Drug Repurposing to Circumvent Chemotherapy Resistance in Brain Tumours

  • Chapter
  • First Online:
Resistance to Targeted Therapies Against Adult Brain Cancers

Abstract

The incidence of primary brain tumours in the UK is steadily rising; prognosis for this devastating disease is dismal and not significantly improving. The relative failure for effective therapy may be attributed to heterogeneity with over 120 histological entities. Additionally, the biology is incredibly complex with numerous pathways and cascades working simultaneously or in harmonisation. Moreover, we find that as the tumour evolves, it commandeers alternative pathways for its survival. At its most aggressive form, glioblastoma produces guerrilla cells that trek into the normal brain parenchyma where they are protected by the intact blood-brain barrier (B-BB). The majority of drugs cannot cross the intact B-BB; the dosage required to cross the damaged area around the tumour would be toxic systemically. Effective therapy, therefore, has a number of hurdles against chemotherapy resistance. In this chapter we look at the tumour biology and conventional therapeutic resistance; we then look at the potential of using drugs originally used to treat other diseases. Indeed, repurposed drugs are drawing increasingly more interest, especially as after approximately ten years of development; the new drug failure rate of 25,000:1 costs the industry an astonishing fortune of around $2.6 billion per year. Here, we refer to UK regulations and doctor trepidation for prescribing outside of the drug’s licence—‘off-label’—and give examples of some of the repurposed agents which have gained attention within the laboratory and within our current legislation require additional clinical trials for marketing authorisation and prescription without fear of potential litigation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ALDH:

Aldehyde dehydrogenase

CED:

Convection-enhanced delivery

ECM:

Extracellular matrix

EGF:

Epidermal growth factor

GBM:

Glioblastoma

JAMs:

Junctional adhesion molecules

MDS:

Methylation-resistant DNA synthesis

MGMT:

Methylguanine-DNA methyltransferase

MMPs:

Matrix metalloproteinase

MMR:

Mismatch repair

mTORC2:

Rapamycin complex 2

PDGF:

Platelet-derived growth factor

PDK1:

3-phosphoinositide-dependent kinase

Pe :

Transendothelial permeability coefficient

PTEN:

Phosphatase and tensin homolog

TEER:

Transendothelial electrical resistance

UPR:

Unfolded protein response

VEGF:

Vascular endothelial growth factor

ZO-1, ZO-2 and ZO-3:

Zonula occludens proteins 1, 2 and 3

References

  1. CRUK.Org. Brain, other CNS and intracranial tumours incidence statistics (2016); Data were provided by the Office for National Statistics on request, July 2014. Available at: http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours/incidence#ref-0. Accessed 16/03/2016,

  2. CRUK.Org. Brain, other CNS and intracranial tumours survival (2016); http://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/brain-other-cns-and-intracranial-tumours/survival#ref-0. Accessed 16/03/2016.

  3. Burnet NG, Jefferies SJ, Benson RJ, Hunt DP, Treasure FP. Years of life lost (YLL) from cancer is an important measure of population burden--and should be considered when allocating research funds. Br J Cancer. 2005;92(2):241–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Lassman AB, De Angelis LM. Brain metastases. Neurol Clin. 2003;21(1):1.

    Article  PubMed  Google Scholar 

  5. Davis FG, Dolecek TA, McCarthy BJ, Villano JL. Toward determining the lifetime occurrence of metastatic brain tumors estimated from 2007 United States cancer incidence data. Neuro Oncol. 2012;14(9):1171–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Saha A, Ghosh SK, Roy C, Choudhury KB, Chakrabarty B, Sarkar R. Demographic and clinical profile of patients with brain metastases: A retrospective study. Asian J Neurosurg. 2013;8(3):157–61.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zakrzewski J, Geraghty LN, Rose AE, et al. Clinical variables and primary tumor characteristics predictive of the development of melanoma brain metastases and post-brain metastases survival. Cancer. 2011;117(8):1711–20.

    Article  PubMed  Google Scholar 

  8. Schroeder HWS. Intraventricular tumors. World Neurosurg. 2013;79(2).

    Google Scholar 

  9. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ellison DW. Multiple molecular data sets and the classification of adult diffuse gliomas. N Engl J Med. 2015;372(26):2555–7.

    Article  CAS  PubMed  Google Scholar 

  11. Stupp R, Tonn JC, Brada M, Pentheroudakis G, Grp EGW. High-grade malignant glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2010;21:v190–3.

    Article  PubMed  Google Scholar 

  12. Stupp R, Brada M, van den Bent MJ, Tonn JC, Pentheroudakis G, Grp EGW. High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2014;25:93–101.

    Article  Google Scholar 

  13. ONS.gov.uk. Incidence of selected morphology of neoplasm codes located in the brain by 5-year age group, England registered between 1983 and 2013 (2016); https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/datasets/cancerregistrationstatisticscancerregistrationstatisticsengland.

  14. Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS Statistical Report: primary brain and central nervous system tumors diagnosed in the United States in 2008-2012. Neuro Oncol. 2015;17:1–62.

    Article  Google Scholar 

  15. Schmidt-Hansen M, Berendse S, Hamilton W. Symptomatic diagnosis of cancer of the brain and central nervous system in primary care: a systematic review. Fam Pract. 2015;32(6):618–23.

    Article  PubMed  Google Scholar 

  16. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23.

    Article  CAS  PubMed  Google Scholar 

  17. Singh AD, Shields CL, Shields JA. von Hippel-Lindau disease. Surv Ophthalmol. 2001;46(2):117–42.

    Article  CAS  PubMed  Google Scholar 

  18. Sadetzki S, Mandelzweig L. Childhood exposure to external ionising radiation and solid cancer risk. Br J Cancer. 2009;100(7):1021–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med. 2008;359(5):492–507.

    Article  CAS  PubMed  Google Scholar 

  20. Behin A, Hoang-Xuan K, Carpentier AF, Delattre JY. Primary brain tumours in adults. Lancet. 2003;361(9354):323–31.

    Article  PubMed  Google Scholar 

  21. Dai CK, Holland EC. Glioma models. BBA-Rev Cancer. 2001;1551(1):M19–27.

    CAS  Google Scholar 

  22. Valle-Folgueral JM, Mascarenhas L, Costa JA, et al. Giant cell glioblastoma: review of the literature and illustrated case. Neurocirugia (Astur). 2008;19(4):343–9.

    Article  CAS  Google Scholar 

  23. Ohgaki H, Kleihues P. Genetic pathways to primary and secondary glioblastoma. Am J Pathol. 2007;170(5):1445–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Louis D, Reifenberger G, Brat D, Ellison D. Tumours: introduction and neuroepithelial tumours. Greenfield’s neuropathology. 8th ed. London: Hodder Arnold; 2008. p. 1960–1.

    Google Scholar 

  25. Mendoza M, Khanna C. Revisiting the seed and soil in cancer metastasis. Int J Biochem Cell Biol. 2009;41(7):1452–62.

    Article  CAS  PubMed  Google Scholar 

  26. Merzak A, Pilkington GJ. Molecular and cellular pathology of intrinsic brain tumours. Cancer Metastasis Rev. 1997;16(1-2):155–77.

