Numerical Study of a Monolithic Fluid–Structure Formulation

  • Chapter
  • First Online:
Variational Analysis and Aerospace Engineering

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 116))

  • 1574 Accesses

Abstract

The conservation laws of continuum mechanic are naturally written in an Eulerian frame where the difference between a fluid and a solid is only in the expression of the stress tensors, usually with Newton’s hypothesis for the fluids and Helmholtz potentials of energy for hyperelastic solids. There are currently two favored approaches to Fluid Structured Interactions (FSI) both working with the equations for the solid in the initial domain; one uses an ALE formulation for the fluid and the other matches the fluid–structure interfaces using Lagrange multipliers and the immersed boundary method. By contrast the proposed formulation works in the frame of physically deformed solids and proposes a discretization where the structures have large displacements computed in the deformed domain together with the fluid in the same; in such a monolithic formulation velocities of solids and fluids are computed all at once in a single variational formulation by a semi-implicit in time and the finite element method. Besides the simplicity of the formulation the advantage is a single algorithm for a variety of problems including multi-fluids, free boundaries, and FSI. The idea is not new but the progress of mesh generators renders this approach feasible and even reasonably robust. In this article the method and its discretization are presented, stability is discussed showing in a loose fashion were are the difficulties and why one is able to show convergence of monolithic algorithms on fixed domains for fluids in compliant shell vessels restricted to small displacements. A numerical section discusses implementation issues and presents a few simple tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bathe, K.J.: Finite Element Procedures. Prentice-Hall, Englewood Cliffs, New-Jersey (1996)

    MATH  Google Scholar 

  2. Boffi, D., Cavallini, N., Gastaldi, L.: The finite element immersed boundary method with distributed lagrange multiplier. SIAM J. Numer. Anal. 53 (6), 2584–2604 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Boukir, K., Maday, Y., Metivet, B.: A high order characteristics method for the incompressible Navier-Stokes equations. Comp. Methods Appl. Math. Eng. 116, 211–218 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bukaca, M., Canic, S., Glowinski, R., Tambacac, J., Quainia, A.: Fluid-structure interaction in blood flow capturing non-zero longitudinal structure displacement. J. Comput. Phys. 235, 515–541 (2013)

    Article  MathSciNet  Google Scholar 

  5. Chacón-Rebollo, T., Girault, V., Murat, F., Pironneau, O.: Analysis of a coupled fluid-structure model with applications to hemodynamics. SIAM J. Numer. Anal. 54 (2), 994–1019 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ciarlet, P.G.: Mathematical Elasticity. North Holland, Amsterdam (1988)

    MATH  Google Scholar 

  7. Costabel, M., Dauge, M.: Singularities of electromagnetic fields in polyhedral domains. Preprint 97–19, Université de Rennes 1 (1997). http://www.maths.univ-rennes1.fr/~dauge/

  8. Cottet, G.H., Maitre, E., Milcent, T.: Eulerian formulation and level set models for incompressible fluid-structure interaction. M2AN Math. Model. Numer. Anal. 42 (3), 471–492 (2008)

    Google Scholar 

  9. Coupez, Th., Silva, L., Hachem, E.: Implicit boundary and adaptive anisotropic meshes. In: Peretto, S., Formaggia, L. (eds.) New Challenges in Grid Generation and Adaptivity for Scientific Computing. SEMA-SIMAI Springer Series, vol. 5. Springer, Cham (2015)

    Google Scholar 

  10. Fernandez, M.A., Mullaert, J., Vidrascu, M.: Explicit Robin-Neumann schemes for the coupling of incompressible fluids with thin-walled structures. Comp. Methods Appl. Mech. Eng. 267, 566–593 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Formaggia, L., Quarteroni, A., Veneziani, A.: Cardiovasuclar Mathematics. Springer MS&A Series. Springer, Berlin (2009)

    Book  Google Scholar 

  12. Hauret, P.: Méthodes numériques pour la dynamique des structures non-linéaires incompressibles à deux échelles. Doctoral thesis, Ecole Polytechnique (2004)

