Advancement in Development of Biodiesel Production in the Last Two Decades: An Indian Overview on Raw Materials, Synthesis, By-products, and Application

  • Chapter
  • First Online:
Sustainable Biofuels Development in India

Abstract

The fossil fuel resources are depleting at a faster rate, and environmental concerns are increasing worldwide. Therefore, there is a need to explore renewable energy resources to meet the increasing energy demands and to reduce the environmental pollution. Biodiesel is one of such renewable resources. This chapter reviews the advancements taking place in the development of biodiesel processes in India, particularly for raw materials, synthesis, by-products, and applications. India has huge potential to produce biodiesel from nonedible feedstocks (such as Jatropha curcas, Pongamia pinnata, Neem, Castor, Karanja, and Rubber seed) which are widely available. Algal oil has also been explored as a biodiesel feedstock. The USA and European Union are using edible oil as feedstock for the production of biodiesel. However, India cannot afford edible oil as the needs of the country are met by imports up to 50%. Several processes (such as co-solvent, enzymatic, microwave, and ultrasound) have been explored for the production of biodiesel. Use of biodiesel as a transportation fuel reduces emission of harmful pollutants such as CO2 (global warming), NOx (photochemical smog), and SOx (acid rain). It also helps in rural upliftment by increasing employment in agriculture sector. The main by-product of biodiesel production is the crude glycerol, and in this chapter, various applications of this by-product have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kumar RS, Sureshkumar K, Velraj R (2015) Optimization of biodiesel production from Manilkara zapota (L.) seed oil using Taguchi method. Fuel 140:90–96

    Article  Google Scholar 

  2. Panwar NL, Kaushik SC, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15(3):1513–1524

    Article  Google Scholar 

  3. Biresselioglu ME, Zengin Karaibrahimoglu Y (2012) The government orientation and use of renewable energy: case of Europe. Renew Energy 47:29–37

    Article  Google Scholar 

  4. No S-Y (2011) Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: a review. Renew Sustain Energy Rev 15(1):131–149

    Article  CAS  Google Scholar 

  5. Habibullah M, Rizwanul Fattah IM, Masjuki HH, Kalam MA (2015) Effects of palm-coconut biodiesel blends on the performance and emission of a single-cylinder diesel engine. Energy Fuels 29(2):734–743

    CAS  Google Scholar 

  6. Faizal MH, Latiff ZA, Iskandar MAM (2015) Investigation on charecteristics of Pome blended diesel engine. Teknologi 8(75):1–5

    Google Scholar 

  7. Chavan SB, Kumbhar RR, Deshmukh RB (2013) Callophyllum Inophyllum Linn (‘honne’) oil, A source for biodiesel production. Res J Chem Sci 3(11):24–31

    Google Scholar 

  8. Satyanarayana M, Muraleedharan C (2011) Comparative studies of biodiesel production from rubber seed oil, coconut oil, and palm oil including thermogravimetric analysis. Energy Sources Part A Recover Util Environ Eff 33(10):925–937

    Article  CAS  Google Scholar 

  9. Sarin R, Sharma M, Sinharay S, Malhotra RK (2007) Jatropha-Palm biodiesel blends: an optimum mix for Asia. Fuel 86(10–11):1365–1371

    Article  CAS  Google Scholar 

  10. Dixit S, Kanakraj S, Rehman A (2012) Linseed oil as a potential resource for bio-diesel: a review. Renew Sustain Energy Rev 16(7):4415–4421

    Article  CAS  Google Scholar 

  11. Kanakraj S, Dixit S, Rehman A (2013) Optimization of degummed Linum usitatissimum methyl ester from methanolysis as a potential resource for diesel engines. Electron J Energy Environ 1(2):9–20

    Article  Google Scholar 

  12. Kumar D, Kumar G, Poonam Singh CP (2010) Fast, easy ethanolysis of coconut oil for biodiesel production assisted by ultrasonication. Ultrason Sonochem 17(3):555–559

    Article  CAS  PubMed  Google Scholar 

  13. Chakraborty R, Bepari S (2012) Biodiesel synthesis from mustard oil (brassica nigra ) using calcium oxide-calcium aluminate catalyst developed from duck eggshell. Int J Adv Sci Res Technol 3(2):242–256

    Google Scholar 

  14. Narkhede N, Patel A (2013) Biodiesel production by esterification of oleic acid and transesterification of soybean oil using a new solid acid catalyst comprising 12-tungstosilicic acid and zeolite Hβ. Ind Eng Chem Res 52:13637–11364

    Article  CAS  Google Scholar 

  15. Pukale DD, Maddikeri GL, Gogate PR, Pandit AB, Pratap AP (2015) Ultrasound assisted transesterification of waste cooking oil using heterogeneous solid catalyst. Ultrason Sonochem 22:278–286

    Article  CAS  PubMed  Google Scholar 

  16. Kumar A, Sharma S (2011) Potential non-edible oil resources as biodiesel feedstock: an Indian perspective. Renew Sustain Energy Rev 15(4):1791–1800

    Article  CAS  Google Scholar 

  17. Patel NK, Nagar PS, Shah SN (2013) Identification of non-edible seeds as potential feedstock for the production and application of bio-diesel. Energy Power 3(4):67–78

    Google Scholar 

  18. Shikha K, Rita CYJ (2012) Biodiesel production from non edible-oils: a review. J Chem Pharm Res 4(9):4219–4230

    Google Scholar 

  19. Karmakar A, Karmakar S (2012) Biodiesel production from neem towards feedstock diversification: Indian perspective. Renew Sustain Energy Rev 16(1):1050–1060

    Article  CAS  Google Scholar 

  20. Ahmed WA, Salimon J (2009) Phorbol ester as toxic constituents of tropical Jatropha curcas seed oil. Eur J Sci Res 31(3):429–436

    Google Scholar 

  21. Tsou J, Chang K, Wang W, Tseng JT, Su W, Hung L, Chang W, Chen B (2008) Nucleolin regulates c-Jun/Sp1-dependent transcriptional activation of cPLA 2 a in phorbol ester-treated non-small cell lung cancer A549 cells. Nucleic Acids Res 36(1):217–227

    Article  CAS  PubMed  Google Scholar 

  22. Pramanik K (2003) Properties and use of Jatropha curcas oil and diesel fuel blends in compression ignition engine. Fuel Energy Abstr 44(3):170

    Google Scholar 

  23. Kumar SS, Purushothaman K (2012) High FFA Rubber seed oil as an alternative fuel for diesel engine—an overview. Int J Eng Sci 1(10):16–24

    Google Scholar 

  24. Sharma YC, Singh B (2010) An ideal feedstock, kusum (Schleichera triguga) for preparation of biodiesel: optimization of parameters. Fuel 89(7):1470–1474

    Article  CAS  Google Scholar 

  25. Singh RK (2015) Kusum—the best lac host tree for Kusmi lac production. Pop Kheti 3(2):55–58

    Google Scholar 

  26. Naveen Kumar HSP (2012) “Kusum oil as a potential fuel oil for CI engene. Conference Paper

    Google Scholar 

  27. Leonor C, Forero B, De Paula F (2001) Biodiesel from castor oil: a promising fuel for cold weather. Power 12:4

    Google Scholar 

  28. Sattanathan R (2015) Production of biodiesel from castor oil with its performance and emission test. Int J Sci Res 4(1):273–279

    Google Scholar 

  29. Rao SBH, Rao VT, Reddy HCK (2013) Palm oil and Calophyllum inophyllum oil are potential feed stocks for future biodiesel in compression ignition engines: a review. Int J Mech Eng Technol 4(5):301–312

    Google Scholar 

  30. Borugadda VB, Goud VV (2012) Biodiesel production from renewable feedstocks: status and opportunities. Renew Sustain Energy Rev 16(7):4763–4784

    Article  CAS  Google Scholar 

  31. Velmurugan A, Loganathan M, Gunasekaran EJ (2014) Experimental investigations on combustion, performance and emission characteristics of thermal cracked cashew nut shell liquid (TC-CNSL)—diesel blends in a diesel engine. Fuel 132:236–245