    Article  CAS  PubMed  Google Scholar 

  27. Pilkington GJ. The paradox of neoplastic glial cell invasion of the brain and apparent metastatic failure. Anticancer Res. 1997;17(6B):4103–5.

    CAS  PubMed  Google Scholar 

  28. Bolteus AJ, Berens ME, Pilkington GJ. Migration and invasion in brain neoplasms. Curr Neurol Neurosci Rep. 2001;1(3):225–32.

    Article  CAS  PubMed  Google Scholar 

  29. Pilkington GJ, Lantos PL. Biological markers for tumours of the brain. Adv Tech Stand Neurosurg. 1994;21:3–41.

    CAS  PubMed  Google Scholar 

  30. Maidment SL. The cytoskeleton and brain tumour cell migration. Anticancer Res. 1997;17(6B):4145–9.

    CAS  PubMed  Google Scholar 

  31. Finn PE, Bjerkvig R, Pilkington GJ. The role of growth factors in the malignant and invasive progression of intrinsic brain tumours. Anticancer Res. 1997;17(6B):4163–72.

    CAS  PubMed  Google Scholar 

  32. Liotta LA. Tumor invasion and metastases--role of the extracellular matrix: Rhoads Memorial Award lecture. Cancer Res. 1986;46(1):1–7.

    CAS  PubMed  Google Scholar 

  33. Demuth T, Berens ME. Molecular mechanisms of glioma cell migration and invasion. J Neurooncol. 2004;70(2):217–28.

    Article  PubMed  Google Scholar 

  34. Groothuis DR. The blood-brain and blood-tumor barriers: a review of strategies for increasing drug delivery. Neuro Oncol. 2000;2(1):45–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Subramanian A, Harris A, Piggott K, Shieff C, Bradford R. Metastasis to and from the central nervous system--the ‘relatively protected site’. Lancet Oncol. 2002;3(8):498–507.

    Article  CAS  PubMed  Google Scholar 

  36. Walker C, du Plessis DG, Joyce KA, et al. Phenotype versus genotype in gliomas displaying inter- or intratumoral histological heterogeneity. Clin Cancer Res. 2003;9(13):4841–51.

    CAS  PubMed  Google Scholar 

  37. Wikstrand CJ, Bigner SH, Bigner DD. Demonstration of complex antigenic heterogeneity in a human glioma cell line and eight derived clones by specific monoclonal antibodies. Cancer Res. 1983;43(7):3327–34.

    CAS  PubMed  Google Scholar 

  38. Pilkington GJ. Glioma heterogeneity in vitro: the significance of growth factors and gangliosides. Neuropathol Appl Neurobiol. 1992;18(5):434–42.

    Article  CAS  PubMed  Google Scholar 

  39. Lleonart ME, Martin-Duque P, Sanchez-Prieto R, Moreno A, Cajal SRY. Tumor heterogeneity: morphological, molecular and clinical implications. Histol Histopathol. 2000;15(3):881–98.

    CAS  PubMed  Google Scholar 

  40. Giese A, Bjerkvig R, Berens ME, Westphal M. Cost of migration: Invasion of malignant gliomas and implications for treatment. J Clin Oncol. 2003;21(8):1624–36.

    Article  CAS  PubMed  Google Scholar 

  41. Nister M, Libermann TA, Betsholtz C, et al. Expression of messenger-RNAs for platelet-derived growth-factor and transforming growth factor-alpha and their receptors in human-malignant glioma cell-lines. Cancer Res. 1988;48(14):3910–8.

    CAS  PubMed  Google Scholar 

  42. Westermark B, Carlhendrik H, Nister M. Platelet-derived growth-factor in human glioma. Glia. 1995;15(3):257–63.

    Article  CAS  PubMed  Google Scholar 

  43. Zagzag D, Friedlander DR, Margolis B, et al. Molecular events implicated in brain tumor angiogenesis and invasion. Pediatr Neurosurg. 2000;33(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  44. Ehrlich P. Das Sauerstoff-Bedürfniss des Organismus: eine farbenanalytische Studie: August Hirschwald (1885).

    Google Scholar 

  45. Dohgu S, Takata F, Yamauchi A, et al. Brain pericytes contribute to the induction and up-regulation of blood–brain barrier functions through transforming growth factor-β production. Brain Res. 2005;1038(2):208–15.

    Article  CAS  PubMed  Google Scholar 

  46. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004;16(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  47. Wilhelm I, Molnar J, Fazakas C, Hasko J, Krizbai IA. Role of the blood-brain barrier in the formation of brain metastases. Int J Mol Sci. 2013;14(1):1383–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron. 2008;57(2):178–201.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia CM, Darland DC, Massingham LJ, D’Amore PA. Endothelial cell-astrocyte interactions and TGF beta are required for induction of blood-neural barrier properties. Brain Res Dev Brain Res. 2004;152(1):25–38.

    Article  CAS  PubMed  Google Scholar 

  50. Antonetti DA, Barber AJ, Hollinger LA, Wolpert EB, Gardner TW. Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occluden 1. A potential mechanism for vascular permeability in diabetic retinopathy and tumors. J Biol Chem. 1999;274(33):23463–7.

    Article  CAS  PubMed  Google Scholar 

  51. Loscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86–98.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Eugenin EA, Berman JW. Chemokine-dependent mechanisms of leukocyte trafficking across a model of the blood-brain barrier. Methods. 2003;29(4):351–61.

    Article  CAS  PubMed  Google Scholar 

  53. De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia. 2016;64(7):1097–123.

    Article  PubMed  Google Scholar 

  54. Abbott NJ. Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 2002;200(6):629–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sims DE. Diversity within pericytes. Clin Exp Pharmacol Physiol. 2000;27(10):842–6.

    Article  CAS  PubMed  Google Scholar 

  56. Maherally HLF, Pilkington GJ. The blood brain barrier in cerebral metastasis. Oncology News. 2013;8(3):79–82.

    Google Scholar 

  57. Claudio L. Ultrastructural features of the blood-brain barrier in biopsy tissue from Alzheimer’s disease patients. Acta Neuropathol. 1996;91(1):6–14.

    Article  CAS  PubMed  Google Scholar 

  58. Bart J, Groen HJM, Hendrikse NH, van der Graaf WTA, Vaalburg W, de Vries EGE. The blood-brain barrier and oncology: new insights into function and modulation. Cancer Treat Rev. 2000;26(6):449–62.

    Article  CAS  PubMed  Google Scholar 

  59. Coomber BL, Stewart PA. Ultrastructural reconstruction of vesicular channels through permeable endothelium. Anat Rec. 1985;211(3):A45.

    Google Scholar 

  60. Pries AR, Kuebler WM, Normal endothelium. Handb Exp Pharmacol. 2006;(176 Pt 1):1–40.

    Google Scholar 

  61. Kniesel U, Wolburg H. Tight junctions of the blood-brain barrier. Cell Mol Neurobiol. 2000;20(1):57–76.

    Article  CAS  PubMed  Google Scholar 

  62. Wolburg H, Lippoldt A. Tight junctions of the blood-brain barrier: development, composition and regulation. Vascul Pharmacol. 2002;38(6):323–37.

    Article  CAS  PubMed  Google Scholar 

  63. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis. 2008;32(2):200–19.

    Article  CAS  PubMed  Google Scholar 

  64. Romanitan MO, Popescu BO, Winblad B, Bajenaru OA, Bogdanovic N. Occludin is overexpressed in Alzheimer’s disease and vascular dementia. J Cell Mol Med. 2007;11(3):569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sharma H. Blood-spinal cord and brain barriers in health and disease. London: Academic; 2004.

    Google Scholar 

  66. Hirase T, Staddon JM, Saitou M, et al. Occludin as a possible determinant of tight junction permeability in endothelial cells. J Cell Sci. 1997;110:1603–13.

    CAS  PubMed  Google Scholar 

  67. Furuse M, Hirase T, Itoh M, et al. Occludin - a novel integral membrane-protein localizing at tight junctions. J Cell Biol. 1993;123(6):1777–88.

    Article  CAS  PubMed  Google Scholar 

  68. Schiera G, Bono E, Raffa MP, et al. Synergistic effects of neurons and astrocytes on the differentiation of brain capillary endothelial cells in culture. J Cell Mol Med. 2003;7(2):165–70.

    Article  PubMed  Google Scholar 

  69. Hori S, Ohtsuki S, Hosoya K, Nakashima E, Terasaki T. A pericyte-derived angiopoietin-1 multimeric complex induces occludin gene expression in brain capillary endothelial cells through Tie-2 activation in vitro. J Neurochem. 2004;89(2):503–13.

    Article  CAS  PubMed  Google Scholar 

  70. Wolburg H, Noell S, Wolburg-Buchholz K, Mack A, Fallier-Becker P. Agrin, aquaporin-4, and astrocyte polarity as an important feature of the blood-brain barrier. Neuroscientist. 2009;15(2):180–93.

    Article  CAS  PubMed  Google Scholar 

  71. Deli MA, Abraham CS, Kataoka Y, Niwa M. Permeability studies on in vitro blood-brain barrier models: physiology, pathology, and pharmacology. Cell Mol Neurobiol. 2005;25(1):59–127.

    Article  PubMed  Google Scholar 

  72. Cucullo L, Aumayr B, Rapp E, Janigro D. Drug delivery and in vitro models of the blood-brain barrier. Curr Opin Drug Discov Devel. 2005;8(1):89–99.

    CAS  PubMed  Google Scholar 

  73. Butt AM, Jones HC, Abbott NJ. Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol. 1990;429:47–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Crone C, Olesen SP. Electrical resistance of brain microvascular endothelium. Brain Res. 1982;241(1):49–55.

    Article  CAS  PubMed  Google Scholar 

  75. Grant GA, Abbott NJ, Janigro D. Understanding the physiology of the blood-brain barrier: in vitro models. News Physiol Sci. 1998;13:287–93.

    CAS  PubMed  Google Scholar 

  76. Laterra JaG GW. Brain metastases. Neurologic Clin North Am. 2003;21:1–23.

    Article  Google Scholar 

  77. Freeman MR. Specification and morphogenesis of astrocytes. Science. 2010;330(6005):774–8.

    Article  CAS  PubMed  Google Scholar 

  78. Halassa MM, Haydon PG. Integrated brain circuits: astrocytic networks modulate neuronal activity and behavior. Annu Rev Physiol. 2010;72:335–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.

    Article  CAS  PubMed  Google Scholar 

  80. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci. 2007;10(11):1369–76.

    Article  CAS  PubMed  Google Scholar 

  81. Haseloff RF, Blasig IE, Bauer HC, Bauer H. In search of the astrocytic factor(s) modulating blood-brain barrier functions in brain capillary endothelial cells in vitro. Cell Mol Neurobiol. 2005;25(1):25–39.

    Article  CAS  PubMed  Google Scholar 

  82. Thomas WE. Brain macrophages: on the role of pericytes and perivascular cells. Brain Res Brain Res Rev. 1999;31(1):42–57.

    Article  CAS  PubMed  Google Scholar 

  83. Ramsauer M, Krause D, Dermietzel R. Angiogenesis of the blood-brain barrier in vitro and the function of cerebral pericytes. FASEB J. 2002;16(10):1274–6.

    CAS  PubMed  Google Scholar 

  84. Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7(11):1031–8.

    CAS  PubMed  Google Scholar 

  85. Dalkara T, Gursoy-Ozdemir Y, Yemisci M. Brain microvascular pericytes in health and disease. Acta Neuropathol. 2011;122(1):1–9.

    Article  PubMed  Google Scholar 

  86. Bonkowski D, Katyshev V, Balabanov RD, Borisov A, Dore-Duffy P. The CNS microvascular pericyte: pericyte-astrocyte crosstalk in the regulation of tissue survival. Fluids Barriers CNS. 2011;8(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hamilton NB, Attwell D, Hall CN. Pericyte-mediated regulation of capillary diameter: a component of neurovascular coupling in health and disease. Front Neuroenerg. 2010;2.

    Google Scholar 

  89. Armulik A, Genove G, Mae M, et al. Pericytes regulate the blood-brain barrier. Nature. 2010;468(7323):557–61.

    Article  CAS  PubMed  Google Scholar 

  90. Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Muramatsu R, Yamashita T. Pericyte function in the physiological central nervous system. Neurosci Res. 2014;81–82:38–41.

    Article  PubMed  CAS  Google Scholar 

  92. Diaz-Flores L, Gutierrez R, Madrid JF, et al. Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histol Histopathol. 2009;24(7):909–69.

    CAS  PubMed  Google Scholar 

  93. Baeten KM, Akassoglou K. Extracellular matrix and matrix receptors in blood-brain barrier formation and stroke. Dev Neurobiol. 2011;71(11):1018–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Aumailley M, Timpl R. Attachment of cells to basement membrane collagen type IV. J Cell Biol. 1986;103(4):1569–75.

    Article  CAS  PubMed  Google Scholar 

  95. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2(1):3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wolburg H, Noell S, Fallier-Becker P, Mack AF, Wolburg-Buchholz K. The disturbed blood-brain barrier in human glioblastoma. Mol Aspects Med. 2012;33(5-6):579–89.

    Article  CAS  PubMed  Google Scholar 

  98. Karim R, Palazzo C, Evrard B, Piel G. Nanocarriers for the treatment of glioblastoma multiforme: current state-of-the-art. J Control Release. 2016;227:23–37.

    Article  CAS  PubMed  Google Scholar 

  99. Lalatsa A, Serrano Lopez DR. Engineering nanomedicines into safe and effective therapeutics. Curr Top Med Chem. 2015;15(22):2253.

    Article  CAS  PubMed  Google Scholar 

  100. Brem H, Piantadosi S, Burger PC, et al. Placebo-controlled trial of safety and efficacy of intraoperative controlled delivery by biodegradable polymers of chemotherapy for recurrent gliomas. The Polymer-brain Tumor Treatment Group. Lancet. 1995;345(8956):1008–12.

    Article  CAS  PubMed  Google Scholar 

  101. Brem H, Ewend MG, Piantadosi S, Greenhoot J, Burger PC, Sisti M. The safety of interstitial chemotherapy with BCNU-loaded polymer followed by radiation therapy in the treatment of newly diagnosed malignant gliomas: phase I trial. J Neurooncol. 1995;26(2):111–23.

    Article  CAS  PubMed  Google Scholar 

  102. Brem H, Mahaley Jr MS, Vick NA, et al. Interstitial chemotherapy with drug polymer implants for the treatment of recurrent gliomas. J Neurosurg. 1991;74(3):441–6.

    Article  CAS  PubMed  Google Scholar 

  103. Fung LK, Ewend MG, Sills A, et al. Pharmacokinetics of interstitial delivery of carmustine, 4-hydroperoxycyclophosphamide, and paclitaxel from a biodegradable polymer implant in the monkey brain. Cancer Res. 1998;58(4):672–84.

    CAS  PubMed  Google Scholar 

  104. Westphal M, Hilt DC, Bortey E, et al. A phase 3 trial of local chemotherapy with biodegradable carmustine (BCNU) wafers (Gliadel wafers) in patients with primary malignant glioma. Neuro Oncol. 2003;5(2):79–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):2076–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Weber F, Asher A, Bucholz R, et al. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol. 2003;64(1-2):125–37.

    Article  PubMed  Google Scholar 

  107. Sampson JH, Brady M, Raghavan R, et al. Colocalization of gadolinium-diethylene triamine pentaacetic acid with high-molecular-weight molecules after intracerebral convection-enhanced delivery in humans. Neurosurgery. 2011;69(3):668–76.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Barua NU, Gill SS. Convection-enhanced drug delivery: prospects for glioblastoma treatment. CNS Oncol. 2014;3(5):313–6.

    Article  CAS  PubMed  Google Scholar 

  109. Barua NU, Lowis SP, Woolley M, O’Sullivan S, Harrison R, Gill SS. Robot-guided convection-enhanced delivery of carboplatin for advanced brainstem glioma. Acta Neurochir. 2013;155(8):1459–65.

    Article  CAS  PubMed  Google Scholar 

  110. Barua NU, Gill SS, Love S. Convection-enhanced drug delivery to the brain: therapeutic potential and neuropathological considerations. Brain Pathol. 2014;24(2):117–27.

    Article  CAS  PubMed  Google Scholar 

  111. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  112. Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  113. Felsberg J, Thon N, Eigenbrod S, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. International journal of cancer. J Int Cancer. 2011;129(3):659–70.

    Article  CAS  Google Scholar 

  114. Luo H, Chen Z, Wang S, et al. c-Myc-miR-29c-REV3L signalling pathway drives the acquisition of temozolomide resistance in glioblastoma. Brain. 2015;138(Pt 12):3654–72.

    Article  PubMed  Google Scholar 

  115. Cui B, Johnson SP, Bullock N, Ali-Osman F, Bigner DD, Friedman HS. Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells. J Biomed Res. 2010;24(6):424–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tang X, Lucas JE, Chen JL, et al. Functional interaction between responses to lactic acidosis and hypoxia regulates genomic transcriptional outputs. Cancer Res. 2012;72(2):491–502.

    Article  CAS  PubMed  Google Scholar 

  117. Moore KA, Hollien J. The unfolded protein response in secretory cell function. Annu Rev Genet. 2012;46:165–83.

    Article  CAS  PubMed  Google Scholar 

  118. Uckun FM, Qazi S, Ozer Z, et al. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol. 2011;153(6):741–52.

    Article  CAS  PubMed  Google Scholar 

  119. Lee E, Nichols P, Spicer D, Groshen S, Yu MC, Lee AS. GRP78 as a novel predictor of responsiveness to chemotherapy in breast cancer. Cancer Res. 2006;66(16):7849–53.

    Article  CAS  PubMed  Google Scholar 

  120. Epple LM, Dodd RD, Merz AL, et al. Induction of the unfolded protein response drives enhanced metabolism and chemoresistance in glioma cells. PLoS One. 2013;8(8), e73267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Parks SK, Chiche J, Pouyssegur J. Disrupting proton dynamics and energy metabolism for cancer therapy. Nat Rev Cancer. 2013;13(9):611–23.

    Article  CAS  PubMed  Google Scholar 

  122. Iurlaro R, Munoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J. 2015.

    Google Scholar 

  123. Wasef SZY, Robinson KA, Berkaw MN, Buse MG. Glucose, dexamethasone, and the unfolded protein response regulate TRB3 mRNA expression in 3T3-L1 adipocytes and L6 myotubes. Am J Physiol-Endoc M. 2006;291(6):E1274–80.

    CAS  Google Scholar 

  124. Carico C, Nuno M, Mukherjee D, et al. Loss of PTEN is not associated with poor survival in newly diagnosed glioblastoma patients of the temozolomide era. PLoS One. 2012;7(3).

    Google Scholar 

  125. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.

    Article  CAS  PubMed  Google Scholar 

  126. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296(5573):1655–7.

    Article  CAS  PubMed  Google Scholar 

  127. Broderick DK, Di CH, Parrett TJ, et al. Mutations of PIK3CA in anaplastic oligodendrogliomas, high-grade astrocytomas, and medulloblastomas. Cancer Res. 2004;64(15):5048–50.

    Article  CAS  PubMed  Google Scholar 

  128. Gallia GL, Rand V, Siu IM, et al. PIK3CA gene mutations in pediatric and adult glioblastoma multiforme. Mol Cancer Res. 2006;4(10):709–14.

    Article  CAS  PubMed  Google Scholar 

  129. Holland EC, Celestino J, Dai CK, Schaefer L, Sawaya RE, Fuller GN. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet. 2000;25(1):55–7.

    Article  CAS  PubMed  Google Scholar 

  130. Mellinghoff IK, Wang MY, Vivanco I, et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med. 2005;353(19):2012–24.

    Article  CAS  PubMed  Google Scholar 

  131. Chin L, Meyerson M, Aldape K, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  132. Masica DL, Karchin R. Correlation of somatic mutation and expression identifies genes important in human glioblastoma progression and survival. Cancer Res. 2011;71(13):4550–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Koul D. PTEN signaling pathways in glioblastoma. Cancer Biol Ther. 2008;7(9):1321–5.

    Article  CAS  PubMed  Google Scholar 

  134. Wang X, Ding J, Meng LH. PI3K isoform-selective inhibitors: next-generation targeted cancer therapies. Acta Pharmacol Sin. 2015;36(10):1170–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Cloughesy TF, Yoshimoto K, Nghiemphu P, et al. Antitumor activity of rapamycin in a Phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med. 2008;5(1), e8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Galanis E, Buckner JC, Maurer MJ, et al. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol. 2005;23(23):5294–304.

    Article  CAS  PubMed  Google Scholar 

  137. Burger MT, Pecchi S, Wagman A, et al. Identification of NVP-BKM120 as a potent, selective, orally bioavailable class I PI3 kinase inhibitor for treating cancer. ACS Med Chem Lett. 2011;2(10):774–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Maira SM, Pecchi S, Huang A, et al. Identification and characterization of NVP-BKM120, an orally available pan-class I PI3-kinase inhibitor. Mol Cancer Ther. 2012;11(2):317–28.

    Article  CAS  PubMed  Google Scholar 

  139. Koul D, Fu J, Shen R, et al. Antitumor activity of NVP-BKM120--a selective pan class I PI3 kinase inhibitor showed differential forms of cell death based on p53 status of glioma cells. Clin Cancer Res. 2012;18(1):184–95.

    Article  CAS  PubMed  Google Scholar 

  140. Koul D, Shen R, Kim YW, et al. Cellular and in vivo activity of a novel PI3K inhibitor, PX-866, against human glioblastoma. Neuro Oncol. 2010;12(6):559–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Maira SM, Stauffer F, Brueggen J, et al. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol Cancer Ther. 2008;7(7):1851–63.

    Article  CAS  PubMed  Google Scholar 

  142. Liu TJ, Koul D, LaFortune T, et al. NVP-BEZ235, a novel dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor, elicits multifaceted antitumor activities in human gliomas. Mol Cancer Ther. 2009;8(8):2204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wen PY, Lee EQ, Reardon DA, Ligon KL, Alfred Yung WK. Current clinical development of PI3K pathway inhibitors in glioblastoma. Neuro Oncol. 2012;14(7):819–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hill R, Cautain B, de Pedro N, Link W. Targeting nucleocytoplasmic transport in cancer therapy. Oncotarget. 2014;5(1):11–28.

    PubMed  Google Scholar 

  145. Ferreira BI, Hill R, Link W. Special review: caught in the crosshairs: targeted drugs and personalized medicine. Cancer J. 2015;21(6):441–7.

    Article  CAS  PubMed  Google Scholar 

  146. Cohen MH, Shen YL, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist. 2009;14(11):1131–8.

    Article  CAS  PubMed  Google Scholar 

  147. Kreisl TN, Kim L, Moore K, et al. Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol. 2009;27(5):740–5.

    Article  CAS  PubMed  Google Scholar 

  148. Friedman HS, Prados MD, Wen PY, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27(28):4733–40.

    Article  CAS  PubMed  Google Scholar 

  149. Lamszus K, Kunkel P, Westphal M. Invasion as limitation to anti-angiogenic glioma therapy. Acta Neurochir Suppl. 2003;88:169–77.

    CAS  PubMed  Google Scholar 

  150. Wick A, Dorner N, Schafer N, et al. Bevacizumab does not increase the risk of remote relapse in malignant glioma. Ann Neurol. 2011;69(3):586–92.

    Article  PubMed  Google Scholar 

  151. Keunen O, Johansson M, Oudin A, et al. Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma. Proc Natl Acad Sci U S A. 2011;108(9):3749–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Soda Y, Myskiw C, Rommel A, Verma IM. Mechanisms of neovascularization and resistance to anti-angiogenic therapies in glioblastoma multiforme. J Mol Med (Berl). 2013;91(4):439–48.

    Article  CAS  Google Scholar 

  153. Khasraw M, Ameratunga MS, Grant R, Wheeler H, Pavlakis N. Antiangiogenic therapy for high-grade glioma. Cochrane Database Syst Rev. 2014;9, CD008218.

    Google Scholar 

  154. Joseph DiMasi HGG, Hansen RW. Cost of develo** a new drug. 2014; http://csdd.tufts.edu/news/complete_story/pr_tufts_csdd_2014_cost_study (2016).

  155. Parliament E. Regulation (EU) No 536/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 16 April 2014 on clinical trials on medicinal products for human use, and repealing Directive 2001/20/EC In: Parliament E, ed. L 158/1: Office Journal of the European Union; 2014.

    Google Scholar 

  156. Limited TRPU. Off-label use of medicinal products and product liability. 2016. http://uk.practicallaw.com/8-525-5657#.

    Google Scholar 

  157. Gerbeth K, Husch J, Fricker G, Werz O, Schubert-Zsilavecz M, Abdel-Tawab M. In vitro metabolism, permeation, and brain availability of six major boswellic acids from Boswellia serrata gum resins. Fitoterapia. 2013;84:99–106.

    Article  CAS  PubMed  Google Scholar 

  158. Karsy M, Albert L, Tobias ME, Murali R, Jhanwar-Uniyal M. All-trans retinoic acid modulates cancer stem cells of glioblastoma multiforme in an MAPK-dependent manner. Anticancer Res. 2010;30(12):4915–20.

    CAS  PubMed  Google Scholar 

  159. Campos B, Weisang S, Osswald F, et al. Retinoid resistance and multifaceted impairment of retinoic acid synthesis in glioblastoma. Glia. 2015;63(10):1850–9.

    Article  PubMed  Google Scholar 

  160. See SJ, Levin VA, Yung WK, Hess KR, Groves MD. 13-cis-retinoic acid in the treatment of recurrent glioblastoma multiforme. Neuro Oncol. 2004;6(3):253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Haar CP, Hebbar P, Wallace GC, et al. Drug resistance in glioblastoma: a mini review. Neurochem Res. 2012;37(6):1192–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Trouillas P, Honnorat J, Bret P, Jouvet A, Gerard JP. Redifferentiation therapy in brain tumors: long-lasting complete regression of glioblastomas and an anaplastic astrocytoma under long term 1-alpha-hydroxycholecalciferol. J Neurooncol. 2001;51(1):57–66.

    Article  CAS  PubMed  Google Scholar 

  163. Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol. 1983;96(1):1–27.

    Article  CAS  PubMed  Google Scholar 

  164. Shintani T, Klionsky DJ. Autophagy in health and disease: a double-edged sword. Science. 2004;306(5698):990–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Sotelo J, Briceno E, Lopez-Gonzalez MA. Adding chloroquine to conventional treatment for glioblastoma multiforme - A randomized, double-blind, placebo-controlled trial. Ann Intern Med. 2006;144(5):337–43.

    Article  CAS  PubMed  Google Scholar 

  166. Rosenfeld MR, Ye XB, Supko JG, et al. A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy. 2014;10(8):1359–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Briceno E, Calderon A, Sotelo J. Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg Neurol. 2007;67(4):388–91.

    Article  PubMed  Google Scholar 

  168. Golden EB, Cho HY, Jahanian A, et al. Chloroquine enhances temozolomide cytotoxicity in malignant gliomas by blocking autophagy. Neurosurg Focus. 2014;37(6).

    Google Scholar 

  169. Lee SW, Kim HK, Lee NH, et al. The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett. 2015;360(2):195–204.

    Article  CAS  PubMed  Google Scholar 

  170. Jutten B, Keulers TG, Schaaf MBE, et al. EGFR overexpressing cells and tumors are dependent on autophagy for growth and survival. Radiother Oncol. 2013;108(3):479–83.

    Article  CAS  PubMed  Google Scholar 

  171. Stacpoole PW, Henderson GN, Yan ZM, Cornett R, James MO. Pharmacokinetics, metabolism, and toxicology of dichloroacetate. Drug Metab Rev. 1998;30(3):499–539.

    Article  CAS  PubMed  Google Scholar 

  172. Michelakis ED, Sutendra G, Dromparis P, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med. 2010;2(31).

    Google Scholar 

  173. Bhattacharya B, Mohd Omar MF, Soong R. The Warburg effect and drug resistance. Brit J Pharmacol. 2016.

    Google Scholar 

  174. Walker AJ, Card T, Bates TE, Muir K. Tricyclic antidepressants and the incidence of certain cancers: a study using the GPRD. Br J Cancer. 2011;104(1):193–7.

    Article  CAS  PubMed  Google Scholar 

  175. Shchors K, Massaras A, Hanahan D. Dual targeting of the autophagic regulatory circuitry in gliomas with repurposed drugs elicits cell-lethal autophagy and therapeutic benefit. Cancer Cell. 2015;28(4):456–71.

    Article  CAS  PubMed  Google Scholar 

  176. Hollopeter G, Jantzen HM, Vincent D, et al. Identification of the platelet ADP receptor targeted by antithrombotic drugs. Nature. 2001;409(6817):202–7.

    Article  CAS  PubMed  Google Scholar 

  177. Trimble MR. Worldwide use of clomipramine. J Clin Psychiatry. 1990;51(Suppl):51–4. discussion 55-58.

    PubMed  Google Scholar 

  178. **a Z, Bergstrand A, DePierre JW, Nassberger L. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL-60 cells via caspase-3 activation. J Biochem Mol Toxicol. 1999;13(6):338–47.

    Article  CAS  PubMed  Google Scholar 

  179. Meredith EJ, Holder MJ, Chamba A, et al. The serotonin transporter (SLC6A4) is present in B-cell clones of diverse malignant origin: probing a potential anti-tumor target for psychotropics. FASEB J. 2005;19(9):1187–9.

    CAS  PubMed  Google Scholar 

  180. Parker KA, Glaysher S, Hurren J, et al. The effect of tricyclic antidepressants on cutaneous melanoma cell lines and primary cell cultures. Anticancer Drugs. 2012;23(1):65–9.

    Article  CAS  PubMed  Google Scholar 

  181. Yamaji T, Kagaya A, Okamoto Y, Hayashi T, Motohashi N, Yamawaki S. Effects of clomipramine and verapamil on 5-HT-induced intracellular calcium changes in individual C6 rat glioma cells. Neuropsychobiology. 1996;33(2):55–9.

    Article  CAS  PubMed  Google Scholar 

  182. Levkovitz Y, Gil-Ad I, Zeldich E, Dayag M, Weizman A. Differential induction of apoptosis by antidepressants in glioma and neuroblastoma cell lines: evidence for p-c-Jun, cytochrome c, and caspase-3 involvement. J Mol Neurosci. 2005;27(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  183. Ayla S, Bilir A, Soner BC, Yilmaz-Dilsiz O, Erguven M, Oktem G. Notch signaling-related therapeutic strategies with novel drugs in neuroblastoma spheroids. J Pediatr Hematol Oncol. 2014;36(1):37–44.

    Article  CAS  PubMed  Google Scholar 

  184. Rooprai HK, Christidou M, Pilkington GJ. The potential for strategies using micronutrients and heterocyclic drugs to treat invasive gliomas. Acta Neurochir. 2003;145(8):683–90.

    Article  CAS  PubMed  Google Scholar 

  185. Daley E, Wilkie D, Loesch A, et al. Chlorimipramine: a novel anticancer agent with a mitochondrial target. Biochem Biophys Res Commun. 2005;328(2):623–32.

    Article  CAS  PubMed  Google Scholar 

  186. Pilkington GJ, Parker K, Murray SA. Approaches to mitochondrially mediated cancer therapy. Semin Cancer Biol. 2008;18(3):226–35.

    Article  CAS  PubMed  Google Scholar 

  187. Higgins SC, Pilkington GJ. The in vitro effects of tricyclic drugs and dexamethasone on cellular respiration of malignant glioma. Anticancer Res. 2010;30(2):391–7.

    CAS  PubMed  Google Scholar 

  188. Pilkington GJ, Akinwunmi J, Amar S. The role of tricyclic drugs in selective triggering of mitochondrially-mediated apoptosis in neoplastic glia: a therapeutic option in malignant glioma? Radiol Oncol. 2006;40(2):73–85.

    CAS  Google Scholar 

  189. Daley E, Wilkie D, Loesch A, et al. Chlorimipramine: a novel anticancer agent with a mitochondrial target. Biochem Biophs Res Commun. 2005;328(2):623–32.

    Article  CAS  Google Scholar 

  190. Bilir A, Erguven M, Oktem G, et al. Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol. 2008;32(4):829–39.

    CAS  PubMed  Google Scholar 

  191. Witters LA. The blooming of the French lilac. J Clin Invest. 2001;108(8):1105–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Ríos JL, Francini F, Schinella GR. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015;81(12-13):975–94.

    PubMed  Google Scholar 

  193. Leverve XM, Guigas B, Detaille D, et al. Mitochondrial metabolism and type-2 diabetes: a specific target of metformin. Diabetes Metab. 2003;29(4 Pt 2):6S88–94.

    CAS  PubMed  Google Scholar 

  194. Bosco JL, Antonsen S, Sørensen HT, Pedersen L, Lash TL. Metformin and incident breast cancer among diabetic women: a population-based case-control study in Denmark. Cancer Epidemiol Biomarkers Prev. 2011;20(1):101–11.

    Article  CAS  PubMed  Google Scholar 

  195. Noto H, Goto A, Tsujimoto T, Noda M. Cancer risk in diabetic patients treated with metformin: a systematic review and meta-analysis. PLoS One. 2012;7(3), e33411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Soranna D, Scotti L, Zambon A, et al. Cancer risk associated with use of metformin and sulfonylurea in type 2 diabetes: a meta-analysis. Oncologist. 2012;17(6):813–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35(2):299–304.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Skinner HD, Crane CH, Garrett CR, et al. Metformin use and improved response to therapy in rectal cancer. Cancer Med. 2013;2(1):99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Yen YC, Lin C, Lin SW, Lin YS, Weng SF. Effect of metformin on the incidence of head and neck cancer in diabetics. Head Neck. 2015;37(9):1268–73.

    Article  PubMed  Google Scholar 

  200. Eikawa S, Nishida M, Mizukami S, Yamazaki C, Nakayama E, Udono H. Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proc Natl Acad Sci U S A. 2015;112(6):1809–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Boyle JG, Salt IP, McKay GA. Metformin action on AMP-activated protein kinase: a translational research approach to understanding a potential new therapeutic target. Diabet Med. 2010;27(10):1097–106.

    Article  CAS  PubMed  Google Scholar 

  202. Janjetovic K, Harhaji-Trajkovic L, Misirkic-Marjanovic M, et al. In vitro and in vivo anti-melanoma action of metformin. Eur J Pharmacol. 2011;668(3):373–82.

    Article  CAS  PubMed  Google Scholar 

  203. Janjetovic K, Vucicevic L, Misirkic M, et al. Metformin reduces cisplatin-mediated apoptotic death of cancer cells through AMPK-independent activation of Akt. Eur J Pharmacol. 2011;651(1-3):41–50.

    Article  CAS  PubMed  Google Scholar 

  204. Miller RA, Birnbaum MJ. An energetic tale of AMPK-independent effects of metformin. J Clin Invest. 2010;120(7):2267–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Pryor R, Cabreiro F. Repurposing metformin: an old drug with new tricks in its binding pockets. Biochem J. 2015;471(3):307–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Hardie DG. AMPK: a target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62(7):2164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Ben Sahra I, Laurent K, Loubat A, et al. The antidiabetic drug metformin exerts an antitumoral effect in vitro and in vivo through a decrease of cyclin D1 level. Oncogene. 2008;27(25):3576–86.

    Article  CAS  PubMed  Google Scholar 

  208. Wheaton WW, Weinberg SE, Hamanaka RB, et al. Metformin inhibits mitochondrial complex I of cancer cells to reduce tumorigenesis. Elife. 2014;3, e02242.

    Article  PubMed  PubMed Central  Google Scholar 

  209. Goodwin PJ, Stambolic V. Obesity and insulin resistance in breast cancer--chemoprevention strategies with a focus on metformin. Breast. 2011;20 Suppl 3:S31–5.

    Article  PubMed  Google Scholar 

  210. Hadad SM, Coates P, Jordan LB, et al. Evidence for biological effects of metformin in operable breast cancer: biomarker analysis in a pre-operative window of opportunity randomized trial. Breast Cancer Res Treat. 2015;150(1):149–55.

    Article  CAS  PubMed  Google Scholar 

  211. Hadad S, Iwamoto T, Jordan L, et al. Evidence for biological effects of metformin in operable breast cancer: a pre-operative, window-of-opportunity, randomized trial. Breast Cancer Res Treat. 2011;128(3):783–94.

    Article  CAS  PubMed  Google Scholar 

  212. Sesen J, Dahan P, Scotland SJ, et al. Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response. PLoS One. 2015;10(4), e0123721.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  213. Ferla R, Has**er E, Surmacz E. Metformin inhibits leptin-induced growth and migration of glioblastoma cells. Oncol Lett. 2012;4(5):1077–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  214. Sato A, Sunayama J, Okada M, et al. Glioma-initiating cell elimination by metformin activation of FOXO3 via AMPK. Stem Cells Transl Med. 2012;1(11):811–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Bridges HR, Jones AJ, Pollak MN, Hirst J. Effects of metformin and other biguanides on oxidative phosphorylation in mitochondria. Biochem J. 2014;462(3):475–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Miskimins WK, Ahn HJ, Kim JY, Ryu S, Jung YS, Choi JY. Synergistic anti-cancer effect of phenformin and oxamate. PLoS One. 2014;9(1), e85576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  217. Rosilio C, Lounnas N, Nebout M, et al. The metabolic perturbators metformin, phenformin and AICAR interfere with the growth and survival of murine PTEN-deficient T cell lymphomas and human T-ALL/T-LL cancer cells. Cancer Lett. 2013;336(1):114–26.

    Article  CAS  PubMed  Google Scholar 

  218. Kast RE, Belda-Iniesta C. Suppressing glioblastoma stem cell function by aldehyde dehydrogenase inhibition with chloramphenicol or disulfiram as a new treatment adjunct: an hypothesis. Curr Stem Cell Res Ther. 2009;4(4):314–7.

    Article  CAS  PubMed  Google Scholar 

  219. Paranjpe A, Zhang R, Ali-Osman F, Bobustuc GC, Srivenugopal KS. Disulfiram is a direct and potent inhibitor of human O6-methylguanine-DNA methyltransferase (MGMT) in brain tumor cells and mouse brain and markedly increases the alkylating DNA damage. Carcinogenesis. 2014;35(3):692–702.

    Article  CAS  PubMed  Google Scholar 

  220. Triscott J, Lee C, Hu K, et al. Disulfiram, a drug widely used to control alcoholism, suppresses the self-renewal of glioblastoma and over-rides resistance to temozolomide. Oncotarget. 2012;3(10):1112–23.

    Article  PubMed  PubMed Central  Google Scholar 

  221. Cho HJ, Lee TS, Park JB, et al. Disulfiram suppresses invasive ability of osteosarcoma cells via the inhibition of MMP-2 and MMP-9 expression. J Biochem Mol Biol. 2007;40(6):1069–76.

    CAS  PubMed  Google Scholar 

  222. Tawari PE, Wang ZP, Najlah M, et al. The cytotoxic mechanisms of disulfiram and copper(II) in cancer cells. Toxicol Res-Uk. 2015;4(6):1439–42.

    Article  CAS  Google Scholar 

  223. Arigony AL, de Oliveira IM, Machado M, et al. The influence of micronutrients in cell culture: a reflection on viability and genomic stability. Biomed Res Int. 2013;2013:597282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Liu P, Brown S, Goktug T, et al. Cytotoxic effect of disulfiram/copper on human glioblastoma cell lines and ALDH-positive cancer-stem-like cells. Brit J Cancer. 2012;107(9):1488–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Choi SA, Choi JW, Wang KC, et al. Disulfiram modulates stemness and metabolism of brain tumor initiating cells in atypical teratoid/rhabdoid tumors. Neuro Oncol. 2015;17(6):810–21.

    Article  PubMed  Google Scholar 

  226. Bai RY, Staedtke V, Aprhys CM, Gallia GL, Riggins GJ. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro Oncol. 2011;13(9):974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Sharma ML, Bani S, Singh GB. Anti-arthritic activity of boswellic acids in bovine serum albumin (BSA)-induced arthritis. Int J Immunopharmacol. 1989;11(6):647–52.

    Article  CAS  PubMed  Google Scholar 

  228. Khan MA, Singh M, Khan MS, Najmi AK, Ahmad S. Caspase mediated synergistic effect of Boswellia serrata extract in combination with doxorubicin against human hepatocellular carcinoma. Biomed Res Int. 2014;2014:294143.

    PubMed  PubMed Central  Google Scholar 

  229. Pang X, Yi Z, Zhang X, et al. Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res. 2009;69(14):5893–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Lu M, **a L, Hua H, **g Y. Acetyl-keto-beta-boswellic acid induces apoptosis through a death receptor 5-mediated pathway in prostate cancer cells. Cancer Res. 2008;68(4):1180–6.

    Article  CAS  PubMed  Google Scholar 

  231. Syrovets T, Gschwend JE, Buchele B, et al. Inhibition of IkappaB kinase activity by acetyl-boswellic acids promotes apoptosis in androgen-independent PC-3 prostate cancer cells in vitro and in vivo. J Biol Chem. 2005;280(7):6170–80.

    Article  CAS  PubMed  Google Scholar 

  232. Park B, Prasad S, Yadav V, Sung B, Aggarwal BB. Boswellic acid suppresses growth and metastasis of human pancreatic tumors in an orthotopic nude mouse model through modulation of multiple targets. PLoS One. 2011;6(10), e26943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Yuan Y, Cui SX, Wang Y, et al. Acetyl-11-keto-beta-boswellic acid (AKBA) prevents human colonic adenocarcinoma growth through modulation of multiple signaling pathways. Biochim Biophys Acta. 2013;1830(10):4907–16.

    Article  CAS  PubMed  Google Scholar 

  234. Yadav VR, Prasad S, Sung B, et al. Boswellic acid inhibits growth and metastasis of human colorectal cancer in orthotopic mouse model by downregulating inflammatory, proliferative, invasive and angiogenic biomarkers. International journal of cancer. J Int Cancer. 2012;130(9):2176–84.

    Article  CAS  Google Scholar 

  235. Liu JJ, Duan RD. LY294002 enhances boswellic acid-induced apoptosis in colon cancer cells. Anticancer Res. 2009;29(8):2987–91.

    CAS  PubMed  Google Scholar 

  236. Liu JJ, Huang B, Hooi SC. Acetyl-keto-beta-boswellic acid inhibits cellular proliferation through a p21-dependent pathway in colon cancer cells. Br J Pharmacol. 2006;148(8):1099–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  237. Zhao W, Entschladen F, Liu H, et al. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Cancer Detect Prev. 2003;27(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  238. Park YS, Lee JH, Harwalkar JA, Bondar J, Safayhi H, Golubic M. Acetyl-11-keto-beta-boswellic acid (AKBA) is cytotoxic for meningioma cells and inhibits phosphorylation of the extracellular-signal regulated kinase 1 and 2. Adv Exp Med Biol. 2002;507:387–93.

    Article  CAS  PubMed  Google Scholar 

  239. Winking M, Sarikaya S, Rahmanian A, Jodicke A, Boker DK. Boswellic acids inhibit glioma growth: a new treatment option? J Neurooncol. 2000;46(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  240. Hostanska K, Daum G, Saller R. Cytostatic and apoptosis-inducing activity of boswellic acids toward malignant cell lines in vitro. Anticancer Res. 2002;22(5):2853–62.

    CAS  PubMed  Google Scholar 

  241. Kunnumakkara AB, Nair AS, Sung B, Pandey MK, Aggarwal BB. Boswellic acid blocks signal transducers and activators of transcription 3 signaling, proliferation, and survival of multiple myeloma via the protein tyrosine phosphatase SHP-1. Mol Cancer Res. 2009;7(1):118–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Takada Y, Ichikawa H, Badmaev V, Aggarwal BB. Acetyl-11-keto-beta-boswellic acid potentiates apoptosis, inhibits invasion, and abolishes osteoclastogenesis by suppressing NF-kappa B and NF-kappa B-regulated gene expression. J Immunol. 2006;176(5):3127–40.

    Article  CAS  PubMed  Google Scholar 

  243. **a L, Chen D, Han R, Fang Q, Waxman S, **g Y. Boswellic acid acetate induces apoptosis through caspase-mediated pathways in myeloid leukemia cells. Mol Cancer Ther. 2005;4(3):381–8.

    CAS  PubMed  Google Scholar 

  244. **g Y, Nakajo S, **a L, et al. Boswellic acid acetate induces differentiation and apoptosis in leukemia cell lines. Leuk Res. 1999;23(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  245. Liu Y, Liu Z, Lu C, et al. Comprehensive identification of active triterpenoid metabolites in frankincense using a coupling strategy. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;963:90–8.

    Article  CAS  PubMed  Google Scholar 

  246. Ammon HP. Salai Guggal - Boswellia serrata: from a herbal medicine to a non-redox inhibitor of leukotriene biosynthesis. Eur J Med Res. 1996;1(8):369–70.

    CAS  PubMed  Google Scholar 

  247. Ammon HP. Salai Guggal - Boswellia serrata: from a herbal medicine to a specific inhibitor of leukotriene biosynthesis. Phytomedicine. 1996;3(1):67–70.

    Article  CAS  PubMed  Google Scholar 

  248. Ammon HP, Mack T, Singh GB, Safayhi H. Inhibition of leukotriene B4 formation in rat peritoneal neutrophils by an ethanolic extract of the gum resin exudate of Boswellia serrata. Planta Med. 1991;57(3):203–7.

    Article  CAS  PubMed  Google Scholar 

  249. Safayhi H, Mack T, Sabieraj J, Anazodo MI, Subramanian LR, Ammon HP. Boswellic acids: novel, specific, nonredox inhibitors of 5-lipoxygenase. J Pharmacol Exp Ther. 1992;261(3):1143–6.

    CAS  PubMed  Google Scholar 

  250. Gerbeth K, Meins J, Kirste S, Momm F, Schubert-Zsilavecz M, Abdel-Tawab M. Determination of major boswellic acids in plasma by high-pressure liquid chromatography/mass spectrometry. J Pharm Biomed Anal. 2011;56(5):998–1005.

    Article  CAS  PubMed  Google Scholar 

  251. Kirste S, Treier M, Wehrle SJ, et al. Boswellia serrata acts on cerebral edema in patients irradiated for brain tumors: a prospective, randomized, placebo-controlled, double-blind pilot trial. Cancer. 2011;117(16):3788–95.

    Article  PubMed  Google Scholar 

  252. **a Z, Lundgren B, Bergstrand A, DePierre JW, Nassberger L. Changes in the generation of reactive oxygen species and in mitochondrial membrane potential during apoptosis induced by the antidepressants imipramine, clomipramine, and citalopram and the effects on these changes by Bcl-2 and Bcl-X(L). Biochem Pharmacol. 1999;57(10):1199–208.

    Article  CAS  PubMed  Google Scholar 

  253. Syrovets T, Buchele B, Gedig E, Slupsky JR, Simmet T. Acetyl-boswellic acids are novel catalytic inhibitors of human topoisomerases I and IIalpha. Mol Pharmacol. 2000;58(1):71–81.

    CAS  PubMed  Google Scholar 

  254. Reising K, Meins J, Bastian B, et al. Determination of boswellic acids in brain and plasma by high-performance liquid chromatography/tandem mass spectrometry. Anal Chem. 2005;77(20):6640–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Aditi Nadkarni for her advice and editing suggestions on this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey J. Pilkington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Hill, R., Murray, S.A., Maherally, Z., Higgins, S.C., Pilkington, G.J. (2016). Drug Repurposing to Circumvent Chemotherapy Resistance in Brain Tumours. In: Tivnan, A. (eds) Resistance to Targeted Therapies Against Adult Brain Cancers. Resistance to Targeted Anti-Cancer Therapeutics. Springer, Cham. https://doi.org/10.1007/978-3-319-46505-0_6

Download citation

Publish with us

Policies and ethics

Navigation