    Google Scholar 

  13. Hecht, F.: New development in FreeFem++. J. Numer. Math. 20, 251–265 (2012). www.FreeFem.org

    Article  MathSciNet  MATH  Google Scholar 

  14. Hron, J., Turek, S.: A monolithic fem solver for an ALE formulation of fluid’structure interaction with configuration for numerical benchmarking. In: Wesseling, P., Onate, E., Periaux, J. (eds.) European Conference on Computational Fluid Dynamics ECCOMAS CFD 2006. TU Delft, The Netherlands (2006)

    Google Scholar 

  15. Kane, C., Marsden, J.E., Ortiz, M., West, M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49, 1295–1325 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Léger, S.: Méthode lagrangienne actualisée pour des problèmes hyperélastiques en très grandes déformations. Thèse de doctorat, Université Laval (2014)

    Google Scholar 

  17. Le Tallec, P., Hauret, P.: Energy conservation in fluid-structure interactions. In: Neittanmaki, P., Kuznetsov, Y., Pironneau, O. (eds.) Numerical Methods for Scientific Computing, Variational Problems and Applications. CIMNE, Barcelona, (2003)

    Google Scholar 

  18. Le Tallec, P., Mouro, J.: Fluid structure interaction with large structural displacements. Comput. Methods Appl. Mech. Eng. 190 (24–25), 3039–3068 (2001)

    Article  MATH  Google Scholar 

  19. Liu, J.: A second-order changing-connectivity ALE scheme and its application to FSI with large convection of fluids and near contact of structures. J. Comput. Phys. 304 380–423 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu, I.-S., Cipolatti, R., Rincon, M.A.: Incremental linear approximation for finite elasticity. In: Proceedings of the ICNAAM 2006. Wiley, Weinheim (2006)

    Google Scholar 

  21. Lucquin, B., Pironneau, O.: Introduction to Scientific Computing. Wiley, New York (1996)

    MATH  Google Scholar 

  22. Marsden, J., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover Publications, New York (1993)

    MATH  Google Scholar 

  23. Nobile, F., Vergara, C.: An effective fluid-structure interaction formulation for vascular dynamics by generalized robin conditions. SIAM J. Sci. Comput. 30 (2), 731–763 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Peskin, C.S.: The immersed boundary method. Acta Numer. 11, 479–517 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pironneau, O.: Finite Element Methods for Fluids. Wiley, New York (1989)

    MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Frédéric Hecht and Patrice Hauret for very valuable discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Pironneau .

Editor information

Editors and Affiliations

Appendix: The FreeFem++ Script

Appendix: The FreeFem++ Script

// FSI with same variable for fluid and structure

border a(t=10,3)  { x=0; y=t;};  //  left

border b(t=0,10) { x=t; y=3 ;};  //  bottom

border c(t=3,7)  { x=10; y=t ;}; //  right low

border d(t=10,1) { x=t; y=7; };  //  low beam

border e(t=7,8) { x=1; y=t;  };  // left beam

border f(t=1,10) { x=t; y=8; };  // top beam

border g(t=8,10) { x=10; y=t;};  // right up

border hh(t=10,0) { x=t; y=10 ;}; //  top

border ee(t=7,8) { x=10; y=t;  };  // left beam

int m=1;

mesh th = buildmesh( a(m*30)+b(m*20)+c(m*16)+d(m*30)+e(m*5)

              +f(m*30)

+g(m*5)+hh(m*20)+ee(m*5));

real h=0.3;

int fluid=th(1,4).region, beam=th(9,7.5).region;

fespace V2h(th,P2);

fespace Vh(th,P1);

fespace Wh(th,P1);

Vh p,ph;

V2h u=0,v=0,uh,vh,d1=0,d2=0, uold=0, vold=0,

               uu,vv, uuold=0,vvold=0;

real nu=0.1;

real E = 2.15;

real sigma = 0.29;

real mu = E/(2*(1+sigma));

real c1=2*mu/2;

real penal=1e-6;

