Part of the book series: Practical Guides in Radiation Oncology ((PGRO))

Abstract

The chapter describes the various components of the proton treatment delivery techniques. It includes an introduction of the main equipments for a proton treatment systems, e.g., the accelerator, the beam transport system, and the treatment nozzle which modifies the proton beam properties for specific treatment needs. It discusses the characteristics of the two primary dose delivery methods, i.e., passive scattering and pencil beam scanning. A summary for the main imaging guidance techniques and their specific uses is presented. A brief review of the proton therapy systems currently available in the market is included. It also discusses the requirements and techniques for the quality assurance of the proton treatment delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Smith A, Gillin M, Bues M, et al. The M. D. Anderson proton therapy system. Med Phys. 2009;36:4068–83.

    Article  PubMed  Google Scholar 

  2. Christopher G. Ainsley, James McDonough. Physics considerations in proton therapy. Radiation medicine rounds: proton therapy. C. Thomas and J. Metz (eds). Demos Medical Publishing LLC; New York: 2010.

    Google Scholar 

  3. Akagi T, Higashi A, Tsugami H, et al. Ridge filter design for proton therapy at Hyogo Ion Beam Medical Center. Phys Med Biol. 2003;48:N301–12.

    Article  PubMed  Google Scholar 

  4. Kooy HM, Schaefer M, Rosenthal S, et al. Monitor unit calculations for range-modulated spread-out Bragg peak fields. Phys Med Biol. 2003;48:2797–808.

    Article  PubMed  Google Scholar 

  5. Gillin MT, Sahoo N, Bues M, et al. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Med Phys. 2010;37:154–63.

    Article  PubMed  Google Scholar 

  6. Lomax AJ. Intensity modulated proton therapy and its sensitivity to treatment uncertainties 2: the potential effects of inter-fraction and inter-field motions. Phys Med Biol. 2008;53:1043–56.

    Article  CAS  PubMed  Google Scholar 

  7. Wang D, Dirksen B, Hyer DE, et al. Impact of spot size on plan quality of spot scanning proton radiosurgery for peripheral brain lesions. Med Phys. 2014;41:121705.

    Article  PubMed  Google Scholar 

  8. Ainsley CG, Yeager CM. Practical considerations in the calibration of CT scanners for proton therapy. J Appl Clin Med Phys. 2014;15:4721.

    Article  PubMed  Google Scholar 

  9. Hünemohr N, Paganetti H, Greilich S, et al. Tissue decomposition from dual energy CT data for MC based dose calculation in particle therapy. Med Phys. 2014;41:61714.

    Article  Google Scholar 

  10. ** power ratio calibration and validation with animal tissues. Med Phys. 2016;43:3756.

    Article  Google Scholar 

  11. Arbor N, Dauvergne D, Dedes G, et al. Monte Carlo comparison of x-ray and proton CT for range calculations of proton therapy beams. Phys Med Biol. 2015;60:7585–99.

    Article  CAS  PubMed  Google Scholar 

  12. España S, Paganetti H. The impact of uncertainties in the CT conversion algorithm when predicting proton beam ranges in patients from dose and PET-activity distributions. Phys Med Biol. 2010;55:7557–71.

    Article  PubMed  Google Scholar 

  13. Verburg JM, Riley K, Bortfeld T, et al. Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Phys Med Biol. 2013;58:L37–49.

    Article  PubMed  Google Scholar 

  14. Kang Y, Zhang X, Chang JY, et al. 4D Proton treatment planning strategy for mobile lung tumors. Int J Radiat Oncol Biol Phys. 2007;67:906–14.

    Article  PubMed  Google Scholar 

  15. Richter D, Saito N, Chaudhri N, et al. Four-dimensional patient dose reconstruction for scanned ion beam therapy of moving liver tumors. Int J Radiat Oncol Biol Phys. 2014;89:175–81.

    Article  PubMed  Google Scholar 

  16. Hong TS, DeLaney TF, Mamon HJ, et al. A prospective feasibility study of respiratory-gated proton beam therapy for liver tumors. Pract Radiat Oncol. 2014;4:316–22.

    Article  PubMed  Google Scholar 

  17. Li Y, Kardar L, Li X, et al. On the interplay effects with proton scanning beams in stage III lung cancer. Med Phys. 2014;41:21721.

    Article  Google Scholar 

  18. Grassberger C, Dowdell S, Lomax A, et al. Motion interplay as a function of patient parameters and spot size in spot scanning proton therapy for lung cancer. Int J Radiat Oncol Biol. Phys. 2013;86:380–6.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Dowdell S, Grassberger C, Paganetti H. Four-dimensional Monte Carlo simulations demonstrating how the extent of intensity-modulation impacts motion effects in proton therapy lung treatments. Med Phys. 2013;40:121713.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zeng C, Plastaras JP, James P, et al. Proton pencil beam scanning for mediastinal lymphoma: treatment planning and robustness assessment. Acta Oncol Stockh Swed. 2016;55(9–10):1132–8.

    Google Scholar 

  21. Zeng C, Plastaras JP, Tochner ZA, et al. Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning. Phys Med Biol. 2015;60:3013–29.

    Article  CAS  PubMed  Google Scholar 

  22. Rietzel E, Bert C. Respiratory motion management in particle therapy. Med Phys. 2010;37:449–60.

    Article  PubMed  Google Scholar 

  23. Li H, Zhu XR, Zhang X. Reducing dose uncertainty for spot-scanning proton beam therapy of moving Tumors by optimizing the spot delivery sequence. Int J Radiat Oncol Biol Phys. 2015;93:547–56.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu J, Zhang X, Liao L, et al. Motion-robust intensity-modulated proton therapy for distal esophageal cancer. Med Phys. 2016;43:1111–8.

    Article  PubMed  Google Scholar 

  25. Zhu XR, Poenisch F, Song X, et al. Patient-specific quality assurance for prostate cancer patients receiving spot scanning proton therapy using single-field uniform dose. Int J Radiat Oncol Biol Phys. 2011;81:552–9.

    Article  PubMed  Google Scholar 

  26. Lin L, Kang M, Solberg TD, et al. Use of a novel two-dimensional ionization chamber array for pencil beam scanning proton therapy beam quality assurance. J Appl Clin Med Phys. 2015;16:5323.

    PubMed  Google Scholar 

  27. Zhu XR, Li Y, Mackin D, et al. Towards effective and efficient patient-specific quality assurance for spot scanning proton therapy. Cancers (Basel). 2015;7:631–47.

    Article  Google Scholar 

  28. Yoon M, Kim J-S, Shin D, et al. Computerized tomography-based quality assurance tool for proton range compensators. Med Phys. 2008;35:3511–7.

    Article  PubMed  Google Scholar 

  29. Zenklusen SM, Pedroni E, Meer D. A study on repainting strategies for treating moderately moving targets with proton pencil beam scanning at the new Gantry 2 at PSI. Phys Med Biol. 2010;55:5103–21.

    Article  CAS  PubMed  Google Scholar 

  30. Mast ME, Vredeveld EJ, Credoe HM, et al. Whole breast proton irradiation for maximal reduction of heart dose in breast cancer patients. Breast Cancer Res Treat. 2014;148:33–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimizu S, Miyamoto N, Matsuura T, et al. A proton beam therapy system dedicated to spot-scanning increases accuracy with moving tumors by real-time imaging and gating and reduces equipment size. PLoS One. 2014;9:e94971.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Veiga C, Janssens G, Teng C-L, et al. First clinical investigation of CBCT and deformable registration for adaptive proton therapy of lung cancer. Int J Radiat Oncol Biol Phys. 2016;95:549–59.

    Article  PubMed  Google Scholar 

  33. Jones KC, Stappen FV, Bawiec CR, et al. Experimental observation of acoustic emissions generated by a pulsed proton beam from a hospital-based clinical cyclotron. Med Phys. 2015;42:7090–7.

    Article  PubMed  Google Scholar 

  34. Patch SK, Covo MK, Jackson A, et al. Thermoacoustic range verification using a clinical ultrasound array provides perfectly co-registered overlay of the Bragg peak onto an ultrasound image. Phys Med Biol. 2016;61:5621.

    Article  CAS  PubMed  Google Scholar 

  35. Zhu X, Fakhri GE. Proton therapy verification with PET imaging. Theranostics. 2013;3:731–40.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bentefour EH, Schnuerer R, Lu H-M. Concept of proton radiography using energy resolved dose measurement. Phys Med Biol. 2016;61:N386.

    Article  Google Scholar 

  37. Ding X, Li X, Zhang JM, et al. Spot-scanning proton arc (SPArc) therapy––the first robust and delivery-efficient spot-scanning arc therapy. Int J Radiat Oncol Biol Phys. 2016;96(5):1107–16.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hsiao-Ming Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ding, X., Lin, H., Shen, J., Zou, W., Langen, K., Lu, HM. (2018). Proton Treatment Delivery Techniques. In: Lee, N., et al. Target Volume Delineation and Treatment Planning for Particle Therapy. Practical Guides in Radiation Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-42478-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42478-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42477-4

  • Online ISBN: 978-3-319-42478-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation