Selected Trace Fossils in Core and Outcrop

  • Chapter
  • First Online:
Atlas of Trace Fossils in Well Core
  • 1940 Accesses

Abstract

This section contains many well-known trace fossils but also several poorly understood ichnotaxa, some of which have just emerged during the last 10–15 years. It attempts to give a comprehensive overview of each treated trace fossil in a standardized way, starting with its morphology, fill and size; appearance in outcrop; an evaluation of ichnotaxonomical status; and preferred substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abad M, Ruiz F, Pendón JG et al (2006) Escape and equilibrium trace fossils in association with Conichnus conicus as indicators of variable sedimentation rates in Tortonian littoral environments of SW Spain. Geobios 39:1–11 [In Spanish]

    Article  Google Scholar 

  • Aceñolaza GF, Alonso RN (2001) Ichno-associations of the Precambrian/Cambrian transition in the north-west Argentina. J Iberian Geol 27:11–22 [In Spanish]

    Google Scholar 

  • Ager DV, Wallace P (1970) The distribution and significance of trace fossils in the uppermost Jurassic rocks of the Boulonnais, northern France. In: Crimes TP, Harper JC (eds) Trace fossils. Geol J 3(Special Issue):1–18

    Google Scholar 

  • Ahn SY, Babcock LE (2012) Microorganism-mediated preservation of Planolites, a common trace fossil from the Harkless Formation, Cambrian of Nevada, USA. Sed Geol 263–264:30–35

    Article  Google Scholar 

  • Alpert SP (1973) Bergaueria Prantl (Cambrian and Ordovician), a probable actinian trace fossil. J Paleontol 47:919–924

    Google Scholar 

  • Alpert SP (1974) Systematic review of the genus Skolithos. J Paleontol 48:661–669

    Google Scholar 

  • Alpert SP (1975) Planolites and Skolithos from the Upper Precambrian-Lower Cambrian, White-Inyo Mountains, California. J Paleontol 49:508–521

    Google Scholar 

  • Alpert SP (1977) Trace fossils and the basal Cambrian boundary. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J 9 (Special Issue):1–8

    Google Scholar 

  • Anderson BG, Droser ML (1998) Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: an example from the Upper Cretaceous US Western Interior. Sedimentology 45:379–396

    Article  Google Scholar 

  • Angulo S, Buatois LA (2012) Ichnology of a Late Devonian-Early Carboniferous low-energy seaway: the Bakken Formation of subsurface Saskatchewan, Canada: assessing paleoenvironmental controls and biotic responses. Palaeogeogr Palaeoclimatol Palaeo-ecol 315–316:46–60

    Article  Google Scholar 

  • Ayranci K, Dashtgard SE (2013) Infaunal holothurian distributions and their traces in the Fraser River delta front and prodelta, British Columbia, Canada. Palaeogeogr Palaeoclimatol Palaeoecol 392:232–246

    Article  Google Scholar 

  • Ayranci K, Dashtgard SE, MacEachern JA (2014) A quantitative assessment of the neoichnology and biology of a delta front and prodelta, and implications for delta ichnology. Palaeogeogr Palaeoclimatol Palaeoecol 409:114–134

    Article  Google Scholar 

  • Bann KL, Fielding CR (2004) An integrated ichnological and sedimentological comparison of non-deltaic shoreface and subaqueous delta deposits in Permian reservoir units of Australia. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis, vol 228. Geological Society of London (Special Publications), pp 273–310

    Google Scholar 

  • Bann KL, Fielding CR, MacEachern JA et al (2004) Differentiation of estuarine and offshore marine deposits using integrated ichnology and sedimentology: Permian Pebbley Beach Formation, Sydney Basin, Australia. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis, vol 228. Geological Society of London (Special Publications), pp 179–211

    Google Scholar 

  • Basan PB, Scott RW (1979) Morphology of Rhizocorallium and associated traces from the lower Cretaceous Purgatoire Formation, Colorado. Palaeogeogr Palaeoclimatol Palaeoecol 28:5–23

    Article  Google Scholar 

  • Baucon A, Felletti F (2013) Neoichnology of a barrier-island system: the Mula di Muggia (Grado lagoon, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 375:112–124

    Article  Google Scholar 

  • Baucon A, Ronchi A, Felletti F et al (2014) Evolution of crustaceans at the edge of the end-Permian crisis: ichnonetwork analysis of the fluvial succession of Nurra (Permian–Triassic, Sardinia, Italy). Palaeogeogr Palaeoclimatol Palaeoecol 410:74–103

    Article  Google Scholar 

  • Bedatou E, Melchor RN, Bellosi E et al (2008) Crayfish burrows from Late Jurassic-Late Cretaceous continental deposits of Patagonia: Argentina. Their palaeoecological, palaeoclimatic and palaeobiogeographical significance. Palaeogeogr Palaeoclimatol Palaeoecol 257:169–184

    Article  Google Scholar 

  • Bedatou E, Melchor RN, Genise JF (2009) Complex palaeosol ichnofabrics from Late Jurassic-Early Cretaceous volcaniclastic successions of central Patagonia, Argentina. Sed Geol 218:74–102

    Article  Google Scholar 

  • Bednarz M (2014) 3D ichnofabrics in shale gas reservoirs. PhD Thesis, University of St. John’s, 230 pp. http://research.library.mun.ca/8190/1/thesis.pdf

  • Bednarz M, McIlroy D (2009) Three-dimensional reconstruction of “phycosiphoniform” burrows: implications for identification of trace fossils in core. Palaeontol Electr 12(13A):15

    Google Scholar 

  • Bednarz M, McIlroy D (2012) Effect of phycosiphoniform burrows on shale hydrocarbon reservoir quality. AAPG Bull 96:1957–1980

    Google Scholar 

  • Bednarz M, McIlroy D (2015) Organism–sediment interactions in shale-hydrocarbon reservoir facies—three-dimensional reconstruction of complex ichnofabric geometries and pore-networks. Int J Coal Geol 150–151:238–251

    Article  Google Scholar 

  • Belaústegui Z, de Gibert JM (2013) Bow-shaped, concentrically laminated polychaete burrows: a Cylindrichnus concentricus ichnofabric from the Miocene of Tarragona, NE Spain. Palaeogeogr Palaeoclimatol Palaeoecol 381–382:119–127

    Article  Google Scholar 

  • Belaústegui Z, de Gibert JM, Domènech R et al (2011) Taphonomy and palaeoenvironmental setting of cetacean remains from the Middle Miocene of Tarragona (NE Spain). Geobios 44:19–31 [In Spanish, with English summary]

    Google Scholar 

  • Belaústegui Z, Ekdale AA, Domènech R et al (2016a) Paleobiology of firmground burrowers and cryptobionts at a Miocene omission surface, Alcoi, SE Spain. J Paleontol 90:721–733

    Google Scholar 

  • Belaústegui Z, Muñiz F, Mángano MG et al (2016b) Lepeichnus giberti igen. nov. isp. nov. from the upper Miocene of Lepe (Huelva, SW Spain): evidence for its origin and development with proposal of a new concept, ichnogeny. Palaeogeogr Palaeoclimatol Palaeoecol 452:80–89

    Google Scholar 

  • Benton MJ, Gray DI (1981) Lower Silurian distal shelf storm-induced turbidites in the Welsh borders: sediments, tool marks and trace fossils. J Geol Soc Lond 138:675–694

    Article  Google Scholar 

  • Bertling M, Braddy SJ, Bromley RG et al (2006) Names for trace fossils: a uniform approach. Lethaia 39:265–286

    Article  Google Scholar 

  • Bischoff B (1968) Zoophycos, a polychæte annelid, Eocene of Greece. J Paleontol 42:1439–1443

    Google Scholar 

  • Bjerstedt TW (1988) Trace fossils from the early Mississippian Price Delta, southeast West Virginia. J Paleontol 62:506–519

    Article  Google Scholar 

  • Bockelie JF (1994) Plant roots in core. In: Donovan SK (ed) The palaeobiology of trace fossils. Wiley, Chichester, pp 177–199

    Google Scholar 

  • Bottjer DJ, Droser ML, Jablonski D (1988) Palaeoenvironmental trends in the history of trace fossils. Nature 333:252–255

    Article  Google Scholar 

  • Bourgeois J (1980) A transgressive shelf sequence exhibiting hummocky stratification: the Cape Sebastian Sandstone (Upper Cretaceous), southwestern Oregon. J Sediment Petrol 50:681–702

    Article  Google Scholar 

  • Boyd DW (1975) False or misleading traces. In: Frey RW (ed) The study of trace fossils: a synthesis of principles, problems and procedures in ichnology. Springer, New York, pp 65–83

    Chapter  Google Scholar 

  • Bradley TL, Pemberton SG (1992) Examples of ichnofossil assemblages in the lower Cretaceous Wabiskaw Member and the Clearwater Formation of the Marten Hills gas field, north-central Alberta, Canada. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration. A core workshop. SEPM Core Workshop, vol 17, pp 383–399

    Google Scholar 

  • Bradshaw MA (2002) A new ichnogenus Catenarichnus from the Devonian of the Ohio Range, Antarctica. Antarct Sci 14:422–424

    Article  Google Scholar 

  • Bradshaw MA (2010) Devonian trace fossils of the Horlick Formation, Ohio Range, Antarctica: systematic description and palaeoenvironmental interpretation. Ichnos 17:58–114

    Article  Google Scholar 

  • Breton G (2006) Paramoudras … and other concretions around a burrow. Bulletin d’Information Géologues du Bassin Paris 43:18–43

    Google Scholar 

  • Bromley RG (1967) Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Q J Geol Soc 123:157–177

    Article  Google Scholar 

  • Bromley RG (1978) Bioerosion of Bermuda reefs. Palaeogeogr Palaeoclimatol Palaeoecol 23:169–197

    Article  Google Scholar 

  • Bromley RG (1991) Zoophycos: strip mine, refuse dump, cache or sewage farm? Lethaia 24:460–462

    Article  Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications. Chapman and Hall, London, 361 pp

    Book  Google Scholar 

  • Bromley RG (2004) A stratigraphy of marine bioerosion. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis, vol 228. Geol Soc Lond (Special Publications), pp 455–479

    Google Scholar 

  • Bromley RG, Asgaard U (1972) Notes on Greenland trace fossils, 1. Freshwater Cruziana from the Upper Triassic of Jameson Land, East Greenland. Grønlands Geologiske Undersøgelse, Rapport 49:7–13

    Google Scholar 

  • Bromley RG, Asgaard U (1975) Sediment structures produced by a spatangoid echinoid: a problem of preservation. Bull Geol Soc Denm 24:261–281

    Google Scholar 

  • Bromley RG, Asgaard U (1979) Triassic freshwater ichnocoenoses from Carlsberg Fjord, East Greenland. Palaeogeogr Palaeoclimatol Palaeoecol 28:39–80

    Article  Google Scholar 

  • Bromley RG, Asgaard U (1991) Ichnofacies: a mixture of taphofacies and biofacies. Lethaia 24:153–163

    Article  Google Scholar 

  • Bromley RG, Asgaard U (1993) Two bioerosion ichnofacies produced by early and late burial associated with sea-level change. Geol Rundsch 82:276–280

    Article  Google Scholar 

  • Bromley RG, Ekdale AA (1984) Chondrites: a trace fossil indicator of anoxia in sediments. Science 224:872–874

    Article  Google Scholar 

  • Bromley RG, Frey RW (1974) Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bull Geol Soc Denm 23:311–335

    Google Scholar 

  • Bromley RG, Hanken N-M (1991) The growth vector in trace fossils: examples from the Lower Cambrian of Norway. Ichnos 1:261–276

    Article  Google Scholar 

  • Bromley RG, Hanken N-M (2003) Structure and function of large, lobed Zoophycos, Pliocene of Rhodes, Greece. Palaeogeogr Palaeoclimatol Palaeoecol 192:79–100

    Article  Google Scholar 

  • Bromley RG, Mørk A (2000) The trace fossil Phoebichnus trochoides in the condensed Triassic-Jurassic-boundary strata of Svalbard. In: Bachmann GH, Lerche I (eds) Epicontinental Triassic, vol 2. Zentralblatt für Geologie und Paläontologie, Teil 1, 1998, pp 1431–1439

    Google Scholar 

  • Bromley RG, Uchman A (2003) Trace fossils from the Lower and Middle Jurassic marginal marine deposits of the Sorthat Formation, Bornholm, Denmark. Bull Geol Soc Denm 50:185–208

    Google Scholar 

  • Bromley RG, Schulz M-G, Peake NB (1975) Paramoudras: giant flints, long burrows and the early diagenesis of chalks. Det Kongelige Danske Videnskabers Selskab, Biologiske Skrifter 20, 31 pp

    Google Scholar 

  • Bromley RG, Pemberton SG, Rahmani RA (1984) A Cretaceous woodground: the Teredolites ichnofacies. J Paleontol 58:488–498

    Google Scholar 

  • Bromley RG, Ekdale AA, Richter B (1999) New Taenidium (trace fossil) in the Upper Cretaceous chalk of northwestern Europe. Bull Geol Soc Denm 46:47–51

    Google Scholar 

  • Bromley RG, Uchman A, Gregory MR et al (2003) Hillichnus lobosensis igen. et isp. nov., a complex trace fossil produced by tellinacean bivalves, Paleocene, Monterey, California, USA. Palaeogeogr Palaeoclimatol Palaeoecol 192:157–186

    Article  Google Scholar 

  • Bromley RG, Uchman A, Milàn J et al (2009) Rheotactic Macaronichnus, and human and cattle trackways in Holocene beachrock, Greece: reconstruction of paleoshoreline orientation. Ichnos 16:103–117

    Article  Google Scholar 

  • Buatois LA, Mángano MG (2004) Terminal Proterozoic-Early Cambrian ecosystems: ichnology of the Puncoviscana Formation, northwest Argentina. Fossils Strata 51:1–16

    Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology. Organism-substrate interactions in space and time. Cambridge University Press, Cambridge, pp 347

    Book  Google Scholar 

  • Buatois LA, Mángano MG, Alissa A et al. (2002) Sequence stratigraphic and sedimentologic significance of biogenic structures from a late Paleozoic marginal- to open-marine reservoir, Morrow Sandstone, subsurface of southwest Kansas, USA. Sedimentary Geology 152:99–132

    Google Scholar 

  • Buatois LA, Gingras MK, MacEachern J et al (2005) Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios 20:321–347

    Article  Google Scholar 

  • Buatois LA, Saccavino LL, Zavala C (2011) Ichnologic signatures of hyperpycnal flow deposits in Cretaceous river-dominated deltas, Austral Basin, southern Argentina. In: Slatt RM, Zavala C (eds) Sediment transfer from shelf to deep water—revisiting the delivery system. AAPG Stud Geol 61:153–170

    Google Scholar 

  • Buck SG, Goldring R (2003) Conical sedimentary structures, trace fossils or not? Observations, experiments, and review. J Sediment Res 73:338–353

    Article  Google Scholar 

  • Buckman JO (1992) Palaeoenvironment of a Lower Carboniferous sandstone succession northwest Ireland: ichnological and sedimentological studies. In: Parnell J (ed) Basins on the Atlantic seaboard: petroleum sedimentology and basin evolution, vol 62. Geological Society of London (Special Publications), pp 217–241

    Google Scholar 

  • Buckman JO (1996) An example of ‘deep’ tier level Teichichnus with vertical entrance shafts, from the Carboniferous of Ireland. Ichnos 4:241–248

    Article  Google Scholar 

  • Callow RHT, McIlroy D (2011) Ichnofabrics and ichnofabric-forming trace fossils in Phanerozoic turbidites. Bull Can Pet Geol 59:103–111

    Article  Google Scholar 

  • Callow RHT, McIlroy D, Kneller B et al (2013) Integrated ichnological and sedimentological analysis of a Late Cretaceous submarine channel-levee system: the Rosario Formation, Baja California, Mexico. Mar Pet Geol 41:277–294

    Article  Google Scholar 

  • Campbell KA, Nesbitt EA, Bourgeois J (2006) Signatures of storms, oceanic floods and forearc tectonism in marine shelf strata of the Quinault Formation (Pliocene), Washington. Sedimentology 53:945–969

    Article  Google Scholar 

  • Campbell SG, Botterill SE, Gingras MK et al (2016) Event sedimentation, deposition rate, and paleoenvironment using crowded assemblages of the Bluesky Formation, Alberta, Canada. J Sediment Res 86:380–393

    Article  Google Scholar 

  • Carmona NB, Buatois LA, Mángano MG (2004) The trace fossil record of burrowing decapod crustaceans: evaluating evolutionary radiations and behavioural convergence. Fossils Strata 51:141–153

    Google Scholar 

  • Carmona NB, Buatois LA, Mángano MG et al (2008) Ichnology of the Lower Miocene Chenque Formation, Patagonia, Argentina: animal—substrate interactions and the modern evolutionary fauna. Ameghiniana 45:93–122

    Google Scholar 

  • Carmona NB, Buatois LA, Ponce JJ et al (2009) Ichnology and sedimentology of a tide-influenced delta, lower Miocene Chenque Formation, Patagonia, Argentina: trace-fossil distribution and response to environmental stresses. Palaeogeogr Palaeoclimatol Palaeoecol 273:75–86

    Article  Google Scholar 

  • Chakraborty A, Bhattacharya HN (2013) Spreiten burrows: a model based study on Diplocraterion parallelum. In: Mukhopadhyay S, Ray D, Kundu A (eds) Geospectrum, pp 296–299

    Google Scholar 

  • Chamberlain CK (1971) Morphology and ethology of trace fossils from the Ouachita Mountains, southeast Oklahoma. J Paleontol 45:212–246

    Google Scholar 

  • Chamberlain CK (2000) Prologue to the study of Zoophycos. Ichnol Newslett 22:13–23

    Google Scholar 

  • Chamberlain CK, Baer JL (1973) Ophiomorpha and a new thalassinid burrow from the Permian of Utah. Geol Stud 20:79–94

    Google Scholar 

  • Chen Y, Wang J, Bai P et al (2005) Trace fossils of the Middle Devonian Mazongling Formation at Wudang Guiyang Guizhou Province. Guizhou Geol 22:273–279

    Google Scholar 

  • Chen Z-Q, Tong J, Fraiser ML (2011) Trace fossil evidence for restoration of marine ecosystems following the end-Permian mass extinction in the Lower Yangtze region, South China. Palaeogeogr Palaeoclimatol Palaeoecol 299:449–474

    Article  Google Scholar 

  • Cherns L, Wheeley JR, Karis L (2006) Tunneling trilobites: Habitual infaunalism in an Ordovician carbonate seafloor. Geology 34:657–660

    Article  Google Scholar 

  • Chlupáč I (1987) Ordovician ichnofossils in the metamorphic mantle of the Central Bohemian Pluton. Časopis pro Meineralogii a Geologii 32:249–260

    Google Scholar 

  • Clausen CK, Vilhjálmsson M (1986) Substrate control of Lower Cambrian trace fossils from Bornholm, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 56:51–68

    Article  Google Scholar 

  • Clemmensen LB, Bromley RG, Holm PM (2011) Glauconitic deposits at Julegård on the south coast of Bornholm, Denmark dated to the Cambrian. Bull Geol Soc Denm 59:1–12

    Google Scholar 

  • Clifton HE, Thompson JK (1978) Macaronichnus segregatis: a feeding structure of shallow marine polychaetes. J Sediment Petrol 48:1293–1302

    Article  Google Scholar 

  • Corner GD, Fjalstad A (1993) Spreite trace fossils (Teichichnus) in a raised Holocene fjord-delta, Breidvikeidet, Norway. Ichnos 2:155–164

    Article  Google Scholar 

  • Cornish FG (1986) The trace-fossil Diplocraterion: evidence of animal-sediment interactions in Cambrian tidal deposits. Palaios 1:478–491

    Article  Google Scholar 

  • Cotillon P (2010) Sea bottom current activity recorded on the southern margin of the Vocontian Basin (southeastern France) during the Lower Aptian. Evidence for a climate signal. Bulletin de la Société Géologique de France 181:3–18

    Article  Google Scholar 

  • Crimes TP, Legg I, Marcos A et al (1977)? Late Precambrian-Lower Cambrian trace fossils from Spain. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J 9 (Special Issue):91–138

    Google Scholar 

  • Crimes TP, Goldring R, Homewood P et al (1981) Trace fossil assemblages of deep-sea fan deposits, Gurnigel and Schlieren flysch (Cretaceous-Eocene), Switzerland. Eclogae Geol Helv 74:953–995

    Google Scholar 

  • Cummings JP, Hodgson DM (2011) Assessing controls on the distribution of ichnotaxa in submarine fan environments, the Basque Basin, northern Spain. Sed Geol 239:162–187

    Article  Google Scholar 

  • Cunningham KJ, Sukop MC (2012) Megaporosity and permeability of Thalassionoides-dominated ichnofabrics in the Cretaceous karst-carbonate Edwards-Trinity Aquifer System, Texas. U.S. Geological survey, Open-file report 2012–1021, 4 pp

    Google Scholar 

  • Cunningham KJ, Sukop MC, Huang H et al (2009) Prominence of ichnologically influenced macroporosity in the karst Biscayne aquifer: Stratiform “super-K” zones. GSA Bull 121:164–186

    Google Scholar 

  • Cunningham KJ, Sukop MC, Curran HA (2012) Carbonate aquifers. In: Knaust D, Bromley RG (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 164, pp 869–896

    Google Scholar 

  • Curran HA (1976) A trace fossil brood structure of probable callianassid origin. J Paleontol 50:249–259

    Google Scholar 

  • Curran HA (2015) Sinuous rhizoliths mimic invertebrate trace fossils on Upper Pleistocene caliche surfaces, San Salvador Island, Bahamas. In: McIlroy D (ed) Ichnology: Papers from ICHNIA III, vol 9. Geological Association of Canada, Miscellaneous Publication, pp 63–72

    Google Scholar 

  • Curran HA, Frey RW (1977) Pleistocene trace fossils from North Carolina (U.S.A.), and their Holocene analogues. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geol J 9 (Special Issue):139–162

    Google Scholar 

  • D’Alessandro A, Iannone A (1982) Pleistocene carbonate deposits in the area of Monopoli (Bari Province): sedimentology and palaeoecology. Geol Romana 21:603–653

    Google Scholar 

  • da Silva ID, Jensen S, González-Clavijo E (2014) Trace fossils from the Desejosa Formation (Schist and Greywacke Complex, Douro Group, NE Portugal): new Cambrian age constraints. Geol Acta 12:109–120

    Google Scholar 

  • Dafoe LT, Gingras MK, Pemberton SG (2008a) Determinating Euzonus mucronata burrowing rates with application to ancient Macaronichnus segregatis tracemakers. Ichnos 15:78–90

    Article  Google Scholar 

  • Dafoe LT, Gingras MK, Pemberton SG (2008b) Analysis of mineral segregation in Euzonus mucronata burrow structures: one possible method in the construction of ancient Macaronichnus segregates. Ichnos 15:91–102

    Article  Google Scholar 

  • Dafoe LT, Gingras MK, Pemberton SG (2010) Wave-influenced deltaic bodies and offshore deposits in the Viking Formation, Hamilton Lake area, south-central Alberta, Canada. Bull Can Pet Geol 58:173–201

    Article  Google Scholar 

  • Dahmer G (1937) Lebensspuren aus dem Taunusquarzit und aus den Siegener Schichten (Unterdevon). Jahrbuch der Preußisch-Geologischen Landesanstalt 57:523–539

    Google Scholar 

  • DʼAlessandro A, Bromley RG (1986) Trace fossils in Pleistocene sandy deposits from Gravina area, southern Italy. Rivista Italiana di Paleontologia e Stratigrafia 92:67–102

    Google Scholar 

  • DʼAlessandro A, Bromley RG (1987) Meniscate trace fossils and the Muensteria-Taenidium problem. Palaeontology 30:743–763

    Google Scholar 

  • DʼAlessandro A, Fürsich FT (2005) Tursia—a new ichnogenus from Pleistocene shallow water settings in southern Italy. Ichnos 12:65–73

    Google Scholar 

  • DʼAlessandro A, Bromley RG, Stemmerik L (1987) Rutichnus: a new ichnogenus for branched, walled, meniscate trace fossils. J Paleontol 61:1112–1119

    Google Scholar 

  • Dam G (1990) Taxonomy of trace fossils from the shallow marine Lower Jurassic Neill Klinter Formation, East Greenland. Bull Geol Soc Denm 38:119–144

    Google Scholar 

  • Dando PR, Southward AJ (1986) Chemoautotrophy in bivalve molluscs of the genus Thyasira. J Mar Biol Assoc UK 66:915–929

    Article  Google Scholar 

  • Dashtgard SE, Gingras MK (2012) Marine invertebrate neoichnology. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of Sedimentary environments. Developments in Sedimentology, vol 64, pp 273–295

    Google Scholar 

  • Dashtgard SE, Gingras MK, Pemberton SG (2008) Grain-size controls on the occurrence of bioturbation. Palaeogeogr Palaeoclimatol Palaeoecol 257:224–243

    Article  Google Scholar 

  • Dawson WC (1981) Secondary burrow porosity in quartzose biocalc-arenites,, Upper Cretaceous, Texas: U.S.A. VIII Congreso Geológico Argentino, San Luis (20–26 Setiembre, 1981), Actas II, pp 637–649

    Google Scholar 

  • de Gibert JM, Martinell J (1998) Ichnofabric analysis of the Pliocene marine sediments of the Var Basin (Nice, SE France). Geobios 31:271–281

    Article  Google Scholar 

  • de Gibert JM, Netto RG, Tognoli FMW et al (2006) Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeogr Palaeoclimatol Palaeoecol 230:70–84

    Article  Google Scholar 

  • de Gibert JM, Domènech R, Martinell J (2012) Rocky shorelines. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 441–462

    Google Scholar 

  • de Quatrefages MA (1849) Note sur la Scolicia prisca (A. de Q.) annélide fossile de la Craie. Annales des Sciences Naturalles, 3 série. Zoologie 12:265–266

    Google Scholar 

  • de Saporta G (1873) Plantes Jurassiques, tome I, Algues, Equisétaceés, Characées, Fougères. Paléontologie Française ou Description des Fossiles de la France, Serie 2, Végétaux. Masson, Paris

    Google Scholar 

  • de Serres M (1840) Description de quelques mollusques fossiles nouveaux des terrains infra-liassiques et de la craie compacte inférieure du Midi de la France, Annales des sciences naturelles, Zoologie 14:5–26 (pl 1)

    Google Scholar 

  • Demírcan H, Uchman A (2012) The miniature echinoid trace fossil Bichordites kuzunensis isp. nov. from early Oligocene prodelta sediments of the Mezardere Formation, Gökçeada Island, NW Turkey. Acta Geol Polonica 62:205–215

    Google Scholar 

  • Desai BG, Shukla R, Saklani RD (2010) Ichnology of the Early Cambrian Tal Group, Nigalidhar Syncline, Lesser Himalaya, India. Ichnos 17:233–245

    Article  Google Scholar 

  • Desjardins PR, Mángano MG, Buatois LA et al (2010) Skolithos pipe rock and associated ichnofabrics from the southern Rocky Mountains, Canada: colonization trends and environmental controls in an early Cambrian sand-sheet complex. Lethaia 43:507–528

    Article  Google Scholar 

  • Desjardins PR, Buatois LA, Mángano MG (2012) Tidal flats and subtidal sand bodies. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 529–561

    Google Scholar 

  • Dronov A, Mikuláš R (2010) Paleozoic ichnology of St. Petersburg region. In: Excursion guidebook. 4th Workshop on Ichnotaxonomy, Moscow, St. Petersburg, vol 596. Transactions of the Geological Institute, pp 1–70

    Google Scholar 

  • Dronov A, Tolmacheva T, Raevskaya E et al (2005) Cambrian and Ordovician of St. Petersburg region. In: 6th Baltic Stratigraphical Conference, IGCP 503 Meeting, Guidebook of the pre-conference field trip, 64 pp

    Google Scholar 

  • Droser ML (1991) Ichnofabric of the Paleozoic Skolithos Ichnofacies and the nature and distribution of Skolithos piperock. Palaios 6:316–325