    Article  CAS  Google Scholar 

  32. Kumar M, Sharma M (2015) Assessment of potential of oils for biodiesel production. Renew Sustain Energy Rev 44:814–823

    Article  CAS  Google Scholar 

  33. Khan SA, Hussain MZ, Prasad S, Banerjee UC (2009) Prospects of biodiesel production from microalgae in India. Renew Sustain Energy Review 13:2361–2372

    Article  CAS  Google Scholar 

  34. Veillette M, Chamoumi M, Nikiema J, Faucheux N, Heitz M (2012) Production of biodiesel from microalgae. Adv Chem Eng 2:245–268

    Google Scholar 

  35. Vyas AP, Verma JL, Subrahmanyam N (2010) A review on FAME production processes. Fuel 89:1–9

    Article  CAS  Google Scholar 

  36. Kumar M, Sharma MP (2014) Status of biofuel production from microalgae in India. J Inter Sci Technol 2(2):72–75

    Google Scholar 

  37. Abbaszaadeh A, Ghobadian B, Omidkhah MR, Najafi G (2012) Current biodiesel production technologies: a comparative review. Energy Convers Manag 63:138–148

    Article  CAS  Google Scholar 

  38. Vyas AP, Verma JL, Subrahmanyam N (2011) Effects of molar ratio, alkali catalyst concentration and temperature on transesterification of Jatropha oil with methanol under ultrasonic irradiation. Adv Chem Eng Sci 1(2):45–50

    Article  CAS  Google Scholar 

  39. Motasemi F, Ani FN (2012) A review on microwave-assisted production of biodiesel. Renew Sustain Energy Rev 16(7):4719–4733

    Article  CAS  Google Scholar 

  40. Silitonga AS, Atabani AE, Mahlia TMI, Masjuki HH, Anjum I, Mekhilef S (2011) A review on prospect of Jatropha curcas for biodiesel in Indonesia. Renew Sustain Energy Rev 15(8):3733–3756

    Article  CAS  Google Scholar 

  41. Lotero E, Liu Y, Lopez DE, Suwannakarn K, Bruce DA, Goodwin JG (2005) Synthesis of biodiesel via acid catalysis. Ind Eng Chem Res 44:5353–5363

    Article  CAS  Google Scholar 

  42. Glisic S, Skala D (2016) Design of three step purification. In: 2nd International congress on green process engineering

    Google Scholar 

  43. Aalam CS, Saravanan C (2015) Biodiesel production techniques: a review. Int J Res Appl Sci Eng Technol 3(6):41–45

    Google Scholar 

  44. Han H, Cao W, Zhang J (2005) Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochem 40:3148–3151

    Article  CAS  Google Scholar 

  45. Gerpen JV (2005) Biodiesel processing and production. Fuel Process Technol 86:1097–1107

    Article  Google Scholar 

  46. Mahamuni NN, Adewuyi YG (2009) Optimization of the synthesis of biodiesel via ultrasound-enhanced base-catalyzed transesterification of soybean oil using a multifrequency ultrasonic reactor. Energy Fuels 51(2):2757–2766

    Article  Google Scholar 

  47. Demirbas A (2007) Importance of biodiesel as transportation fuel. Energy Policy 35:4661–4670

    Article  Google Scholar 

  48. Murugesan A, Umarani C, Chinnusamy TR, Krishnan M, Subramanian R, Neduzchezhain N (2009) Production and analysis of bio-diesel from non-edible oils—a review. Renew Sustain Energy Rev 13(4):825–834

    Article  CAS  Google Scholar 

  49. Balat M (2011) Potential alternatives to edible oils for biodiesel production—a review of current work. Energy Convers Manag 52(2):1479–1492

    Article  CAS  Google Scholar 

  50. Atadashi IM, Aroua MK, Aziz AA (2010) High quality biodiesel and its diesel engine application: a review. Renew Sustain Energy Rev 14(7):1999–2008

