Related Works

  • Chapter
  • First Online:
Tactile Display for Virtual 3D Shape Rendering

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

  • 480 Accesses

Abstract

Tactile interaction consists in providing the user of a Virtual Reality (VR) system with sensations related to touch, mainly during the evaluation and the manipulation of virtual objects. In some cases the term tactile is used to refer to mechanical stimulation of the skin, which -together with the kinaesthetic sense- creates the haptic feedback. For these reasons, the tactile devices are strictly related to the haptic interfaces. Therefore, in order to give a complete and exhaustive overview of the interfaces related to touch, we have analysed the different categories of devices, such as vibrotactile interfaces, force feedback devices, local and full shape displays. Nowadays, a larger number of applications have been developed for tactile and haptic interaction in Virtual Reality. These applications belong to various fields: Medicine (chirurgical simulators, rehabilitation), Education (display of physical or mathematical phenomena), Industry (virtual prototy**, training, maintenance simulations), Entertainment (video games, theme parks), Arts and Creation (virtual sculpture, virtual instruments), etc. Hereafter the State of the Art related to the tactile and haptic technologies is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sang-Youn K, Kyu Yong K, Byung Seok S, Gyunghye Y, Sang Ryong K (2006) Vibrotactile rendering for simulating virtual environment in a mobile game. IEEE Trans Consum Electron 52(4):1340–1347

    Article  Google Scholar 

  2. Scheggi S, Talarico A, Prattichizzo D (2014) A remote guidance system for blind and visually impaired people via vibrotactile haptic feedback. In: Proceedings of mediterranean conference on control and automation. Palermo, Italy

    Google Scholar 

  3. Tsetserukou D, Tachi S (2009) Efficient object exploration and object presentation in teleta, teleoperation system with tactile feedback. In: EuroHaptics conference, 2009 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics, Third Joint, pp 97–102

    Google Scholar 

  4. Gi-Hun Y, Dongseok R, Sungchul K (2009) Vibrotactile display for hand-held input device providing spatial and directional information. In: EuroHaptics conference, 2009 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics, Third Joint. IEEE, pp 79–84

    Google Scholar 

  5. Bau O, Poupyrev I, Israr A, Harrison C (2010) Teslatouch: electrovibration for touch surfaces. In: Proceedings of the 23nd annual ACM symposium on user interface software and technology. ACM, pp 283–292

    Google Scholar 

  6. Dongbum P, Semin R, Seung-Chan K, Dong-Soo K (2014) A new surface display for 3d haptic rendering. In: Proceedings of eurohaptics 2014

    Google Scholar 

  7. Wagner CR, Lederman SJ, Howe RD (2002) A tactile shape display using rc servomotors. In: Haptic interfaces for virtual environment and teleoperator systems, 10th symposium on HAPTICS 2002 proceedings, pp 354–355

    Google Scholar 

  8. Prattichizzo D, Chinello F, Pacchierotti C, Minamizawa K (2010) Remotouch: a system for remote touch experience. In: RO-MAN. IEEE, pp 676–679

    Google Scholar 

  9. Hideyuki A, Takeshi M, Masahiko I, Taro M (2002) Smartfinger: nail-mounted tactile display. In: ACM SIGGRAPH 2002 conference abstracts and applications. ACM, pp 78–78

    Google Scholar 

  10. Kajimoto H, Inami M, Kawakami N, Tachi S (2003) Smarttouch - augmentation of skin sensation with electrocutaneous display. In: Haptic interfaces for virtual environment and teleoperator systems. 11th Symposium on HAPTICS 2003 Proceedings, pp 40–46

    Google Scholar 

  11. Hayward V, Cruz-Hernandez M (2000) Tactile display device using distributed lateral skin stretch, vol 69. 2

    Google Scholar 

  12. Kosemura Y, Watanabe J, Ishikawa H, Miki N (2014) Virtual surface textures created by mems tactile display. In: Proceedings of eurohaptics 2014

    Google Scholar 

  13. DELTA - http://www.sensable.com

  14. OMEGA - http://www.forcedimension.com

  15. Virtuose - http://www.haption.com/

  16. Hapticmaster - http://www.moog.com

  17. PHANToM - http://www.sensable.com

  18. Adams R, Moreyra M, Hannaford B (1999) Excalibur, a three-axis force display

    Google Scholar 

  19. Lee CD, Lawrence DA, Pao LY (1999) A high-bandwidth force-controlled haptic interface. In: ASME international mechanical engineering congress and exposition, DSC-Vol. 69-2. Orlando, FL, pp 1299–1308

    Google Scholar 

  20. Liu L, Miyake S, Maruyama N, Akahane K, Sato M (2014) Development of two-handed multi-finger haptic interface spidar-10. In: Proceedings of eurohaptics 2014

    Google Scholar 

  21. Cybergrasp - http://www.cyberglovesystems.com

  22. Cyberforce device - http://www.cyberglovesystems.com

  23. Bouzit M, Popescu G, Burdea G, Boian R (2002) The rutgers master ii-nd force feedback glove, pp 145–152

    Google Scholar 

  24. Springer S, Ferrier N (1999) Design of a multifinger haptic interface for teleoperational gras**. In ASME International Mech. Eng, Congress and Expo

    Google Scholar 

  25. Provancher WR, Cutkosky MR, Kuchenbecker KJ, Niemeyer G (2005) Contact location display for haptic perception of curvature and object motion. Int. J. Rob. Res. 24(9):691–702

    Article  Google Scholar 

  26. Hayward V (2001) Survey of haptic interface research at mcgill university. In: Workshop in interactive multimodal telepresence systems. TUM, Munich, Germany, 91–98

    Google Scholar 

  27. RoblesDeLaTorre G, Hayward V (2000) Virtual surfaces and haptic shape perception. In: Proceedings of the haptic interfaces for virtual environment and teleoperator systems symposium, ASME international mechanical engineering congress and exposition 2000. Orlando, Florida, USA

    Google Scholar 

  28. Ramstein C, Hayward V (1997) The pantograph: A large workspace haptic device for multimodal human computer interaction. In: Conference companion on human factors in computing systems CHI ’94. New York, NY, USA, ACM, pp 57–58

    Google Scholar 

  29. Campion G, Qi W, Hayward, V (2005) The pantograph mk-ii: a haptic instrument. In: 2005 IEEE/RSJ international conference on intelligent robots and systems (IROS 2005), pp 193–198

    Google Scholar 

  30. Ye Jason G, Jason JC, Gregory DH, Allison MO (1988) Vishap: Augmented reality combining haptics and vision. In: Proceedings of IEEE international conference on systems, man and cybernetics, IEEE Computer Society, pp 3425–3431

    Google Scholar 

  31. Massimiliano S, Antonio F, Fabio S, Massimo B (2007) A fingertip haptic display for improving local perception of shape cues. In: EuroHaptics conference, 2007 and symposium on haptic interfaces for virtual environment and teleoperator systems. World Haptics, Second Joint. IEEE, pp 409–414

    Google Scholar 

  32. Hiroo I, Hiroaki Y, Fumitaka N, Ryo K (2000) Project feelex: Adding haptic surface to graphics. In: Proceedings of the 28th annual conference on computer graphics and interactive techniques SIGGRAPH ’01. New York, NY, USA, ACM, pp 469–476

    Google Scholar 

  33. Masashi S, Hiroyuki N, Dairokou K, Naoki T, Susumu K (2004) Pop up!: a novel technology of shape display of 3d objects

    Google Scholar 

  34. Paul B, Imme E-U (2003) Digital clay: architecture designs for shape-generating mechanisms, vol 1. IEEE, pp 834–841

    Google Scholar 

  35. Leithinger D, Ishii H (2010) Relief: a scalable actuated shape display. In: Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction. ACM, pp 221–222

    Google Scholar 

  36. Mazzone A, Spagno C, Kunz A (2003) A haptic feedback device based on an active mesh. In: Proceedings of the ACM symposium on virtual reality software and technology. ACM, pp 188–195

    Google Scholar 

  37. Leithinger D, Follmer S, Olwal A, Luescher S, Hogge A, Lee J, Ishii H (2013) Sublimate: state-changing virtual and physical rendering to augment interaction with shape displays. In: Proceedings of the SIGCHI conference on human factors in computing systems, CHI ’13. New York, NY, USA, ACM, pp 1441–1450

    Google Scholar 

  38. Nakagawa Y, Yonekura S, Kawaguchi Y (2011) Super thin 3d form display for multimodal user experiences using vertically deformation of leaf spring and sma. In: 2011 IEEE international symposium on VR innovation (ISVRI). IEEE, pp 63–66

    Google Scholar 

  39. Bordegoni M, Ferrise F, Covarrubias M, Antolini M (2010) Haptic and sound interface for shape rendering. Presence: Teleop Virtual Environ 19(4):341–363

    Article  Google Scholar 

  40. Bordegoni M, Ferrise F, Covarrubias M, Antolini M (2009) A linear haptic interface for the evaluation of shapes. In: ASME 2009 international design engineering technical conferences (IDETC) and computers and information in engineering conference (CIE) S. Diego, CA, USA

    Google Scholar 

  41. Bordegoni M, Ferrise F, Covarrubias M, Antolini M (2011) Geodesic spline interface for haptic curve rendering. IEEE Trans Haptics 4(2):111–121

    Article  Google Scholar 

  42. Cugini U, Bordegoni M, Covarrubias M, Antolini M (2009) Geodesic haptic device for surface rendering. In: Hirose M, Schmalstieg D, Wingrave CA, Nishimura K (eds) Joint virtual reality conference of EGVE - ICAT - EuroVR. France

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Mansutti .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Mansutti, A., Covarrubias Rodriguez, M., Bordegoni, M., Cugini, U. (2017). Related Works. In: Tactile Display for Virtual 3D Shape Rendering. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-48986-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-48986-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-48985-8

  • Online ISBN: 978-3-319-48986-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation