• 31 Accesses

Abstract

A model has been proposed here for estimating the thermal conductivity of a nanofluid based on the mechanism that the nanoparticles dispersed within the nanofluid undergo Brownian motion and repeatedly collide with the heat source. Molecular dynamics (MD) simulation has shown that there is a pulse-like heat pick up by the nanoparticles within 10–50 ps during the collision. After the collision the nanoparticles undergo Brownian motion in the base fluid and release the excess heat to the surrounding fluid within 2–5 ms. The thermal evolution during Brownian motion of the nanoparticles has been modeled by stochastic analysis. Simulations have shown that the additional heat transfer caused by the collision of the nanoparticles with the heat source contributes significantly to the characteristic thermal conductivity of the nanofluid. The prediction of the present model has shown a reasonable agreement with the experimental data available in literature for ethylene glycol based copper nanofluid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 319.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. A. Eastman, S. U. S. Choi, S. Li, W. Yu and L. J. Thompson, “Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles”, Applied Physics Letters, 78 (2001), 718–720.

    Article  Google Scholar 

  2. S. U. S. Choi, Z. G. Zhang, W. Yu, F. E. Lockwood and E. A. Grulke, “Anomalous thermal conductivity enhancement in nanotube suspensions”, Applied Physics Letters, 79 (2001), 2252–2254.

    Article  Google Scholar 

  3. S. K. Das, N. Putra, P. Thiesen and W. Roetzel, “Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids”, Journal of Heat Transfer, 125 (2003), 567–574.

    Article  Google Scholar 

  4. H. E. Patel, S. K. Das, T. Sundararajan, A. S. Nair, B. George and T. Pradeep, “Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects”, Applied Physics Letters, 83 (2003), 2931–2933.

    Article  Google Scholar 

  5. S. Lee, S. U. S. Choi, S. Li and J. A. Eastman, “Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles”, Journal of Heat Transfer, 121 (1999), 280–289.

    Article  Google Scholar 

  6. R. K. Shukla and V. K. Dhir, “Study of the effective thermal conductivity of nanofluids”, in: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (Orlando, Florida, USA), November 5–11, 2005, pp. 1–5.

    Google Scholar 

  7. P. Bhattacharya, S. K. Saha, A. Yadav, P. E. Phelan and R. S. Prasher, “Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids”, Journal of Applied Physics, 95 (2004), 6492–6494.

    Article  Google Scholar 

  8. S. P. Jang and S. U. S. Choi, “Role of Brownian motion in the enhanced thermal conductivity of nanofluids”, Applied Physics Letters, 84 (2004), 4316–4318.

    Article  Google Scholar 

  9. R. Prasher, P. Bhattacharya and P. E. Phelan, “Brownian-Motion-Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids”, Journal of Heat Transfer, 128 (2006), 588–595.

    Article  Google Scholar 

  10. K. C. Leong, C. Yang and S. M. S. Murshed, “A model for the thermal conductivity of nanofluids-the effect of interfacial layer”, Journal of Nanoparticle Research, 8 (2006), 245–254.

    Article  Google Scholar 

  11. R. Prasher, W. Evans, P. Meakin, J. Fish, P. Phelan and P. Keblinski, “Effect of aggregation on thermal conduction in colloidal nanofluids”, Applied Physics Letters, 89 (2006), 143119.

    Article  Google Scholar 

  12. J. C. Maxwell, A Treatise on Electricity and Magnetism, 2nd ed., Oxford University Press, Cambridge, 1904, pp. 435–441.

    Google Scholar 

  13. R. L. Hamilton and O. K. Crosser, “Thermal Conductivity of Heterogeneous Two-Component Systems”, I & EC Fundamentals, 1 (1962), 187–191.

    Article  Google Scholar 

  14. W. John, G. Reischl and W. Devor, “Charge transfer to metal surfaces from bouncing aerosol particles”, Journal of Aerosol Science, 11 (1980), 115–138.

    Article  Google Scholar 

  15. J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley, and G. Chen, “Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid”, Journal of Applied Physics, 103 (2008), 074301.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 TMS (The Minerals, Metals & Materials Society)

About this paper

Cite this paper

Ghosh, M.M., Rai, R.K. (2013). Modelling Heat Transfer in Nanofluids Based on Coupled Md-Stochastic Simulation. In: Marquis, F. (eds) Proceedings of the 8th Pacific Rim International Congress on Advanced Materials and Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-48764-9_348

Download citation

Publish with us

Policies and ethics

Navigation