    Article  CAS  Google Scholar 

  51. Bozbas K (2008) Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sustain Energy Rev 12(2):542–552

    Article  CAS  Google Scholar 

  52. Demirbas A (2009) Progress and recent trends in biodiesel fuels. Energy Convers Manag 50(1):14–34

    Article  CAS  Google Scholar 

  53. Bowman M, Hillgoss D, Rasmussen S (2006) Biodiesel: a renewable and Reprinted from: Biodiesel: a renewable and biodegradable fuel New US specification ensures product identity and quality for biodiesel. Hydrocarbon Process 85:103–106

    CAS  Google Scholar 

  54. Pasqualino J, Montane D, Salvado J (2006) Synergic effects of biodiesel in the biodegradability of fossil-derived fuels. Biomass Bioenergy 30(10):874–879

    Article  CAS  Google Scholar 

  55. Zhang X, Peterson C, Reece D, Moller G, Haws R (1998) Biodegradability of biodiesel in the aquatic environment. Trans ASAE 41(5):1423–1430

    Article  CAS  Google Scholar 

  56. Behr A, Eilting J, Irawadi K, Leschinski J, Lindner F (2008) Improved utilisation of renewable resources: new important derivatives of glycerol. Green Chem 10(1):13

    Article  CAS  Google Scholar 

  57. Guerrero-Perez M, Rosas J, Bedia J, Rodriguez-Mirasol J, Cordero T (2009) Recent inventions in glycerol transformations and processing. Recent Pat Chem Eng 2(1):11–21

    Article  CAS  Google Scholar 

  58. Diaz I, Marquez-Alvarez C, Mohino F, Perez-Pariente J, Sastre EJ (2000) Combined alkyl and sulfonic acid functionalization of MCM-41-type silica part 2. Esterification of glycerol with fatty acids. J Catal 193(2):295–302

    Article  CAS  Google Scholar 

  59. Pérez-Pariente J, Dıaz I, Mohino F, Sastre E (2003) Selective synthesis of fatty monoglycerides by using functionalised mesoporous catalysts. Appl Catal A Gen 254(2):173–188

    Article  Google Scholar 

  60. Nakamura R, Komura K, Sugi Y (2008) The esterification of glycerine with lauric acid catalyzed by multi-valent metal salts. Selective formation of mono- and dilaurins. Catal Commun 9:511–515

    Article  CAS  Google Scholar 

  61. Kosmider A, Leja K, Czaczyk K (2011) Improved utilization of crude glycerol by-product from biodiesel production in chapter 19. In: Montero G, Stoytchera M (eds) Biodiesel—quality, emissions and by-products. Intech Open Acces Publisher, Croatia, pp 341–365

    Google Scholar 

  62. Pagliaro M, Ciriminna R, Kimura H, Rossi M, Della Pina C (2007) From glycerol to value-added products. Angew Chem Int Ed Engl 46(24):4434–4440

    Article  CAS  PubMed  Google Scholar 

  63. Karinen RS, Krause AOI (2006) New biocomponents from glycerol. Appl Catal A Gen 306:128–133

    Article  CAS  Google Scholar 

  64. Rahmat N, Abdullah AZ, Mohamed AR (2010) Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: a critical review. Renew Sustain Energy Rev 14:987–1000

    Article  CAS  Google Scholar 

  65. Klepá K, Mravec D, Hájeková E, Bajus M (2003) Etherification of glycerol. Pet Coal 45:54–57

    Google Scholar 

  66. Srinivas M, Sree R, Raveendra G (2014) Selective etherification of glycerol with tert- butanol over 12-tungstophosphoric acid catalysts supported on Y-zeolite. Indian J Chem 53:524–529

    Google Scholar 

  67. Behr A, Leschinski J, Awungacha C, Simic S, Knoth T (2009) Telomerization of butadiene with glycerol: reaction control through process engineering, solvents, and additives. ChemSusChem 2(1):71–76

    Article  CAS  PubMed  Google Scholar 

  68. Dasari MA, Kiatsimkul P-P, Sutterlin WR, Suppes GJ (2005) dasari 2005.pdf. Appl Catal A Gen 281:225–231

    Article  CAS  Google Scholar 

  69. Johnson DT, Taconi KA (2007) The glycerin glut: options for the value-added conversion of crude glycerol resulting from biodiesel production. Environ Prog 26(4):338–348

    Article  CAS  Google Scholar 

  70. Saxena RK, Anand P, Saran S, Isar J (2009) Microbial production of 1, 3-propanediol: recent developments and emerging opportunities. Biotechnol Adv 27(6):895–913

    Article  CAS  PubMed  Google Scholar 

  71. Kurosaka T, Maruyama H, Naribayashi I, Sasaki Y (2008) Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catal Commun 9(6):1360–1363

    Article  CAS  Google Scholar 

  72. Lewandowski G, Bartkowiak M, Milchert E (2008) Low-waste technology of glycerine epichlorohydrin production. Oxid Commun 31(1):108–115

    CAS  Google Scholar 

  73. Bell BM, Briggs JR, Campbell RM, Chambers SM, Gaarenstroom PD, Hippler JG, Hook BD, Kearns K, Kenney JM, Kruper WJ, James Schreck D, Theriault CN, Wolfe CP (2008) Glycerin as a renewable feedstock for epichlorohydrin production. The GTE process. Clean Soil Air Water 36(8):657–661

    Article  CAS  Google Scholar 

  74. Corma A, Huber GW, Sauvanaud L, O’Connor P (2008) Biomass to chemicals: catalytic conversion of glycerol/water mixtures into acrolein, reaction network. J Catal 257(1):163–171

    Article  CAS  Google Scholar 

  75. Ott L, Bicker M, Vogel H (2006) Catalytic dehydration of glycerol in sub- and supercritical water: a new chemical process for acrolein production. Green Chem 8(2):214–220

    Article  CAS  Google Scholar 

  76. Nguyen B-C, Kochevar IE (2003) Factors influencing sunless tanning with dihydroxyacetone. Br J Dermatol 149(2):332–340

    Article  CAS  PubMed  Google Scholar 

  77. Enders D, Voith M, Lenzen A (2005) The dihydroxyacetone unit—a versatile C 3 building block in organic synthesis. Angew Chem Int Ed Engl 44(9):1304–1325

    Article  CAS  PubMed  Google Scholar 

  78. Garcia R, Besson M, Gallezot P (1995) Chemoselective catalytic oxidation of glycerol with air on platinum metals air on platinum metals. Science 127:165–176

    CAS  Google Scholar 

  79. Lanjekar K, Rathod VK (2013) Utilization of glycerol for the production of glycerol carbonate through greener route. J Environ Chem Eng 1(4):1231–1236

    Article  CAS  Google Scholar 

  80. Rokicki G, Rakoczy P, Parzuchowski P, Sobiecki M (2005) Hyperbranched aliphatic polyethers obtained from environmentally benign monomer: glycerol carbonate. Green Chem 7(7):529

    Article  CAS  Google Scholar 

  81. Vieville C, Yoo JW, Pelet S, Mouloungui Z (1998) Synthesis of glycerol carbonate by direct carbonatation of glycerol in supercritical CO2 in the presence of zeolites and ion exchange resins. Catal Lett 56:245–247

    Article  CAS  Google Scholar 

  82. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    Article  CAS  PubMed  Google Scholar 

  83. da Silva GP, Mack M, Contiero J (2009) Glycerol: a promising and abundant carbon source for industrial microbiology. Biotechnol Adv 27(1):30–39

    Article  PubMed  Google Scholar 

  84. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid Biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18(6):1277–1281

    Article  CAS  PubMed  Google Scholar 

  85. Zhang G, Wu Y, Qian X, Meng Q (2005) Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J Zhejiang Univ Sci B 6(8):725–730

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nageswara Rao Peela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alam, M., Yedla, S.K., Bhutia, S.T., Goud, V.V., Peela, N.R. (2017). Advancement in Development of Biodiesel Production in the Last Two Decades: An Indian Overview on Raw Materials, Synthesis, By-products, and Application. In: Chandel, A., Sukumaran, R. (eds) Sustainable Biofuels Development in India. Springer, Cham. https://doi.org/10.1007/978-3-319-50219-9_7

Download citation

Publish with us

Policies and ethics

Navigation