//real lambda = E*sigma/((1+sigma)*(1-2*sigma));

real gravity = -0.2;

real rhof=0.5, rhos=1.;

macro div(u,v) ( dx(u)+dy(v) ) // EOM

macro DD(u,v)  [[2*dx(u),div(v,u)],[div(v,u),2*dy(v)]] // EOM

macro Grad(u,v)[[dx(u),dy(u)],[dx(v),dy(v)]] // EOM

Vh g11=1,g12=0,g21=0,g22=1, g11aux,g22aux,g12aux,g21aux,

    f11,f12,f21,f22;

macro G[[g11,g12],[g12,g22]]//EOM

int NN=100;

real T=300, dt=T/NN;

problem aa([u,v,p],[uh,vh,ph]) =

int2d(th,beam)( rhos*[u,v]’*[uh,vh]/dt - div(uh,vh)*p

- div(u,v)*ph+ penal*p*ph

+dt*c1*trace(DD(uh,vh)*(DD(u,v)-Grad(u,v)*Grad(d1,d2)’

- Grad(d1,d2)*Grad(u,v)’)))

  + int2d(th,beam) ( -rhos*gravity*vh +c1*trace(DD(uh,vh)

    *(DD(d1,d2)

- Grad(d1,d2)*Grad(d1,d2)’))

-  rhos*[uold,vold]’*[uh,vh]/dt)

 +  int2d(th,fluid)(rhof*[u,v]’*[uh,vh]/dt- div(uh,vh)*p

     -div(u,v)*ph

+ penal*p*ph + nu/2*trace(DD(uh,vh)’*DD(u,v)))

  -  int2d(th,fluid)(rhof*gravity*vh

+rhof*[convect([uuold,vvold],-dt,uuold),

convect([uuold,vvold],-dt,vvold)]’*[uh,vh]/dt)

 + on(1,3,7,8,9,u=0,v=0) + on(2,u=0,v=0) ;

// Computation time loop

for(int n=0;n<NN;n++){

aa;

solve bb([uu,vv],[uh,vh]) = int2d(th,fluid)(

trace(Grad(uu,vv)*Grad(uh,vh)’) )

+ int2d(th,beam)(10000*[uu,vv]’*[uh,vh])

- int2d(th,beam)(10000*[u,v]’*[uh,vh])

+ on(1,2,3,7,8,uu=0,vv=0) + on(4,5,6,9,uu=u,vv=v);

  real mintcc = checkmovemesh(th,[x,y])/5.;

  real mint = checkmovemesh(th,[x+uu*dt,y+vv*dt]);

  uh=d1;

  vh=d2;

  if (mint<mintcc) {

    th=adaptmesh(th,h,IsMetric=1) ;// plot(th);

    }

  else {

th = movemesh(th,[x+uu*dt,y+vv*dt]);

  d1=0; d1[]=uh[]+dt*u[];

  d2=0; d2[]=vh[]+dt*v[];

  uold=0;  uold[]=u[];

  vold=0;  vold[]=v[];

uuold=u;

vvold=v;

  f11=1+dt*dx(uold); f12= dt*dx(vold); f21=dt*dy(uold);

  f22=1+dt*dy(vold);

     g11aux=g11*f11+g12*f21;

 g22aux=g12*f12+g22*f22;

 g12aux=g11*f12+g12*f22 ;

 g21aux=g12*f11+g12*f21 ;

     g11=f11*g11aux+f21*g21aux;

 g22=f12*g12aux+f22*g22aux;

 g12=f11*g12aux+f21*g22aux ;

  }

if((n/10)*10==n) plot(th,[uold,vold]);

vh=det(Grad(d1,d2));

cout<<n*dt<<" <- time, det d -> " << vh[].max<<

" pmax= "<<ph[].max<<" area= "<<int2d(th,beam)(1.)<<endl;

}

}

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pironneau, O. (2016). Numerical Study of a Monolithic Fluid–Structure Formulation. In: Frediani, A., Mohammadi, B., Pironneau, O., Cipolla, V. (eds) Variational Analysis and Aerospace Engineering. Springer Optimization and Its Applications, vol 116. Springer, Cham. https://doi.org/10.1007/978-3-319-45680-5_15

Download citation

Publish with us

Policies and ethics

Navigation