    Article  Google Scholar 

  • Dufour SC, Feldbeck H (2003) Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves. Nature 426:65–67

    Article  Google Scholar 

  • Ehrenberg K (1944) Ergänzende Bemerkungen zu den seinerzeit aus dem Miozän von Burgschleinitz beschriebenen Gangkernen und Bauten dekapoder Krebse. Paläontologische Zeitschrift 23:354–359

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (1991) Analysis of composite ichnofabrics: an example in the uppermost Cretaceous chalk of Denmark. Palaios 6:232–249

    Article  Google Scholar 

  • Ekdale AA, Bromley RG (2003) Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden. Palaeogeogr Palaeoclimatol Palaeoecol 192:221–227

    Article  Google Scholar 

  • Ekdale AA, Harding SC (2015) Cylindrichnus concentricus Toots in Howard, 1966 (trace fossil) in its type locality, Upper Cretaceous, Wyoming. Ann Soc Geol Pol 85:427–432

    Google Scholar 

  • Ekdale AA, Lewis DW (1991) The New Zealand Zoophycos revisited: morphology, ethology and paleoecology. Ichnos 1:183–194

    Article  Google Scholar 

  • Ekdale AA, Bromley RG, Knaust D (2012) The ichnofabric concept. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64. Elsevier, Amsterdam, pp 139–155

    Google Scholar 

  • Ekdale AA, Bromley RG, Pemberton SG (1984) Ichnology: the use of trace fossils in sedimentology and stratigraphy. SEPM Short Course Notes 15:1–317

    Google Scholar 

  • Emig CC (1982) The biology of Phoronida. Adv Mar Biol 19:1–89

    Article  Google Scholar 

  • Emig CC, Gall J-C, Pajaud D et al (1978) Réfexions critiques sur l’écologie et la systématique des lingules actuelles et fossils. Geobios 11:573–609

    Article  Google Scholar 

  • Evans JN, McIlroy D (2015) Ichnology and palaeobiology of Phoebichnus trochoides from the Middle Jurassic of north-east England. Papers Palaeontol 2015:1–16

    Google Scholar 

  • Evans JN, McIlroy D (2016) Palaeobiology of Schaubcylindrichnus heberti comb. nov. from the Lower Jurassic of Northeast England. Palaeogeogr Palaeoclimatol Palaeoecol 449:246–254

    Article  Google Scholar 

  • Farrow GE (1966) Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire, England. Palaeogeogr Palaeoclimatol Palaeoecol 2:103–151

    Article  Google Scholar 

  • Fedonkin MA (1981) White Sea biota of the Vendian (Precambrian non-skeletal fauna of the Russian Platform north). Transactions of the Geological Institute, vol 342. Nauka, Moscow, pp 1–100 [in Russian]

    Google Scholar 

  • Feng Z, Wang J, Liu L-J (2010) First report of oribatid mite (arthropod) borings and coprolites in Permian woods from the Helan Mountains of northern China. Palaeogeogr Palaeoclimatol Palaeoecol 288:54–61

    Article  Google Scholar 

  • Fenton MA, Fenton CL (1934) Scolithus as a fossil phoronid. Pan-American Geologist 61:341–348, 1 pl

    Google Scholar 

  • Fillion D, Pickerill RK (1990) Ichnology of the Upper Cambrian? to Lower Ordovician Bell Island and Wabana groups of eastern Newfoundland, Canada. Palaeontogr Canadiana 7:1–119

    Google Scholar 

  • Fiorillo AR, McCarthy PL, Hasiotis ST (2016) Crayfish burrows from the latest Cretaceous lower Cantwell Formation (Denali National Park, Alaska): their morphology and paleoclimatic significance. Palaeogeogr Palaeoclimatol Palaeoecol 441:352–359

    Article  Google Scholar 

  • Fischer-Ooster C (1858) Die fossilen Fucoiden der Schweizer Alpen, nebst Erörterungen über deren geologisches Alter. Huber, Bern

    Google Scholar 

  • Forbes AT (1973) An unusual abbreviated larval life in the estuarine burrowing prawn Callianassa kraussi (Crustacea: Decapoda: Thalassinidea). Mar Biol 22:361–365

    Article  Google Scholar 

  • Frébourg G, Davaud E, Gaillot J et al (2010) An aeolianite in the Upper Dalan Member (Khuff Formation), South Pars Field, Iran. J Petroleum Geol 33:41–154

    Article  Google Scholar 

  • Frey RW (1970a) The lebensspuren of some common marine invertebrates near Beaufort, North Carolina. Il. Anemone burrows. J Paleontol 44:308–311

    Google Scholar 

  • Frey RW (1970b) Trace fossils of Fort Hays Limestone Member of Niobrara Chalk (Upper Cretaceous), west-central Kansas. University of Kansas Paleontological Contributions 53:1–41, 10 pl

    Google Scholar 

  • Frey RW (1973) Concepts in the study of biogenic sedimentary structures. J Sediment Petrol 43:6–19

    Google Scholar 

  • Frey RW (1990) Trace fossils and hummocky cross-stratification, Upper Cretaceous of Utah. Palaios 5:203–218

    Article  Google Scholar 

  • Frey RW, Bromley RG (1985) Ichnology of American chalks: the Selma Group (Upper Cretaceous), western Alabama. Can J Earth Sci 22:801–828

    Article  Google Scholar 

  • Frey RW, Cowles JG (1972) The trace fossil Tisoa in Washington and Oregon. Oregon Department of Geology and Mineral Industries, The Ore Bin, 34:113–119

    Google Scholar 

  • Frey RW, Howard JD (1981) Conichnus and Schaubcylindrichnus: redefined trace fossils from the Upper Cretaceous of the Western Interior. J Paleontol 55:800–804

    Google Scholar 

  • Frey RW, Howard JD (1985) Trace fossils from the Panther Member, Star Point Formation (Upper Cretaceous), Coal Creek Canyon, Utah. J Paleontol 59:370–404

    Google Scholar 

  • Frey RW, Howard JD (1990) Trace fossils and depositional sequences in a clastic shelf setting, Upper Cretaceous of Utah. J Paleontol 64:803–820

    Article  Google Scholar 

  • Frey RW, Pemberton SG (1990) Bioturbate texture or ichnofabric? Palaios 5:385–386

    Article  Google Scholar 

  • Frey RW, Pemberton SG (1991a) The ichnogenus Schaubcylindrichnus: morphological, temporal, and environmental significance. Geol Mag 128:595–602

    Article  Google Scholar 

  • Frey RW, Pemberton SG (1991b) Or, is it ‘bioturbate texture’? Ichnos 1:327–329

    Article  Google Scholar 

  • Frey RW, Howard JD, Pryor WA (1978) Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeogr Palaeoclimatol Palaeoecol 23:199–229

    Article  Google Scholar 

  • Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 13:183–207

    Article  Google Scholar 

  • Frey RW, Pemberton SG, Fagerstrom JA (1984) Morphological, ethological, and environmental significance of the ichnogenera Scoyenia and Ancorichnus. J Paleontol 58:511–528

    Google Scholar 

  • Frieling D (2007) Rosselia socialis in the Upper Marine Molasse of southwestern Germany. Facies 53:479–492

    Article  Google Scholar 

  • Fu S (1991) Funktion, Verhalten und Einteilung fucoider und lophocteniider Lebensspuren. Courier Forschungs-Institut Senckenberg 135:1–79

    Google Scholar 

  • Fu S, Werner F (2000) Distribution, ecology and taphonomy of the organism trace, Scolicia, in northeast Atlantic deep-sea sediments. Palaeogeogr Palaeoclimatol Palaeoecol 156:289–300

    Article  Google Scholar 

  • Fürsich FT (1973) Thalassinoides and the origin of nodular limestone in the Corallian Beds (Upper Jurassic) of Southern England. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 140:33–48

    Google Scholar 

  • Fürsich FT (1974a) Corallian (Upper Jurassic) trace fossils from England and Normandy. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 13:1–52

    Google Scholar 

  • Fürsich FT (1974b) On Diplocraterion Torell 1870 and the significance of morphological features in vertical, spreiten-bearing, U-shaped trace fossils. J Paleontol 48:952–962

    Google Scholar 

  • Fürsich FT (1974c) Ichnogenus Rhizocorallium. Paläontologische Zeitschrift 48:16–28

    Article  Google Scholar 

  • Fürsich FT, Mayr H (1981) Non-marine Rhizocorallium (trace fossil) from the Upper Freshwater Molasses (Upper Miocene) of southern Germany. Neues Jahrbuch für Geologie und Paläontologie, Monats-hefte 6:321–333

    Google Scholar 

  • Fürsich FT, Wilmsen M, Seyed-Emami K (2006) Ichnology of Lower Jurassic beach deposits in the Shemshak Formation at Shahmirzad, southeastern Alborz Mountains, Iran. Facies 52:599–610

    Article  Google Scholar 

  • Gaillard C (1972) Paratisoa contorta n. gen., n. sp., trace fossil nouvelle de l’Oxfordian du Jura: Archives des Sciences de Gènéve 25:149–160

    Google Scholar 

  • Gaillard C, Hennebert M, Olivero D (1999) Lower Carboniferous Zoophycos from the Tournai area (Belgium): environmental and ethologic significance. Geobios 32:513–524

    Article  Google Scholar 

  • Gaillard C, Racheboeuf PR (2006) Trace fossils from nearshore to offshore environments: Lower Devonian of Bolivia. J Paleontol 80:1205–1226

    Article  Google Scholar 

  • Gámez Vintaned JA, Liñán E, Mayoral E et al (2006) Trace and soft body fossils from the Pedroche Formation Ovetian, Lower Cambrian of the Sierra de Córdoba, S Spain) and their relation to the Pedroche event. Geobios 39:443–468

    Article  Google Scholar 

  • Gani MR, Bhattacharya JP, MacEachern JA (2007) Using ichnology to determine relative influence of waves, storms, tides, and rivers in deltaic deposits: examples from Cretaceous Western Interior Seaway, U.S.A. In: MacEachern JA, Bann KL, Gingras MK et al (eds) Applied ichnology. SEPM Short Course Notes, vol 52, pp 209–225

    Google Scholar 

  • Genise JF, Garrouste R, Nel P et al (2012) Asthenopodichnium in fossil wood: different trace makers as indicators of different terrestrial palaeoenvironments. Palaeogeogr Palaeoclimatol Palaeoecol 365–366:184–191

    Article  Google Scholar 

  • Gerard JRF, Bromley RG (2008) Ichnofabrics in clastic sediments—application to sedimentological core studies: a practical guide. Jean R.F. Gerard, Madrid, pp 97

    Google Scholar 

  • Gingras MK, MacEachern JA (2012) Tidal ichnology of shallow-water clastic settings. In: Davis RA Jr, Dalrymple RW (eds) Principles of tidal sedimentology. Springer Science+Business Media, Berlin, pp 57–77

    Chapter  Google Scholar 

  • Gingras MK, Pemberton SG, Saunders T (2001) Bathymetry, sediment texture, and substrate cohesiveness; their impact on modern Glossifungites trace assemblages at Willapa Bay, Washington. Palaeogeogr Palaeoclimatol Palaeoecol 169:1–21

    Article  Google Scholar 

  • Gingras MK, MacEachern JA, Dashtgard SE et al (2012a) Estuaries. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 463–505

    Google Scholar 

  • Gingras MK, Baniak G, Gordon J et al (2012b) Porosity and permeability in bioturbated sediments. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 837–868

    Google Scholar 

  • Gingras MK, MacEachern JA, Dashtgard SE (2012c) The potential of trace fossils as tidal indicators in bays and estuaries. Sedimentary Geology 279:97–106

    Google Scholar 

  • Gingras MK, McMillan B, Balcom BJ et al (2002) Using magnetic resonance imaging and petrographic techniques to understand the textural attributes and porosity distribution in Macaronichnus-burrowed sandstone. J Sediment Res 72:552–558

    Article  Google Scholar 

  • Gingras MK, Dashtgard SE, MacEachern JA et al (2008) Biology of shallow-marine ichnology: a modern perspective. Aquatic Biol 2:255–268

    Article  Google Scholar 

  • Girotti O (1970) Echinospira pauciradiata g. n., sp. n., ichnofossil from the Serravallian-Tortonian of Ascoli Piceno (central Italy). Geol Romana 9:59–62

    Google Scholar 

  • Glennie KW, Evamy BD (1968) Dikaka: plants and plant-root structures associated with aeolian sand. Palaeogeogr Palaeoclimatol Palaeoecol 4:77–87

    Article  Google Scholar 

  • Głuszek A (1998) Trace fossils from Late Carboniferous storm deposits, Upper Silesia Coal Basin, Poland. Acta Palaeontol Pol 43:517–546

    Google Scholar 

  • Goldring R (1962) The trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Paläontologische Zeitschrift 36:232–251

    Article  Google Scholar 

  • Goldring R (1964) Trace fossils and the sedimentary surface in shallow water marine sediments. Dev Sedimentol 1:136–143

    Article  Google Scholar 

  • Goldring R (1996) The sedimentological significance of concentrically laminated burrows from Lower Cretaceous Ca-bentonites, Oxfordshire. J Geol Soc London 53:255–263

    Article  Google Scholar 

  • Goldring R, Pollard JE (1995) A re-evaluation of Ophiomorpha burrows in the Wealden Group (Lower Cretaceous) of southern England. Cretac Res 16:665–680

    Article  Google Scholar 

  • Goldring R, Pollard JE, Taylor AM (1991) Anconichnus horizontalis: a pervasive ichnofabric-forming trace fossil in post-Paleozoic offshore siliciclastic facies. Palaios 6:250–263

    Article  Google Scholar 

  • Goldring R, Gruszczynski M, Gatt PA (2002) A bow-form burrow and its sedimentological and paleoecological significance. Palaios 17:622–630

    Article  Google Scholar 

  • Goldring R, Taylor AM, Hughes GW (2005) The application of ichnofabrics towards bridging the dichotomy between siliciclastic and carbonate shelf facies: examples from the Upper Jurassic Fulmar Formation (UK) and Jubaila Formation (Saudi Arabia). Proc Geol Assoc 116:235–249

    Article  Google Scholar 

  • Goldring R, Layer MG, Magyari A et al (1998) Facies variation in the Corallian Group (U. Jurassic) of the Faringdon-Shellingford area (Oxfordshire) and the rockground base to the Faringdon Sponge Gravels (L. Cretaceous). Proc Geol Assoc 109:115–125

    Article  Google Scholar 

  • Gordon JB, Pemberton SG, Gingras MK et al (2010) Biogenically enhanced permeability: a petrographic analysis of Macaronichnus segregatus in the Lower Cretaceous Bluesky Formation, Alberta, Canada. AAPG Bull 94:1779–1795

    Article  Google Scholar 

  • Gottis C (1954) Sur un Tisoa très abondants dans le Numidien de Tunisie, Bull Soc Sci Nat Tunisie 7:184–195

    Google Scholar 

  • Gowland S (1996) Facies characteristics and depositional models of highly bioturbated shallow marine siliciclastic strata: an example from the Fulmar Formation (Late Jurassic), UK Central Graben. In: Hurst A, Johnson HD, Urley DB et al (eds) Geology of the Humber Group: Central Graben and Moray Firth, UKCS, vol 114. Geological Society of London (Special Publications), pp 185–214

    Google Scholar 

  • Greb SF, Chesnut DR (1994) Paleoecology of an estuarine sequence in the Breathitt Formation (Pennsylvanian), central Appalachian Basin. Palaios 9:388–402

    Article  Google Scholar 

  • Gregory MR (1985) Taniwha footprints or fossilised starfish impressions? A reinterpretation: the fodinichnial trace fossil Asterosoma. Newslett Geol Soc N Z 70:61–64

    Google Scholar 

  • Gregory MR, Campbell KA (2003) A ‘Phoebichnus look-alike’: a fossilised root system from Quaternary coastal dune sediments, New Zealand. Palaeogeogr Palaeoclimatol Palaeoecol 192:247–258

    Article  Google Scholar 

  • Gregory MR, Martin AJ, Campbell KA (2004) Compound trace fossils formed by plant and animal interactions: Quaternary of northern New Zealand and Sapelo Island, Georgia (USA). Fossils Strata 51:88–105

    Google Scholar 

  • Gregory MR, Campbell KA, Zuraida R et al (2006) Plant traces resembling Skolithos. Ichnos 13:205–216

    Article  Google Scholar 

  • Griffis RB, Suchanek TH (1991) A model of burrow architecture and trophic modes in thalassinidean shrimp (Decapoda: Thalassinidea). Mar Ecol Prog Ser 79:171–183

    Article  Google Scholar 

  • Hakes WG (1976) Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas, vol 63. University of Kansas Paleontological Contributions, pp 1–60

    Google Scholar 

  • Haldeman SS (1840) Supplement to number one of “A monograph of the Limniades, and other freshwater univalve shells of North America,” containing descriptions of apparently new animals in different classes, and the names and characters of the subgenera in Paludina and Anculosa. J. Dobson, Philadelphia, 3 pp

    Google Scholar 

  • Hall J (1847) Palaeontology of New-York, vol 1. C. Van Benthuysen, Albany

    Google Scholar 

  • Häntzschel W (1960) Spreitenbauten (Zoophycos Massal.) im Septarienton Nordwest-Deutschlands. Mitteilungen aus dem Geologischen Staatsinstitut in Hamburg 29:95–100

    Google Scholar 

  • Häntzschel W (1975) Trace fossils and problematica. In: Teichert C (ed) Treatise on invertebrate paleontology (Part W, Miscellanea Supplement 1). Geological Society of America/University of Kansas Press, Boulder/Lawrence, pp W1–W269

    Google Scholar 

  • Hasiotis ST (2008) Reply to the comments by Bromley et al. of the paper “Reconnaissance of the Upper Jurassic Morrison Formation ichnofossils, Rocky Mountain Region, USA: paleoenvironmental, stratigraphic, and paleoclimatic significance of terrestrial and freshwater ichnocoenoses” by Stephen T. Hasiotis. Sediment Geol 208:61–68

    Google Scholar 

  • Hasiotis ST (2010) Continental trace fossils. SEPM Short Course Notes 51:1–132

    Google Scholar 

  • Hasiotis ST, Honey JG (2000) Paleohydrologic and stratigraphic significance of crayfish burrows in continental deposits: examples from several Paleocene Laramide basins in the Rocky Mountains. J Sediment Res 70:127–139

    Article  Google Scholar 

  • Hasiotis ST, Mitchell CE (1993) A comparison of crayfish burrow morphologies: Triassic and Holocene fossil, paleo- and neo-ichnological evidence, and the identification of their burrowing signatures. Ichnos 2:291–314

    Article  Google Scholar 

  • Heard TG, Pickering KT (2008) Trace fossils as diagnostic indicators of deep-marine environments, Middle Eocene Ainsa-Jaca Basin, Spanish Pyrenees. Sedimentology 55:809–844

    Article  Google Scholar 

  • Heer O (1877) Flora fossilis Helvetiae. Die vorweltliche Flora der Schweiz. J. Würster & Co., Zurich, 182 pp, LXX pl

    Google Scholar 

  • Heinberg C, Birkelund T (1984) Trace-fossil assemblages and basin evolution of the Vardekløft Formation (Middle Jurassic, central East Greenland). J Paleontol 58:362–397

    Google Scholar 

  • Hembree DI, Hasiotis ST (2008) Miocene vertebrate and invertebrate burrows defining compound paleosols in the Pawnee Creek Formation, Colorado, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 270:349–365

    Article  Google Scholar 

  • Hertweck G (1972) Georgia coastal region, Sapelo Island, U.S.A.: sedimentology and biology. Senckenb Marit 4:125–167

    Google Scholar 

  • Hertweck G, Wehrmann A, Liebezeit G (2007) Bioturbation structures of polychaetes in modern shallow marine environments and their analogues to Chondrites group traces. Palaeogeogr Palaeoclimatol Palaeoecol 245:382–389

    Article  Google Scholar 

  • Higgs KT, Higgs BM (2015) New discoveries of Diplocraterion and tidal rhythmites in the Upper Devonian rocks of Grab-all Bay, Cork Harbour: palaeoenvironmental implications. Irish J Earth Sci 33:35–54

    Article  Google Scholar 

  • Hobbs HH (1981) The crayfishes of Georgia. Smithson Contributions Zool 318:1–549

    Article  Google Scholar 

  • Howard JD (1966) Characteristic trace fossils in Upper Cretaceous sandstones of the Book Cliffs and Wasatch Plateau. Bull Utah Geol Mineral Surv 80:35–53

    Google Scholar 

  • Howard JD (1972) Trace fossils as criteria for recognizing shorelines in stratigraphic record. In: Rigby JK, Hamblin WK (eds) Recognition of ancient sedimentary environments. SEPM Special Publications 16:215–225

    Google Scholar 

  • Howard JD, Frey RW (1975) Estuaries of the Georgia coast, U.S.A.: sedimentology and biology. II. Regional animal-sediment characteristics of Georgia estuaries. Senckenb Marit 7:33–103

    Google Scholar 

  • Howard JD, Frey RW (1984) Characteristic trace fossils in nearshore to offshore sequences, Upper Cretaceous of east-central Utah. Can J Earth Sci 21:200–219

    Article  Google Scholar 

  • Howard JD, Frey RW (1985) Physical and biogenic aspects of backbarrier sedimentary sequences, Georgia coast, U.S.A. Marine Geology 63:77–127

    Google Scholar 

  • Hu B, Wang G, Goldring R (1998) Nereites (or Neonereites) from Lower Jurassic lacustrine turbidites of Henan, central China. Ichnos 6:203–209

    Article  Google Scholar 

  • Hubbard SM, Gingras MK, Pemberton SG (2004) Palaeoenvironmental implications of trace fossils in estuarine deposits of the Cretaceous Bluesky Formation, Cadotte region, Alberta, Canada. Fossils Strata 51:68–87

    Google Scholar 

  • Hubbard SM, Shultz MR (2008) Deep burrows in submarine fan-channel deposits of the Cerro Toro Formation (Cretaceous), Chilean Patagonia: implications for firmground development and colonization in the deep sea. Palaios 23:223–232

    Article  Google Scholar 

  • Hubbard SM, MacEachern JA, Bann KL (2012) Slopes. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 607–642

    Google Scholar 

  • Hubert JF, Dutcher JA (2010) Scoyenia escape burrows in fluvial pebbly sand: Upper Triassic Sugarloaf Arkose, Deerfield Rift Basin, Massachusetts, USA. Ichnos 17:20–24

    Article  Google Scholar 

  • Husinec A, Read JF (2011) Microbial laminite versus rooted and burrowed caps on peritidal cycles: Salinity control on parasequence development, Early Cretaceous isolated carbonate platform, Croatia. GSA Bull 123:1896–1907

    Article  Google Scholar 

  • Hyman LH (1959) The invertebrates: smaller Coelomate groups Chaetognatha, Hemichordata, Pogonophora, Phoronida, Ectoprocta, Brachiopoda, Sipunculida. In: The Coelomate Bilateria, vol 5. McGraw-Hill Book Company, New York, pp 1–51

    Google Scholar 

  • Izumi K (2012) Formation process of the trace fossil Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications. Palaeogeogr Palaeoclimatol Palaeoecol 353–355:116–122

    Article  Google Scholar 

  • Izumi K (2014) Utility of geochemical analysis of trace fossils: case studies using Phycosiphon incertum from the Lower Jurassic shallow-marine (Higashinagano Formation, southwest Japan) and Pliocene deep-marine deposits (Shiramazu Formation, central Japan). Ichnos 21:62–72

    Article  Google Scholar 

  • James NP, Kobluk DR, Pemberton SG (1977) The oldest macroborers: Lower Cambrian of Labrador. Science 197:980–983

    Article  Google Scholar 

  • Jensen S (1997) Trace fossils from the Lower Cambrian Mickwitzia Sandstone, south-central Sweden. Fossils Strata 42:1–110

    Google Scholar 

  • Jessen W (1950) “Augenschiefer”-Grabgänge, ein Merkmal für Faunenschiefer-Nähe im westfälischen Oberkarbon. Zeitschrift der Deutschen Geologischen Gesellschaft 101:23–43

    Google Scholar 

  • Joeckel RM, Korus JT (2012) Bayhead delta interpretation of an Upper Pennsylvanian sheetlike sandbody and the broader understanding of transgressive deposits in cyclothems. Sed Geol 275–276:22–37

    Article  Google Scholar 

  • Jordan DW (1985) Trace fossils and depositional environments of Upper Devonian black shales, east-central Kentucky, U.S.A. In: Curran HA (ed) Biogenic structures: their use in interpreting depositional environments, vol 35 (SEPM Special Publication), pp 279–298

    Google Scholar 

  • Joseph JK, Patel SJ, Bhatt NY (2012) Trace fossil assemblages in mixed siliciclastic-carbonate sediments of the Kaladongar Formation (Middle Jurassic), Patcham Island, Kachchh, Western India. J Geol Soc India 80:189–214

    Article  Google Scholar 

  • Keighley DG, Pickerill RK (1994) The ichnogenus Beaconites and its distinction from Ancorichnus and Taenidium. Palaeontology 37:305–337

    Google Scholar 

  • Keighley DG, Pickerill RK (1995) The ichnotaxa Palaeophycus and Planolites: historical perspectives and recommendations. Ichnos 3:301–309

    Article  Google Scholar 

  • Kelly SRA, Bromley RG (1984) Ichnological nomenclature of clavate borings. Palaeontology 27:793–807

    Google Scholar 

  • Kennedy WJ (1967) Burrows and surface traces from the Lower Chalk of Southern England. Bull Br Mus (Nat Hist) Geol 15:125–167

    Google Scholar 

  • Kikuchi K, Kotake N, Furukawa N (2016) Mechanism and process of construction of tubes of the trace fossil Schaubcylindrichnus coronus Frey and Howard, 1981. Palaeogeogr Palaeoclimatol Palaeoecol 443:1–9

    Article  Google Scholar 

  • Kim J-Y, Paik IS (1997) Nonmarine Diplocraterion luniforme (Blanckenhorn 1916) from the Hasandong Formation (Cretaceous) of the **ju area, Korea. Ichnos 5:131–138

    Article  Google Scholar 

  • Klappa CF (1980) Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology 27:613–629

    Article  Google Scholar 

  • Knaust D (1998) Trace fossils and ichnofabrics on the Lower Muschelkalk carbonate ramp (Triassic) of Germany: tool for high-resolution sequence stratigraphy. Geol Rundsch 87:21–31

    Article  Google Scholar 

  • Knaust D (2004a) Cambro-Ordovician trace fossils from the SW-Norwegian Caledonides. Geol J 39:1–24

    Article  Google Scholar 

  • Knaust D (2004b) The oldest Mesozoic nearshore Zoophycos: evidence from the German Triassic. Lethaia 37:297–306

    Article  Google Scholar 

  • Knaust D (2007a) Meiobenthic trace fossils as keys to the taphonomic history of shallow-marine epicontinental carbonates. In: Miller III W (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 502–517

    Google Scholar 

  • Knaust D (2007b) Invertebrate trace fossils and ichnodiversity in shallow-marine carbonates of the German Middle Triassic (Muschelkalk). In: Bromley RG, Buatois LA, Mángano G et al (eds) Sediment-organism interactions: a multifaceted ichnology, vol 88. SEPM Special Publication, pp 221–238

    Google Scholar 

  • Knaust D (2008) Balanoglossites Mägdefrau, 1932 from the Middle Triassic of Germany: part of a complex trace fossil probably produced by boring and burrowing polychaetes. Paläontologische Zeitschrift 82:347–372

    Article  Google Scholar 

  • Knaust D (2009a) Ichnology as a tool in carbonate reservoir characterization: a case study from the Permian—Triassic Khuff Formation in the Middle East. GeoArabia 14:17–38

    Google Scholar 

  • Knaust D (2009b) Characterisation of a Campanian deep-sea fan system in the Norwegian Sea by means of ichnofabrics. Mar Pet Geol 26:1199–1211

    Article  Google Scholar 

  • Knaust D (2009c) Complex behavioural pattern as an aid to identify the producer of Zoophycos from the Middle Permian of Oman. Lethaia 42:146–154

    Article  Google Scholar 

  • Knaust D (2010a) Meiobenthic trace fossils comprising a miniature ichnofabric from Late Permian carbonates of the Oman Mountains. Palaeogeogr Palaeoclimatol Palaeoecol 286:81–87

    Article  Google Scholar 

  • Knaust D (2010b) The end-Permian mass extinction and its aftermath on an equatorial carbonate platform: insights from ichnology. Terra Nova 22:195–202

    Article  Google Scholar 

  • Knaust D (2012a) Trace-fossil systematics. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 79–101

    Google Scholar 

  • Knaust D (2012b) Methodology and techniques. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 245–271

    Google Scholar 

  • Knaust D (2013) The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution. Earth Sci Rev 126:1–47

    Article  Google Scholar 

  • Knaust D (2014a) Classification of bioturbation-related reservoir quality in the Khuff Formation (Middle East): towards a genetic approach. In: Pöppelreiter MC (ed) Permo-Triassic Sequence of the Arabian Plate. EAGE, pp 247–267

    Google Scholar 

  • Knaust D (2014b) Case 3662: Siphonichnus Stanistreet, le Blanc Smith and Cadle, 1980 (trace fossil): proposed conservation by granting precedence over the senior subjective synonym Opthalmichnium Pfeiffer, 1968. Bull Zool Nomenclature 71:147–152

    Google Scholar 

  • Knaust D (2015a) Siphonichnidae (new ichnofamily) attributed to the burrowing activity of bivalves: ichnotaxonomy, behaviour and palaeoenvironmental implications. Earth Sci Rev 150:497–519

    Article  Google Scholar 

  • Knaust D (2015b) Trace fossils from the continental Upper Triassic Kågeröd Formation of Bornholm, Denmark. Ann Soc Geol Pol 85:481–492

    Google Scholar 

  • Knaust D, Dronov A (2013) Balanoglossites ichnofabrics from the Middle Ordovician Volkhov Formation (St. Petersburg Region, Russia). Stratigr Geol Correl 21:265–279

    Article  Google Scholar 

  • Knaust D, Curran HA, Dronov A (2012) Shallow-marine carbonates. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 705–750

    Google Scholar 

  • Knaust D, Uchman A, Hagdorn H (2016) The probable isopod burrow Sinusichnus seilacheri isp. n. from the Middle Triassic of Germany: an example of behavioral convergence. Ichnos 23:138–146

    Article  Google Scholar 

  • Knaust D, Warchoł M, Kane IA (2014) Ichnodiversity and ichnoabundance: revealing depositional trends in a confined turbidite system. Sedimentology 62:2218–2267

    Article  Google Scholar 

  • Kotake N (1989) Paleoecology of the Zoophycos producers. Lethaia 22:327–341

    Article  Google Scholar 

  • Kotake N (1991) Packing process for the filling material in Chondrites. Ichnos 1:277–285

    Google Scholar 

  • Kotake N (1992) Deep-sea echiurans: possible producers of Zoophycos. Lethaia 25:311–316

    Article  Google Scholar 

  • Kotake N (2003) Ethologic and ecologic interpretation of complex stellate structures in Pleistocene deep-sea sediments (Otadai Formation), Boso Peninsula, central Japan. Palaeogeogr Palaeoclimatol Palaeoecol 192:143–155

    Article  Google Scholar 

  • Kotlarczyk J, Uchman A (2012) Integrated ichnology and ichthyology of the Oligocene Menilite Formation, Skole and Subsilesian nappes, Polish Carpathians: a proxy to oxygenation history. Palaeogeogr Palaeoclimatol Palaeoecol 331–332:104–118

    Article  Google Scholar 

  • Kowalewski M, Demko TM (1997) Trace fossils and population paleoecology: comparative analysis of size-frequency distributions derived from burrows. Lethaia 29:113–124

    Article  Google Scholar 

  • Kowalewski M, Demko TM, Hasiotis ST et al (1998) Quantitative ichnology of Triassic crayfish burrows (Camborygma eumekenomos): ichnofossils as linkages to population paleoecology. Ichnos 6:5–21

    Article  Google Scholar 

  • Krapovickas V, Ciccioli PL, Mángano MG et al (2009) Paleobiology and paleoecology of an arid–semiarid Miocene South American ichnofauna in anastomosed fluvial deposits. Palaeogeogr Palaeoclimatol Palaeoecol 284:129–152

    Article  Google Scholar 

  • Kraus MJ, Hasiotis ST (2006) Significance of different modes of rhizolith preservation to interpreting paleoenvironmental and paleohydrologic settings: examples from Paleogene paleosols, Bighorn Basin, Wyoming, U.S.A. J Sediment Res 76:633–646

    Article  Google Scholar 

  • Książkiewicz M (1977) Trace fossils in the flysch of the Polish Carpathians. Palaeontologia Polonica 36:1–208

    Google Scholar 

  • La Croix AD, Gingras MK, Pemberton SG et al (2013) Biogenically enhanced reservoir properties in the Medicine Hat gas field, Alberta, Canada. Mar Pet Geol 43:464–477

    Article  Google Scholar 

  • Leaman M, McIlroy D (2016) Three-dimensional morphological permeability modelling of Diplocraterion. Ichnos, doi:10.1080/10420940.2016.1232650

  • Leaman M, McIlroy D, Herringshaw LG et al (2015) What does Ophiomorpha irregulaire really look like? Palaeogeogr Palaeoclimatol Palaeoecol 439:38–49

    Article  Google Scholar 

  • Leszczyński S (2010) Coniacian–? Santonian paralic sedimentation in the Rakowice Małe area of the North Sudetic Basin, SW Poland: sedimentary facies, ichnological record and palaeogeographical reconstruction of an evolving marine embayment. Ann Soc Geol Pol 80:1–24

    Google Scholar 

  • Leszczynski S, Uchman A, Bromley RG (1996) Trace fossils indicating bottom aeration changes: Folusz Limestone, Oligocene, Outer Carpathians, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 121:79–87

    Article  Google Scholar 

  • Li Y, Yuan J-L, Lin T-R (1999) Lower Cambrian trace fossils from the Mantou Formation of Huainan, Anhui. Acta Palaeontol Sin 38:114–124, (pl 1–3) [In Chinese, with English summary]

    Google Scholar 

  • Linck O (1949) Lebens-Spuren aus dem Schilfsandstein (Mittl. Keuper km 2) NW-Württembergs und ihre Bedeutung für die Bildungs-Geschichte der Stufe. Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg 97–101:1–100

    Google Scholar 

  • Loughlin NJD, Hillier RD (2010) Early Cambrian Teichichnus-dominated ichnofabrics and palaeoenvironmental analysis of the Caerfai Group, Southwest Wales, UK. Palaeogeogr Palaeoclimatol Palaeoecol 297:239–251

    Article  Google Scholar 

  • Löwemark L (2012) Ethological analysis of the trace fossil Zoophycos: hints from the Arctic Ocean. Lethaia 45:290–298

    Article  Google Scholar 

  • Löwemark L, Hong E (2006) Schaubcylindrichnus formosus isp. nov. in Miocene sandstones from northeastern Taiwan. Ichnos 13:267–276

    Article  Google Scholar 

  • Löwemark L, Nara M (2010) Morphology, ethology and taxonomy of the ichnogenus Schaubcylindrichnus: notes for clarification. Palaeogeogr Palaeoclimatol Palaeoecol 297:184–187

    Article  Google Scholar 

  • Löwemark L, Nara M (2013) Morphological variability of the trace fossil Schaubcylindrichnus coronus as a response to environmental forcing. Palaeontol Electron 16:14

    Google Scholar 

  • Löwemark L, Lin I-T, Wang C-H et al. (2004) Ethology of the Zoophycos-producer: arguments against the gardening model from δ13 Corg evidences of the spreiten material. TAO 15:713–725

    Google Scholar 

  • Lundgren B (1891) Studier öfver fossilförande lösa block. Geol Fören Stockh Förh 13:111–121

    Article  Google Scholar 

  • MacEachern JA, Bann KL (2008) The role of ichnology in refining shallow marine facies models. In: Hampson GJ (ed) Recent advances in models of siliciclastic shallow-marine stratigraphy, vol 90 (SEPM Special Publication), pp 73–116

    Google Scholar 

  • MacEachern JA, Gingras MK (2007) Recognition of brackish-water trace-fossil suites in the Cretaceous Western Interior Seaway of Alberta, Canada. In: Bromley RG, Buatois LA, Mángano G et al (eds) Sediment-organism interactions: a multifaceted ichnology, vol 88 (SEPM Special Publication), pp 149–193

    Google Scholar 

  • MacEachern JA, Bann KL, Bhattacharya JP et al (2005) Ichnology of deltas: organisms responses to the dynamic interplay of rivers, waves, storms and tides. In: Giosan L, Bhattacharya JP (eds) River Deltas—Concepts, Models, and Examples, vol 83 (SEPM Special Publication), pp 49–85

    Google Scholar 

  • MacEachern JA, Bann KL, Gingras MK et al (2012) The ichnofacies paradigm. In: Knaust D, Bromley RG (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 103–138

    Google Scholar 

  • MacSotay O, Erlich RN, Peraza T (2003) Sedimentary Structures of the La Luna, Navay and Querecual formations, Upper Cretaceous of Venezuela. Palaios 18:334–348

    Article  Google Scholar 

  • Mángano MG, Buatois LA (2004) Ichnology of Carboniferous tide-influenced environments and tidal flat variability in the North American Midcontinent. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London, vol 228 (Special Publications), pp 157–178

    Google Scholar 

  • Mangano MG, Buatois LA, Maples CG et al (2000) A new ichno-species of Nereites from Carboniferous tidal-flat facies of eastern Kansas, USA: implications for the Nereites-Neonereites debate. J Paleontol 74:149–157

    Google Scholar 

  • Männil RM (1966) O Vertikalnykh norkakh zaryvaniya v Ordovikskikh izvestinyakakh Pribaltiki [A small vertically excavated cavity in Baltic Ordovician limestone]. Organizm i Sreda v Geologischeskom Proshlom: Moscow, Akademiya Nauk SSSR, Paleontologischeskii Institut, pp 200–207 [In Russian]

    Google Scholar 

  • Marenco KN, Bottjer DJ (2008) The importance of Planolites in the Cambrian substrate revolution. Palaeogeogr Palaeoclimatol Palaeoecol 258:189–199

    Article  Google Scholar 

  • Martin KD (2004) A re-evaluation of the relationship between trace fossils and dysoxia. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis. Geological Society of London, vol 228 (Special Publications), pp 141–156

    Google Scholar 

  • Martin MA, Pollard JE (1996) The role of trace fossil (ichnofabric) analysis in the development of depositional models for the Upper Jurassic Fulmar Formation of the Kittiwake Field (Quadrant 21 UKCS). In: Hurst A, Johnson HD, Urley DB et al (eds) Geology of the Humber Group: Central Graben and Moray Firth, UKCS, vol 114. Geological Society of London (Special Publications), pp 163–183

    Google Scholar 

  • Martin AJ, Rindsberg AK (2007) Arthropod trace makers of Nereites? Neoichnological observations of juvenile limulids and their paleoichnological applications. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 478–491

    Chapter  Google Scholar 

  • Martin AJ, Rich TH, Poore GCB et al (2008) Fossil evidence in Australia for oldest known freshwater crayfish of Gondwana. Gondwana Res 14:287–296

    Article  Google Scholar 

  • Martin AJ, Blair M, Dattilo BF et al (2016) The ups and downs of Diplocraterion in the Glen Rose Formation (Lower Cretaceous), Dinosaur Valley State Park, Texas (USA). Geodin Acta 28:101–119

    Article  Google Scholar 

  • Martinsson A (1965) Aspects of a Middle Cambrian thanatotope on Öland. Geologiska Föreningen i Stockholm, Förhandlingar 87:181–230

    Article  Google Scholar 

  • Mason TR, Christie ADM (1986) Palaeoenvironmental significance of ichnogenus Diplocraterion Torell from the Permian Vryheid Formation of the Karoo Supergroup, South Africa. Palaeogeogr Palaeoclimatol Palaeoecol 52:249–265

    Article  Google Scholar 

  • Massalongo A (1855) Zoophycos, novum genus plantarum fossilium. Monographia, Typis Antonellianis, Veronae, pp 45–52

    Google Scholar 

  • Mata SA, Corsetti CL, Corsetti FA et al (2012) Lower Cambrian anemone burrows from the Upper Member of the Wood Canyon Formation, Death Valley Region, United States: paleoecological and paleoenvironmental significance. Palaios 27:594–606

    Article  Google Scholar 

  • Mayoral E (1986) Ophiomorpha isabeli; nov. icnosp. (Plioceno Marino) en el sector suroccidental del Valle del Guadalquivir (Palos de la Frontera, Huelva, España). Estud Geol 42:461–470

    Article  Google Scholar 

  • McBride EF, Picard MD (1991) Facies implications of Trichichnus and Chondrites in turbidites and hemipelagites, Marnoso-arenacea Formation (Miocene), northern Apennines, Italy. Palaios 6:281–290

    Article  Google Scholar 

  • McCall GJH (2006) The Vendian (Ediacaran) in the geological record: Enigmas in geology’s prelude to the Cambrian explosion. Earth Sci Rev 77:1–229

    Article  Google Scholar 

  • McCarthy B (1979) Trace fossils from a Permian shoreface-foreshore environment, eastern Australia. J Paleontol 53:345–366

    Google Scholar 

  • McIlroy D (2004) Ichnofabrics and sedimentary facies of a tide-dominated delta: Jurassic lle Formation of Kristin Field, Haltenbanken, Offshore Mid-Norway. In: McIlroy D (ed) The application of ichnology to palaeoenvironmental and stratigraphic analysis, vol 228. Geological Society of London (Special Publications), pp 237–272

    Google Scholar 

  • McIlroy D (2007) Ichnology of a macrotidal tide-dominated deltaic depositional system: Lajas Formation, Neuquén Province, Argentina. In: Bromley RG, Buatois LA, Mángano G et al (eds) Sediment-organism interactions: a multifaceted ichnology, vol 88. SEPM Special Publication, pp 195–211

    Google Scholar 

  • Melchor RN, Genise JF, Farina JL et al (2010) Large striated burrows from fluvial deposits of the Neogene Vinchina Formation, La Rioja, Argentina: a crab origin suggested by neoichnology and sedimentology. Palaeogeogr Palaeoclimatol Palaeoecol 291:400–418

    Article  Google Scholar 

  • Melchor RN, Genise JF, Buatois LA et al (2012) Fluvial environments. In: Knaust D, Bromley RG (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 329–378

    Google Scholar 

  • Michalík J, Šimo V (2010) A new spreite trace fossil from Lower Cretaceous limestone (Western Carpathians, Slovakia). Trans R Soc Edinb, Earth Sci 100:417–427

    Article  Google Scholar 

  • Mikuláš R (1997) Ethological interpretation of the ichnogenus Pragichnus Chlupáč, 1987 (Ordovician, Czech Republic). Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1997:93–108

    Google Scholar 

  • Mikuláš R (2006) Trace fossils in the collections of the Czech Republic (with emphasis on type material). A special publication for the Workshop on Ichnotaxonomy—III, Prague and Moravia, Sept 2006, 137 pp

    Google Scholar 

  • Miller MF (1991) Morphology and paleoenvironmental distribution of Paleozoic Spirophyton and Zoophycos: implications for the Zoophycos ichnofacies. Palaios 6:410–425

    Article  Google Scholar 

  • Miller MF, Knox LW (1985) Biogenic structures and depositional environments of a Lower Pennsylvanian coal-bearing sequence, northern Cumberland Plateau, Tennessee, U.S.A. In: Curran HA (ed) Biogenic structures: their use in interpreting depositional environments, vol 35 (SEPM Special Publication), pp 67–97

    Google Scholar 

  • Miller W (1995) Examples of Mesozoic and Cenozoic Bathysiphon (Foraminiferida) from the Pacific rim and the taxonomic status of Terebellina Ulrich, 1904. J Paleontol 69:624–634

    Article  Google Scholar 

  • Miller W (2011) A stroll in the forest of the fucoids: Status of Melatercichnus burkei Miller, 1991, the doctrine of ichnotaxonomic conservatism and the behavioral ecology of trace fossil variation. Palaeogeogr Palaeoclimatol Palaeoecol 307:109–116

    Article  Google Scholar 

  • Monaco P (2008) Taphonomic features of Paleodictyon and other graphoglyptid trace fossils in Oligo-Miocene thin-bedded turbidites, northern Apennines, Italy. Palaios 23:668–683

    Article  Google Scholar 

  • Monaco P (2014) Taphonomic aspects of the radial backfill of asterosomids in Oligo-Miocene turbidites of central Italia (northern Appenines). Riv Ital Paleontol Stratigr 120:215–224

    Google Scholar 

  • Monaco P, Caracuel JE, Giannetti A et al (2009) Thalassinoides and Ophiomorpha as cross-facies trace fossils of crustaceans from shallow-to-deep-water environments: Mesozoic and Tertiary examples from Italy and Spain. In: Garassino A, Feldmann RM, Teruzzi G (eds) 3rd Symposium on Mesozoic and Cenozoic Decapod Crustaceans—Museo di Storia Naturale di Milano, May 23–25, 2007. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, vol 35, pp 79–82

    Google Scholar 

  • Monaco P, Rodríguez-Tovar FJ, Uchman A (2012) Ichnological analysis of lateral environmental heterogeneity within the Bonarelli level (uppermost Cenomanian) in the classical localities near Gubbio, central Appenines, Italy. Palaios 27:48–54

    Article  Google Scholar 

  • Morris JE, Hampson GJ, Johnson HD (2006) A sequence stratigraphic model for an intensely bioturbated shallow-marine sandstone: the Bridport Sand Formation, Wessex Basin, UK. Sedimentology 53:1229–1263

    Article  Google Scholar 

  • Müller AH (1971) Zur Kenntnis von Asterosoma (Vestigia invertebratorum). Freiberger Forschungshefte C 267:7–17

    Google Scholar 

  • Murchison RI (1839) The Silurian system. John Murray, London, pp 768

    Google Scholar 

  • Myrow PM (1995) Thalassinoides and the enigma of early Paleozoic open-framework burrow systems. Palaios 10:58–74

    Article  Google Scholar 

  • Nara M (1995) Rosselia socialis: a dwelling structure of a probable terebellid polychaete. Lethaia 28:171–178

    Article  Google Scholar 

  • Nara M (2002) Crowded Rosselia socialis in Pleistocene inner shelf deposits: benthic paleoecology during rapid sea-level rise. Palaios 17:268–276

    Article  Google Scholar 

  • Nara M (2006) Reappraisal of Schaubcylindrichnus: a probable dwelling/feeding structure of a solitary funnel feeder. Palaeogeogr Palaeoclimatol Palaeoecol 240:439–452

    Article  Google Scholar 

  • Nara M, Haga M (2007) The youngest record of trace fossil Rosselia socialis: occurrence in the Holocene shallow marine deposits of Japan. Paleontol Res 11:21–27

    Article  Google Scholar 

  • Nara M, Seike K (2004) Macaronichnus segregatis-like traces found in the modern foreshore sediments of the Kujukurihama Coast, Japan. J Geol Soc Jpn 110:545–551 [In Japanese, with English abstract]

    Google Scholar 

  • Narbonne GM, Hofmann HJ (1987) Ediacaran biota of the Wernecke Mountains, Yukon, Canada. Palaeontology 30:647–676

    Google Scholar 

  • Naruse H, Nifuku K (2008) Three-dimensional morphology of the ichnofossil Phycosiphon incertum and its implication for paleoslope inclination. Palaios 23:270–279

    Article  Google Scholar 

  • Neto de Carvalho C, Baucon A (2010) Nereites trails and other sandflat trace fossils from Portas de Almourão geomonument (Lower Ordovician, Naturtejo Geopark). e-Terra 17:1–4

    Google Scholar 

  • Neto de Carvalho C, Baucon A, Bayet-Goll A (2016) The ichnological importance and interest of the Geological Museum of Lisbon collections: Cladichnus lusitanicum in continental facies from the Lower Cretaceous of the Lusitanian Basin (Portugal). Communicações Geológicas 103, Especial I:7–12

    Google Scholar 

  • Neto de Carvalho C, Rodrigues NPC (2003) Los Zoophycos del Bajociense-Bathoniense de la Praia da Mareta (Algarve, Portugal): Arquitectura y finalidades en régimen de dominancia ecológica (The Zoophycos from the Bajocian-Bathonian of Praia da Mareta (Algarve, Portugal): Architecture and purposes in ecological dominance regime). Revista Española de Paleontologia 18:229–241 [In Portuguese]

    Google Scholar 

  • Neto de Carvalho C, Rodrigues NPC (2007) Compound Asterosoma ludwigae Schlirf, 2000 from the Jurassic of the Lusitanian Basin (Portugal): conditional strategies in the behaviour of Crustacea. J Iber Geol 33:295–310

    Google Scholar 

  • Neto de Carvalho C, Rodrigues NPC, Viegas PA et al (2010) Patterns of occurrence and distribution of crustacean ichnofossils in the Lower Jurassic-Upper Cretaceous of Atlantic occidental margin basins, Portugal. Acta Geol Pol 60:19–28

    Google Scholar 

  • Netto RG, Benner JS, Buatois LA et al (2012) Glacial environments. In: Knaust D, Bromley RG (eds), Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 299–327

    Google Scholar 

  • Netto RG, Tognoli FMW, Assine ML et al (2014) Crowded Rosselia ichnofabric in the early Devonian of Brazil: an example of strategic behaviour. Palaeogeogr Palaeocl Palaeoecol 395:107–113

    Google Scholar 

  • Nicholson HA (1873) Contributions to the study of the errant annelides of the older Palaeozoic rocks. R Soc Lond Proc 21:288–290 (also Geological Magazine 10:309–310)

    Google Scholar 

  • Nickel LA, Atkinson RJA (1995) Functional morphology of burrows and trophic modes of three thalassinidean shrimp species, and a new approach to the classification of thalassinidean burrow morphology. Mar Ecol Prog Ser 128:181–197

    Article  Google Scholar 

  • Nielsen JK, Hansen KS, Simonsen L (1996) Sedimentology and ichnology of the Robbedale Formation (Lower Cretaceous), Bornholm, Denmark. Bull Geol Soc Denm 43:115–131

    Google Scholar 

  • Nilsen TH, Kerr DR (1978) Turbidites, redbeds, sedimentary structures, and trace fossils observed in DSDP Leg 38 cores and the sedimentary history of the Norwegian-Greenland Sea. Initial report of the deep sea drilling project, vol 38 (part 1), pp 259–288

    Google Scholar 

  • Nygaard E (1983) Bathichnus and its significance in the trace fossil association of Upper Cretaceous chalk, Mors, Denmark. Danmarks Geologiske Undersøgelser, Årbog 1982:107–137

    Google Scholar 

  • Olariu C, Steel RJ, Dalrymple RW et al (2012) Tidal dunes versus tidal bars: the sedimentological and architectural characteristics of compound dunes in a tidal seaway, the lower Baronia Sandstone (Lower Eocene), Ager Basin, Spain. Sed Geol 279:134–155

    Article  Google Scholar 

  • Olivero D (1996) Zoophycos distribution and sequence stratigraphy. Examples from the Jurassic and Cretaceous deposits of southeastern France. Palaeogeogr Palaeoclimatol Palaeoecol 123:273–287

    Article  Google Scholar 

  • Olivero D (2003) Early Jurassic to Late Cretaceous evolution of Zoophycos in the French Subalpine Basin (southeastern France). Palaeogeogr Palaeoclimatol Palaeoecol 192:59–78

    Article  Google Scholar 

  • Olivero D (2007) Zoophycos and the role of type specimens in ichnotaxonomy. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 219–231

    Chapter  Google Scholar 

  • Olivero D, Gaillard C (1996) Paleoecology of Jurassic Zoophycos from south-eastern France. Ichnos 4:249–260

    Article  Google Scholar 

  • Olivero D, Gaillard C (2007) A constructional model for Zoophycos. In: Miller W III (ed) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam, pp 466–477

    Chapter  Google Scholar 

  • Olivero EB, López Cabrera MI (2013) Euflabella n. igen.: Complex horizontal spreite burrows in Upper Cretaceous-Paleogene shallow-marine sandstones of Antarctica and Tierra del Fuego. J Paleontol 87:413–426

    Article  Google Scholar 

  • Olivero EB, Buatois LA, Scasso RA (2004) Paradictyodora antarctica: a new complex vertical spreite trace fossil from the Upper Cretaceous-Paleogene of Antarctica and Tierra del Fuego, Argentina. J Paleontol 78:783–789

    Article  Google Scholar 

  • Olóriz F, Rodríguez-Tovar FJ (2000) Diplocraterion: a useful marker for sequence stratigraphy and correlation in the Kimmeridgian, Jurassic (Prebetic Zone, Betic Cordillera, southern Spain). Palaios 15:546–552

    Article  Google Scholar 

  • Orłowski S (1989) Trace fossils in the Lower Cambrian sequence in the Świętokrzyskie Mountains, Central Poland. Acta Palaeontol Pol 34:211–231

    Google Scholar 

  • Orłowski S, Radwański A (1986) Middle Devonian sea-anemone burrows, Alpertia sanctacrucensis ichnogen. et ichnosp. n., from the Holy Cross Mountains. Acta Geol Pol 36:233–249

    Google Scholar 

  • Osgood RG (1970) Trace fossils of the Cincinnati area. Palaeontogr Am 6:281–444

    Google Scholar 

  • Owen RA, Owen RB, Renaut RW et al (2008) Mineralogy and origin of rhizoliths on the margins of saline, alkaline Lake Bogoria, Kenya Rift Valley. Sed Geol 203:143–163

    Article  Google Scholar 

  • Pacześna J (2010) Ichnological record of the activity of Anthozoa in the early Cambrian succession of the Upper Silesian Block (southern Poland). Acta Geol Pol 60:93–103

    Google Scholar 

  • Pazos PJ, Fernández DE (2010) Three-dimensionally integrated trace fossils from shallow-marine deposits in the Lower Cretaceous of the Neuquén Basin: Hillichnus agrioensis isp. nov. Acta Geol Pol 60:105–118

    Google Scholar 

  • Pearson NJ, Mángano GM, Buatois LA et al (2013) Environmental variability of Macaronichnus ichnofabrics in Eocene tidal-embayment deposits of southern Patagonia, Argentina. Lethaia 46:341–354

    Article  Google Scholar 

  • Pemberton SG, Frey RW (1982) Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. J Paleontol 56:843–881

    Google Scholar 

  • Pemberton SG, Frey RW (1984) Ichnology of storm-influenced shallow marine sequence: Cardium Formation (Upper Cretaceous) at Seebe, Alberta. In: Stott DF, Glass DJ (eds) The Mesozoic of Middle North America. Canadian Society of Petroleum Geologists, Memoir 9, pp 281–304

    Google Scholar 

  • Pemberton SG, Gingras MK (2005) Classification and characterizations of biogenically enhanced permeability. AAPG Bull 89:1493–1517

    Article  Google Scholar 

  • Pemberton SG, Wightman DM (1992) Ichnological characteristics of brackish water deposits. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration. A core workshop. SEPM Core Workshop, vol 17, pp 141–167

    Google Scholar 

  • Pemberton SG, Frey RW, Bromley RG (1988) The ichnotaxonomy of Conostichus and other plug-shaped ichnofossils. Can J Earth Sci 25:866–892

    Article  Google Scholar 

  • Pemberton SG, MacEachern JA, Ranger MJ (1992) Ichnology and event stratigraphy: the use of trace fossils in recognizing tempestites. In: Pemberton SG (ed) Applications of ichnology to petroleum exploration. A core workshop. SEPM Core Workshop, vol 17, pp 85–117

    Google Scholar 

  • Pemberton SG, MacEachern JA, Dashtgard SE et al (2012) Shorefaces. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 563–604

    Google Scholar 

  • Pemberton SG, MacEachern JA, Gingras MK et al (2008) Biogenic chaos: cryptobioturbation and the work of sedimentologically friendly organisms. Palaeogeogr Palaeoclimatol Palaeoecol 270:273–279

    Article  Google Scholar 

  • Pemberton SG, Spila MV, Pulham AJ, et al (2001) Ichnology and sedimentology of shallow to marginal marine systems. Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, Short Course Notes, vol 15, 343 pp

    Google Scholar 

  • Percival CJ (1981) Carboniferous quartz arenites and ganisters of the Northern Pennines. Durham Theses, Durham University, 353 pp http://etheses.dur.ac.uk/1103/

  • Pfefferkorn HW, Fuchs K (1991) A field classification of fossil plant substrate interactions. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 183:17–36

    Google Scholar 

  • Pickerill RK (1980) Phanerozoic flysch trace fossil diversity—observations based on Ordovician flysch ichnofauna from the Aroostook-Matapedia Carbonate Belt of northern New Brunswick. Can J Earth Sci 17:1259–1270

    Article  Google Scholar 

  • Plička M (1968) Zoophycos, and a proposed classification of sabellid worms. J Paleontol 42:836–849

    Google Scholar 

  • Pollard JE, Goldring R, Buck SG (1993) Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. J Geol Soc Lond 150:149–164

    Article  Google Scholar 

  • Powichrowski LK (1989) Trace fossils from the Helminthoid Flysch (Upper Cretaceous-Paleocene) of the Ligurian Alps (Italy): development of deep marine ichnoassociations in fan and basin plain environments. Eclogae Geol Helv 82:385–411

    Google Scholar 

  • Prantl F (1946) Two new problematic trails from the Ordovician of Bohemia: Académie Tchèque des Sciences. Bull Int Classe des Sciences Mathématiques, Naturelles et de la Médecine 46:49–59

    Google Scholar 

  • Price S, McCann T (1990) Environmental significance of Arenicolites ichnosp. In Pliocene lake deposits of southwest Turkey. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 1990:687–694

    Google Scholar 

  • Quiroz LI, Buatois LA, Mángano MG et al (2010) Is the trace fossil Macaronichnus segregatis an indicator of temperate to cold waters? Exploring the paradox of its occurrence in tropical coasts. Geology 38:651–654

    Article  Google Scholar 

  • Reineck H-E (1958) Wühlbau-Gefüge in Abhängigkeit von Sediment-Umlagerungen. Senckenb Lethaea 39:1–23, 54–56

    Google Scholar 

  • Retallack GJ (1988) Field recognition of paleosols. Geol Soc Am Spec Pap 216:1–20

    Google Scholar 

  • Retallack GJ (2001) Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology 44:209–235

    Article  Google Scholar 

  • Riahi S, Uchman A, Stow D et al (2014) Deep-sea trace fossils of the Oligocene-Miocene Numidian Formation, northern Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 414:155–177

    Article  Google Scholar 

  • Richter R (1928) Psychische Reaktionen fossiler Tiere. Palaeobiol 1:225–244 (1 pl)

    Google Scholar 

  • Richter R (1931) Tierwelt und Umwelt im Hunsrückschiefer. Zur Entstehung eines schwarzen Schlammsteins. Senckenbergiana 13:299–342

    Google Scholar 

  • Richter R (1937) Marken und Spuren aus allen Zeiten. I-II. Senckenbergiana 19:150–169

    Google Scholar 

  • Richter R (1952) Fluidal-Textur in Sediment-Gesteinen und über Sedifluktion überhaupt. Notizblatt des Hessischen Landesamtes für Bodenforschung zu Wiesbaden 6:67–81

    Google Scholar 

  • Rindsberg AK (1994) Ichnology of the Upper Mississippian Hartselle Sandstone of Alabama, with notes on other Carboniferous formations. Geol Surv Alabama Bull 158:1–107

    Google Scholar 

  • Rindsberg AK, Kopaska-Merkel DC (2005) Treptichnus and Arenicolites from the Steven C. Minkin Paleozoic footprint site (Langsettian, Alabama, USA). In: Buta RJ, Rindsberg AK, Kopaska-Merkel DC (eds) Pennsylvanian footprints in the Black Warrior Basin of Alabama, vol 1. Alabama Paleontological Society Monograph, pp 121–141

    Google Scholar 

  • Rindsberg AK, Martin AJ (2003) Arthrophycus in the Silurian of Alabama (USA) and the problem of compound trace fossils. Palaeogeogr Palaeoclimatol Palaeoecol 192:187–219

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Aguirre J (2014) Is Macaronichnus an exclusively small, horizontal and unbranched structure? Macaronichnus segregatis degiberti isubsp. nov. Span J Palaeontol 29:131–142

    Google Scholar 

  • Rodríguez-Tovar FJ, Pérez-Valera F (2008) Trace fossil Rhizocorallium from the Middle Triassic of the Betic Cordillera, Southern Spain: characterization and environmental implications. Palaios 23:78–86

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Pérez-Valera F (2013) Variations in population structure of Diplocraterion parallelum: hydrodynamic influence, food availability, or nursery settlement? Palaeogeogr Palaeoclimatol Palaeoecol 369:501–509

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Pérez-Valera F, Pérez-López A (2007) Ichnological analysis in high-resolution sequence stratigraphy: the Glossifungites Ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sed Geol 198:293–307

    Article  Google Scholar 

  • Rodríguez-Tovar FJ, Alcalá L, Cobos A (2016) Taenidium at the lower Barremian El Hoyo dinosaur tracksite (Teruel, Spain): assessing palaeoenvironmental conditions for the invertebrate community. Cretac Res 65:48–58

    Article  Google Scholar 

  • Romero-Wetzel MB (1987) Sipunculans as inhabitants of very deep, narrow burrows in deep-sea-sediments. Mar Biol 96:87–91

    Article  Google Scholar 

  • Ruppert EE, Fox RS (1988) Seashore Animals of the Southeast: A Guide to Common Shallow-Water Invertebrates of the Southeastern Atlantic Coast Columbia, SC: University of South Carolina Press, 429 pp

    Google Scholar 

  • Ruppert EE, Fox RS, Barnes RD (2004) Invertebrate zoology. A functional evolutionary approach. Brooks Cole, Belmont, pp xvii+989

    Google Scholar 

  • Salter JW (1857) On annelide-burrows and surface-markings from the Cambrian rocks of the Longmynd, No. 2. Q J Geol Soc Lond 13:199–206, Pl V

    Google Scholar 

  • Sappenfield A, Droser M, Kennedy M et al (2012) The oldest Zoophycos and implications for early Cambrian deposit feeding. Geol Mag 149:1118–1123

    Article  Google Scholar 

  • Savrda CE (2002) Equilibrium responses reflected in a large Conichnus (Upper Cretaceous Eutaw Formation, Alabama, USA). Ichnos 9:33–40

    Article  Google Scholar 

  • Savrda CE (2012) Chalk and related deep-marine carbonates. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of Sedimentary environments. Developments in Sedimentology, vol 64, pp 245–271

    Google Scholar 

  • Savrda CE, Bottjer DJ (1991) Oxygen-related biofacies in marine strata: an overview and update. In: Tyson RV, Pearson TH (eds) Modern and ancient continental shelf anoxia, vol 58. Geological Society of London (Special Publications), pp 201–219

    Google Scholar 

  • Savrda CE, Uddin A (2005) Large Macaronichnus and their behavioral implications (Cretaceous Eutaw Formation, Alabama, USA). Ichnos 12:1–9

    Article  Google Scholar 

  • Savrda CE, Blanton-Hooks AD, Collier JW et al (2000) Taenidium and associated ichnofossils in fluvial deposits, Cretaceous Tuscaloosa Formation, eastern Alabama, southeastern USA. Ichnos 7:777–806

    Article  Google Scholar 

  • Savrda CE, Krawinkel H, McCarthy FMG et al (2001) Ichnofabrics of a Pleistocene slope succession, New Jersey margin: relations to climate and sea-level dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 171:41–61

    Article  Google Scholar 

  • Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Kramer, Frankfurt am Main, pp VIII+666

    Google Scholar 

  • Schieber J (1999) Distribution and deposition of mudstone facies in the Upper Devonian Sonyea Group of New York. J Sediment Res 69:909–925

    Article  Google Scholar 

  • Schieber J (2003) Simple gifts and buried treasures—implications of finding bioturbation and erosion surfaces in black shales. Sediment Rec 1:4–8

    Google Scholar 

  • Schlirf M (2000) Upper Jurassic trace fossils from the Boulonnais (northern France). Geol Paleontol 34:145–213

    Google Scholar 

  • Schlirf M (2003) Palaeoecologic significance of Late Jurassic trace fossils from the Boulonnais, N France. Acta Geol Pol 53:123–142

    Google Scholar 

  • Schlirf M (2011) A new classification concept for U-shaped spreite trace fossils. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 260:33–54

    Article  Google Scholar 

  • Schlirf M, Uchman A (2005) Revision of the ichnogenus Sabellarifex Richter, 1921 and its relationship to Skolithos Haldeman, 1840 and Polykladichnus Fürsich, 1981. J Syst Paleontol 3:115–131

    Article  Google Scholar 

  • Scholle PA (1971) Sedimentology of fine-grained deep-water carbonate turbidites, Monte Antola Flysch (Upper Cretaceous), northern Apennines Italy. Geol Soc Am Bull 82:629–658

    Article  Google Scholar 

  • Schweigert G (1998) Die Spurenfauna des Nusplinger Plattenkalks (Oberjura, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie) 262:1–47

    Google Scholar 

  • Seike K (2007) Palaeoenvironmental and palaeogeographical implications of modern Macaronichnus segregatis-like traces in foreshore sediments on the Pacific coast of central Japan. Palaeogeogr Palaeoclimatol Palaeoecol 252:497–502

    Article  Google Scholar 

  • Seike K (2008) Burrowing behaviour inferred from feeding traces of the opheliid polychaete Euzonus sp. as response to beach morphodynamics. Mar Biol 153:1199–1206

    Article  Google Scholar 

  • Seike K, Yanagishima S, Nara M et al (2011) Large Macaronichnus in modern shoreface sediments: Identification of the producer, the mode of formation, and paleoenvironmental implications. Palaeogeogr Palaeoclimatol Palaeoecol 311:224–229

    Article  Google Scholar 

  • Seilacher A (1955) Spuren und Fazies im Unterkambrium. In: Schindewolf OH, Seilacher A (eds), Beiträge zur Kenntnis des Kambriums in der Salt Range (Pakistan). Akademie der Wissenschaften und der Literatur zu Mainz, Abhandlung Mathematisch-Naturwissenschaftliche Klasse 1955, pp 373–399

    Google Scholar 

  • Seilacher A (1957) An-aktualistisches Wattenmeer? Paläontologische Zeitschrift 31:198–206

    Article  Google Scholar 

  • Seilacher A (1967) Bathymetry of trace fossils. Mar Geol 5:413–428

    Article  Google Scholar 

  • Seilacher A (1977) Evolution of trace fossil communities. In: Hallam A (ed) Patterns of evolution. Elsevier, Amsterdam, pp 359–376

    Google Scholar 

  • Seilacher A (1986) Evolution of behavior as expressed in marine trace fossils. In: Nitecki MH, Kitchell JA (eds) Evolution of animal behavior. Paleontological and field approaches. Oxford University Press, Oxford, pp 62–87

    Google Scholar 

  • Seilacher A (1990) Aberration in bivalve evolution related to photo- and chemosymbiosis. Hist Biol 3:289–311

    Article  Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Berlin, pp 226

    Google Scholar 

  • Serpagli E, Serventi P, Monegatti P (2008) The ichnofossil genus Paradictyodora Olivero, Buatois and Scasso (2004) from the Pleistocene of the northern Apennines, Italy. Rivista Italiana Paleontologia e Stratigrafia 114:161–167

    Google Scholar 

  • Shields MA, Kedra M (2009) A deep burrowing sipunculan of ecological and geochemical importance. Deep Sea Res I 56:2057–2064

    Article  Google Scholar 

  • Shinn EA (1968) Burrowing in recent lime sediments of Florida and the Bahamas. J Paleontol 42:879–894

    Google Scholar 

  • Shuto T, Shiraishi S (1979) A Lower Miocene ichnofauna of the middle Ashiya Group, North Kyushu—ichnological study of the Ashiya Group-I. Trans Proc Palaeontol Soc Jpn New Ser 115:109–134

    Google Scholar 

  • Simpson S (1956) On the trace fossil Chondrites. Q J Geol Soc 112:475–499

    Article  Google Scholar 

  • Smilek KR, Hembree DI (2012) Neoichnology of Thyonella gemmata: a case study for understanding holothurian ichnofossils. Open Paleontol J 4:1–10

    Article  Google Scholar 

  • Smith JJ (2007) Ichnofossils of the Paleogene Willwood Formation and the Paleocene-Eocene thermal maximum (PETM): response of an ancient soil ecosystem to transient global warming. PhD Thesis, University of Kansas, 184 pp. http://search.proquest.com/docview/304858899?accountid=142725

  • Smith JJ, Hasiotis ST, Kraus MJ et al (2008) Naktodemasis bowni: new ichnogenus and ichnospecies for adhesive meniscate burrows (AMB), and paleoenvironmental implications, Paleogene Willwood Formation, Bighorn Basin, Wyoming. J Paleontol 82:267–278

    Article  Google Scholar 

  • Stanistreet IG, Le Blanc Smith G, Cadle AB (1980) Trace fossils as sedimentological and palaeoenvironmental indices in the Ecca Group (Lower Permian) of the Transvaal. Trans Geol Soc S Afr 83:333–344

    Google Scholar 

  • Stanley DCA, Pickerill RK (1994) Planolites constriannulatus isp. nov. from the Late Ordovician Georgian Bay Formation of southern Ontario, eastern Canada. Ichnos 3:119–123

    Article  Google Scholar 

  • Stanley DCA, Pickerill RK (1998) Systematic ichnology of the Late Ordovician Georgian Bay Formation of southern Ontario, eastern Canada, vol 162. Royal Ontario Museum Life Sciences Contributions, pp 1–55

    Google Scholar 

  • Staub M (1899) Über die Chondrites benannten fossilen Algen. Földt Közl 29:110–121 [Hungarian 16–32]

    Google Scholar 

  • Steinmann G (1907) Einführung in die Paläontologie. Wilhelm Engelmann, Leipzig, pp XII+542

    Google Scholar 

  • Strullu-Derrien C, McLoughlin S, Philippe M et al (2012) Arthropod interactions with bennettitalean roots in a Triassic permineralized peat from Hopen, Svalbard Archipelago (Arctic). Palaeogeogr Palaeoclimatol Palaeoecol 348–349:45–58

    Article  Google Scholar 

  • Sundberg FA (1983) Skolithos linearis Haldeman from the Carrara Formation (Cambrian) of California. J Paleontol 57:145–149

    Google Scholar 

  • Sutherland JI (2003) Miocene petrified wood and associated borings and termite faecal pellets from Hukatere Peninsula, Kaipara Harbour, North Auckland, New Zealand. J R Soc N Z 33:395–414

    Article  Google Scholar 

  • Swinbanks DD, Luternauer JL (1987) Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. J Paleontol 61:315–332

    Article  Google Scholar 

  • Tapanila L, Hutchings P (2012) Reefs and mounds. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 751–775

    Google Scholar 

  • Tauber AF (1949) Paläobiologische Analyse von Chondrites furcatus Sternberg. Jahrbuch der Geologischen Bundesanstalt 93:141–154

    Google Scholar 

  • Taylor AM, Gawthorpe RL (1993) Application of sequence stratigraphy and trace fossil analysis to reservoir description: examples from the Jurassic of the North Sea. In: Parker JR (ed) Petroleum geology of Northwest Europe, Proceedings of the 4th Conference. Geological Society of London, pp 317–335

    Google Scholar 

  • Taylor PD, Wilson MA (2003) Palaeoecology and evolution of marine hard substrate communities. Earth Sci Rev 62:1–103

    Article  Google Scholar 

  • Taylor A, Goldring R, Gowland S (2003) Analysis and application of ichnofabrics. Earth Sci Rev 60:227–259

    Article  Google Scholar 

  • Tchoumatchenco P, Uchman A (2001) The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic-Lower Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeogr Palaeoclimatol Palaeoecol 169:85–99

    Article  Google Scholar 

  • Thayer CW, Steele-Petrović HM (1975) Burrowing of the lingulid brachiopod Glottidia pyramidata: its ecologic and paleoecologic significance. Lethaia 8:209–221

    Article  Google Scholar 

  • Tonkin NS (2012) Deltas. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 507–528

    Google Scholar 

  • Tonkin NS, McIlroy D, Meyer R et al (2010) Bioturbation influence on reservoir quality: a case study from the Cretaceous Ben Nevis Formation, Jeanne d’Arc Basin, offshore Newfoundland, Canada. AAPG Bull 94:1059–1078

    Article  Google Scholar 

  • TorelI O (1870) Petrificata suecana formationis Cambricæ. Lunds Universitets Årsskrift 6 (Afdelningen 2) 8:1–14

    Google Scholar 

  • Tunis G, Uchman A (1996) Ichnology of Eocene flysch deposits of the Istria Peninsula, Croatia and Slovenia. Ichnos 5:1–22

    Article  Google Scholar 

  • Turbeville JM, Ruppert EE (1983) Epidermal muscles and peristaltic burrowing in Carinoma tremaphoros (Nemertini): correlates of effective burrowing without segmentation. Zoomorphology 103:103–120

    Article  Google Scholar 

  • Uchman A (1995) Taxonomy and palaeoecology of flysch trace fossils: the Marnoso-arenacea Formation and associated facies (Miocene, Northern Apennines, Italy). Beringeria 15:3–115

    Google Scholar 

  • Uchman A (1998) Taxonomy and ethology of flysch trace fossils: a revision of the Marian Książkiewicz collection and studies of complementary material. Ann Soc Geol Pol 68:105–218

    Google Scholar 

  • Uchman A (1999) Ichnology of the Rhenodanubian flysch (Lower Cretaceous-Eocene) in Austria and Germany. Beringeria 25:65–171

    Google Scholar 

  • Uchman A (2009) The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: characteristics and constraints. Palaeogeogr Palaeoclimatol Palaeoecol 276:107–119

    Article  Google Scholar 

  • Uchman A (2010) A new ichnogenus for Chondrites hoernesii Ettingshausen, 1863, a deep-sea radial trace fossil from the Upper Cretaceous of the Polish Flysch Carpathians: its taxonomy and palaeoecological interpretation as a deep-tier chemichnion. Cretac Res 31:515–523

    Article  Google Scholar 

  • Uchman A, Demírcan H (1999) A Zoophycos group trace fossil from Miocene flysch in southern Turkey: evidence for a U-shaped causative burrow. Ichnos 6:251–259

    Article  Google Scholar 

  • Uchman A, Krenmayr HG (1995) Trace fossils from lower Miocene (Ottnangian) Molasse deposits of Upper Austria. Paläontologische Zeitschrift 69:503–524

    Article  Google Scholar 

  • Uchman A, Rattazzi B (2016) Rhizocorallium hamatum (Fischer-Ooster 1858), a Zoophycos-like trace fossil from deep-sea Cretaceous-Neogene sediments. Hist Biol. doi:10.1080/08912963.2016.1167481

  • Uchman A, Wetzel A (2011) Deep-sea ichnology: the relationships between depositional environment and endobenthic organisms. In: Hüneke H, Mulder T (eds) Deep-sea sediments. Developments in Sedimentology, vol 63, pp 517–556

    Google Scholar 

  • Uchman A, Wetzel A (2012) Deep-sea fans. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 643–671

    Google Scholar 

  • Uchman A, Ślączka A, Renda P (2012) Probable root structures and associated trace fossils from the lower Pleistocene calcarenites of Favignana Island, southern Italy: dilemmas of interpretation. Geol Q 56:745–756

    Article  Google Scholar 

  • Uchman A, Johnson ME, Rebelo AC et al (2016) Vertically-oriented trace fossil Macaronichnus segregatis from Neogene of Santa Maria Island (Azores; NE Atlantic) records vertical fluctuations of the coastal groundwater mixing zone on a small oceanic island. Geobios 49:229–241

    Article  Google Scholar 

  • van de Schootbrugge B, Harazim D, Sorichter K et al (2010) The enigmatic ichnofossil Tisoa siphonalis and widespread authigenic seep carbonate formation during the Late Pliensbachian in southern France. Biogeosciences 7:3123–3138

    Article  Google Scholar 

  • Verde M, Martínez S (2004) A new ichnogenus for crustacean trace fossils from the Upper Miocene Camacho Formation of Uruguay. Palaeontology 47:39–49

    Article  Google Scholar 

  • Sternberg KM Graf von (1833–1838) Versuch einer geognostisch–botanischen Darstellung der Flora der Vorwelt. Fr. Fleischer, Leipzig, Prague, vol 5–8

    Google Scholar 

  • von Otto E (1854) Additamente zur Flora des Quadergebirges in Sachsen. II. Heft, Gustav Mayer, Leipzig

    Google Scholar 

  • Ward JE, Shumway SE (2004) Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. J Exp Mar Biol Ecol 300:83–130

    Article  Google Scholar 

  • Warme JE (1970) Traces and significance of marine rock borers. In: Crimes TP, Harper JC (eds) Trace fossils. Seel House Press, Liverpool, pp 515–526

    Google Scholar 

  • Weaver PPE, Schultheiss PJ (1983) Vertical open burrows in deep-sea sediments 2 m in length. Nature 301:329–331

    Article  Google Scholar 

  • Webby BD (1984) Precambrian-Cambrian trace fossils from western New South Wales. Aust J Earth Sci 31:427–437

    Article  Google Scholar 

  • Werner F (2002) Bioturbation structures in marine Holocene sediments of Kiel Bay (western Baltic). Meyniana 54:41–72

    Google Scholar 

  • Wetzel A (1981) Ökologische und stratigraphische Bedeutung biogener Gefüge in quartären Sedimenten am NW-afrikanischen Kontinentalrand. “Meteor” Forschungs-Ergebnisse C34:1–47

    Google Scholar 

  • Wetzel A (1991) Ecologic interpretation of deep-sea trace fossil communities. Palaeogeogr Palaeoclimatol Palaeoecol 85:47–69

    Article  Google Scholar 

  • Wetzel A (2002) Modern Nereites in the South China Sea—ecological association with redox conditions in the sediment. Palaios 17:507–515

    Article  Google Scholar 

  • Wetzel A (2008) Recent bioturbation in the deep South China Sea: a uniformitarian ichnologic approach. Palaios 23:601–615

    Article  Google Scholar 

  • Wetzel A (2010) Deep-sea ichnology: observations in modern sediments to interpret fossil counterparts. Acta Geol Pol 60:125–138

    Google Scholar 

  • Wetzel A, Bromley RG (1994) Phycosiphon incertum revisited: Anconichnus horizontalis is its junior subjective synonym. J Paleontol 68:1396–1402

    Article  Google Scholar 

  • Wetzel A, Uchman A (2001) Sequential colonization of muddy turbidites in the Eocene Beloveža Formation, Carpathians, Poland. Palaeogeogr Palaeoclimatol Palaeoecol 168:171–186

    Article  Google Scholar 

  • Wetzel A, Uchman A (2012) Hemipelagic and pelagic basin plains. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, vol 64, pp 673–701

    Google Scholar 

  • Wetzel A, Werner F (1981) Morphology and ecological significance of Zoophycos in deep-sea sediments off NW Africa. Palaeogeogr Palaeoclimatol Palaeoecol 32:185–212

    Article  Google Scholar 

  • Wetzel A, Werner F, Stow DAV (2008) Bioturbation and biogenic sedimentary structures in contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentolgy, vol 60, pp 183–202

    Google Scholar 

  • White CD (1929) Flora of the Hermit Shale, Grand Canyon, Arizona, vol 405. Publications of the Carnegie Institution of Washington, 221 pp

    Google Scholar 

  • White B, Curran HA (1997) Are the plant-related features in Bahamian quaternary limestones trace fossils? Discussion, answers, and a new classification system. In: Curran HA (ed) Guide to Bahamian ichnology: Pleistocene, Holocene and modern environments. Bahamian Field Station, San Salvador, pp 47–54

    Google Scholar 

  • Whybrow PJ, McClure HA (1980) Fossil mangrove roots and palaeoenvironments of the Miocene of the eastern Arabian Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 32:213–225

    Article  Google Scholar 

  • Wignall PB (1991) Dysaerobic trace fossils and ichnofabrics in the Upper Jurassic Kimmeridge Clay of southern England. Palaios 6:264–270

    Article  Google Scholar 

  • Wikander PB (1980) Biometry and behaviour in Abra nitida (Müller) and A. longicallus (Scacchi) (Bivalvia, Tellinacea). Sarsia 65:255–268

    Article  Google Scholar 

  • Winn K (2006) Bioturbation structures in marine Holocene sediments of the Great Belt (western Baltic). Meyniana 58:157–178

    Google Scholar 

  • Worsley D, Mørk A (2001) The environmental significance of the trace fossil Rhizocorallium jenense in the Lower Triassic of western Spitsbergen. Polar Res 20:37–48

    Article  Google Scholar 

  • Wright VP, Platt NH, Marriott SB et al (1995) A classification of rhizogenic (root-formed) calcretes, with examples from the Upper Jurassic-Lower Cretaceous of Spain and Upper Cretaceous of southern France. Sed Geol 100:143–158

    Article  Google Scholar 

  • **ng L, Marty D, You H et al (2016) Complex in-substrate dinosaur (Sauropoda, Ornithopoda) foot pathways revealed by deep natural track casts from the Lower Cretaceous **agou and Zhonggou formations, Gansu Province, China. Ichnos, doi:10.1080/10420940.2016.1244054

  • Yang S, Zhang J, Yang M (2004) Trace fossils of China. Science Press, Bei**g, 353 pp

    Google Scholar 

  • Zenker JC (1836) Historisch-topographisches Taschenbuch von Jena und seiner Umgebung. Friedrich Frommann, Jena, pp 338

    Google Scholar 

  • Zhang L, Gong Y (2012) Systematic revision and ichnotaxonomy of Zoophycos. Earth Sc J China Univ Geosci 37:60–79

    Google Scholar 

  • Zhang G, Uchman A, Chodyn R et al (2008) Trace fossil Artichnus pholeoides igen. nov. isp. nov. in Eocene turbidites, Polish Carpathians: possible ascription to holothurians. Acta Geol Pol 58:75–86

    Google Scholar 

  • Zhang L, Fan R, Gong Y (2015) Zoophycos macroevolution since 541 Ma. Scientific Reports, vol 5, 14954

    Google Scholar 

  • Zhang L, Knaust D, Zhao Z (2016) Palaeoenvironmental and ecological interpretation of the trace fossil Rhizocorallium based on contained iron framoboids (Upper Devonian, South China). Palaeogeogr Palaeoclimatol Palaeoecol 446:144–151

    Article  Google Scholar 

  • Zonneveld J-P, Gingras MK (2013) The ichnotaxonomy of vertically oriented bivalve-generated equilibrichnia. J Paleontol 87:243–253

    Article  Google Scholar 

  • Zonneveld J-P, Pemberton SG (2003) Ichnotaxonomy and behavioral implications of lingulide-derived trace fossils from the Lower and Middle Triassic of western Canada. Ichnos 10:25–39

    Article  Google Scholar 

  • Zonneveld J-P, Beatty TW, Pemberton SG (2007) Lingulide brachiopods and the trace fossil Lingulichnus from the Triassic of western Canada: implications for faunal recovery after the end-Permian mass extinction. Palaios 22:74–97

    Article  Google Scholar 

  • Zorn ME, Muehlenbachs K, Gingras MK et al (2007) Stable isotopic analysis reveals evidence for groundwater-sediment-animal interactions in a marginal-marine setting. Palaios 22:546–553

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Knaust .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Knaust, D. (2017). Selected Trace Fossils in Core and Outcrop. In: Atlas of Trace Fossils in Well Core . Springer, Cham. https://doi.org/10.1007/978-3-319-49837-9_5

Download citation

Publish with us

Policies and ethics

Navigation