y., Eyal, S. (2021). Future of Drug Development in Space: Unmanned Satellites and Vehicles. In: Pathak, Y., Araújo dos Santos, M., Zea, L. (eds) Handbook of Space Pharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-319-50909-9_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50909-9_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50909-9

  • Online ISBN: 978-3-319-50909-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation