Essential Physics of Inertial Confinement Fusion (ICF)

  • Chapter
  • First Online:
Inertial Confinement Fusion Driven Thermonuclear Energy
  • 987 Accesses

Abstract

In order to study plasma physics and its behavior for a source of driving fusion in a controlled thermonuclear reaction for purpose of generating energy, understanding of the fundamental knowledge of electromagnetic theory is essential. In this chapter, we introduce Maxwell equations and Coulomb’s barrier or Tunnel effects for better understanding of plasma behavior for confinement purpose. The controlled thermonuclear reaction for generating clean energy that is confined magnetically or inertially requires some basic understanding of physics and mathematics rules and knowledge. We are mainly concerned with confinement of plasmas at terrestrial temperature, e.g., very hot plasmas, where primarily of interest is in application to controlled fusion research in magnetic confinement reactors such as tokomak or using high-power laser or high-energy particles for purpose of inertial confinement fusion. Dimensional analysis and self-similarity allow us to have better understanding of implosion and explosion process in case of lateral confinement approach. This chapter is walking through some of the essentials that one needs to know for the process of inertial confinement in particular as subject of this book, which are all about.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 128.39
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 171.19
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 171.19
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Zohuri, Directed Energy Weapons, Physics of High Energy Lasers (HEL) (Springer, 2016)

    Google Scholar 

  2. J.R. Reitz, F.J. Milford, R.W. Christy, Foundations of Electromagnetic Theory, 4th edn. (Pearson, Addison Wesley, San Francisco, 2009)

    MATH  Google Scholar 

  3. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 3rd edn. (Springer, 2016)

    Google Scholar 

  4. B. Zohuri, Directed Energy Weapons: Physics of High Energy Lasers (HEL). Appendix F: Short Course in Electromagnetic and Appendix G: Short Course in Optics (Springer, 2016)

    Google Scholar 

  5. E. Herdst, Chemistry in the interstellar medium. Annu. Rev. Phys. Chem. (1995)

    Google Scholar 

  6. L.M. Haffner, R.J. Reynolds, S.L. Tufte, G.J. Madsen, K.P. Jaehnig, J.W. Percival, The Wisconsin Ha Mapper Northern sky survey. Astrophys. J. Suppl. 145(2), 405 (2003)

    Article  Google Scholar 

  7. E. Prati, Propagation in gyro-electromagnetic guiding systems. J. Electr. Wav. Appl. 17(8), 1177–1196 (2003)

    Article  Google Scholar 

  8. B. Zohuri, Dimensional Analysis Beyond the Pi Theorem, 1st edn. (Springer, 2017)

    Google Scholar 

  9. B. Zohuri, Dimensional Analysis and Self-Similarity Methods for Engineers and Scientists, 1st edn. (Springer, 2015)

    Google Scholar 

  10. G. Galilei, Discorsi e Dimostrazioni Matematiche intorno à due nuoue scienze Attenenti alla Mecanica & i Movimenti Locali (1638)

    Google Scholar 

  11. H. Schlichting, Boundary Layer Theory, 4th edn. (McGraw-Hill Book Company, New York, 1960)

    MATH  Google Scholar 

  12. I. Proudman, J.R.A. Pearson, J. Fluid. Mech. 2, 237 (1957)

    Article  Google Scholar 

  13. T. Komulainen, Helsinki University of Technology, Laboratory of Process Control and Automation. tiina.komulainen@hut.fi

    Google Scholar 

  14. J. Sylvan Katz, The self-similar science system. Res. Policy 28, 501–517 (1999)

    Article  Google Scholar 

  15. C. Judd, Fractals C Self-similarity. http://www.bath.ac.uk/~ma0cmj/FractalContents.html. Accessed 16 Mar 2003

  16. S. Yadegari, Self-similarity. http://www-crca.ucsd.edu/~syadegar/MasterThesis/node25.html. Accessed 16 Mar 2003

  17. B.J. Carr, A.A. Coley, Self-similarity in general relativity. http://users.math.uni-potsdam.de/~oeitner/QUELLEN/ZUMCHAOS/selfsim1.htm. Accessed 16 Mar 2003

  18. G.I. Barenblatt, Scaling Phenomena in Fluid Mechanics, 1st edn. (Cambridge University Press, Cambridge, 1994)

    MATH  Google Scholar 

  19. Y.B. Zel’dovich, Y.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamics Phenomena (Dover, New York, 2002)

    Google Scholar 

  20. H.H. Olsen, Bukingham’s Pi Theorem. www.math.ntnu.no/~hanche/notes/buckingham/buckingham-a4.pdf

  21. V. Skglund, Similitude: Theory and Applications (International Textbook Company, Scranton, 1967)

    Google Scholar 

  22. G.I. Barenblatt, ‘Scaling’ Cambridge Texts in Applied Mathematics (2006)

    Google Scholar 

  23. P.L. Sachdev, S. Ashraf, Strong shock with radiation near the surface of a star. Phys. Fluids 14, 2107 (1971a)

    Article  Google Scholar 

  24. G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmittelpunktes bzw. der Zylinderachse. Luftfahrt-Forsch 19, 302–312 (1942)

    MathSciNet  MATH  Google Scholar 

  25. G.I. Taylor, The formation of a blast wave by a very intense explosion. I. Theoretical discussion. Proc. R. Soc. A 201, 159–174 (1950a)

    Article  MATH  Google Scholar 

  26. G.I. Taylor, The formation of a blast wave by a very intense explosion. II. The atomic explosion of 1945. Proc. R. Soc. A 201, 175–186 (1950b)

    Article  MATH  Google Scholar 

  27. J. von Neumann, Blast Waves Los Alamos Science Laboratory Technical Series, Los Alamos, NM, vol 7 (1947)

    Google Scholar 

  28. L. Sedov, Similarity and Dimensional Methods in Mechanics, Chap. IV. (Academic, New York, 1969)

    Google Scholar 

  29. E. Waxman, D. Shvarts, Second-type self-similar solutions to the strong explosion problem. Phys. Fluids A 5, 1035 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Best, R. Sari, Second-type self-similar solutions to the ultra-relativistic strong explosion problem. Phys. Fluids. 12, 3029 (2000)

    Google Scholar 

  31. R. Sari, First and second type self-similar solutions of implosions and explosions containing ultra relativistic shocks. Phys. Fluids 18 (2006)

    Google Scholar 

  32. C.L. Dym, Principle of Mathematical Modeling, 2nd edn. (Elsevier, 2004)

    Google Scholar 

  33. F.R. Giordano, W.P. Fox, S.B. Horton, M.D. Weir, A First Course in Mathematical Modeling, 4th edn. (Brooks Cole Publication, 2008)

    Google Scholar 

  34. W.D. Hayes, The propagation upward of the shock wave from a strong explosion in the atmosphere. J. Fluid. Mech. 32, 317 (1968)

    Article  MATH  Google Scholar 

  35. P.L. Sachdev, Shock Waves and Explosions (Chapman & Hall/CRC, 2004)

    Google Scholar 

  36. S. Matsumora, O. Onodera, I.L. Takayama, Noise Induced by Weak Shock Waves in Automobile Exhaust Systems (Effects of Viscosity and Back Pressure), in Proc- of the 19th Int. Symp. on Shock Waves and Shock Tubes, Marseille, France, vol 3 (1993), pp. 367–372

    Google Scholar 

  37. K.C. Phan, On the Performance of Blast Deflectors and Impulse Attenuators, in Proc. of the 18th Int. Symp. on Shock Waves and Shock Tubes, Sendai, Japan (1991), pp. 927–934

    Google Scholar 

  38. S.D. Ramsey, J.R. Kamm, J.H. Bolstad, The Guderley problem revised. Int. J. Comput. Fluid Dyn. 26(2), 79–99 (2012)

    Article  Google Scholar 

  39. W. Chester, The propagation of shock waves in a channel of non-uniform width. Q. J. Mech. Appl. Math. 6, 440–452 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  40. R.F. Chisnell, The motion of a shock wave in a channel, with applications to cylindrical and spherical shock waves. J. Fluid. Mech. 4, 286–298 (1958)

    MathSciNet  MATH  Google Scholar 

  41. G.B. Whitham, On the propagation of shock waves through regions of nonuniform area of flow. J. Fluid. Mech. 4(Part 1), 37–360 (1958)

    MathSciNet  MATH  Google Scholar 

  42. Fong, K., Ahlborn, B., “Stability of converging shock waves”, Phys. Fluids, 22(3), 4 16–42 1 (1979)

    Google Scholar 

  43. J.H. Gardner, D.L. Book, I.B. Bernstein, Stability of imploding shocks in the CCW approximation. J. Fluid. Mech. 1(14), 41–58 (1982)

    Article  MATH  Google Scholar 

  44. M. El-Mallah, Experimental and numerical study of the bleed effect on the propagation of strong plane and converging cylindrical shock waves. The Department of Mechanical Engineering, Presented in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Concordia University Montreal, Quebec, Canada, May 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zohuri, B. (2017). Essential Physics of Inertial Confinement Fusion (ICF). In: Inertial Confinement Fusion Driven Thermonuclear Energy. Springer, Cham. https://doi.org/10.1007/978-3-319-50907-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50907-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50906-8

  • Online ISBN: 978-3-319-50907-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation