Concluding Remarks

  • Chapter
  • First Online:
Science Dynamics and Research Production

Abstract

In this chapter, several concluding remarks are provided about the importance of science for society and about general characteristics of research systems. The importance of statistical laws for research systems is emphasized, and we stress the usefulness of mathematical models and methods for the study and understanding of the dynamics of science and scientific production.

Governments will always play a huge part in solving big problems. They set public policy and are uniquely able to provide the resources to make sure solutions reach everyone who needs them. They also fund basic research, which is a crucial component of the innovation that improves life for everyone.

Bill Gates Up to a certain level of economic development the production of basic science information does not increase the wealth of an underdeveloped country but on an advanced economic and social level, further development will not be possible without increasing the level of maintenance of fundamental research.

Peter Vinkler [1]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 52.74
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 52.74
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Vinkler, The Evaluation of Research by Scientometric Indicators (Chandos, Oxford, 2010)

    Book  Google Scholar 

  2. T. Kealey, The Economic Laws of Scientific Research (Macmillan, Houndmills, 1996)

    Book  Google Scholar 

  3. A. Scharnhorst. Constructing knowledge landscapes within the framework of geometrically oriented evolutionary theories, in Integrative Systems Approaches to Natural and Social Dynamics ed. by M. Matthies, H. Malchow, J. Kriz (Springer, Berlin, 2001) pp. 505–515

    Google Scholar 

  4. R. Klavans, K.W. Boyack, Using global map** to create more accurate document-level maps of research fields. J. Am. Soc. Inform. Sci. Technol. 62, 1–18 (2011)

    Article  Google Scholar 

  5. K.W. Boyack, R. Klavans, K. Börner, Map** the backbone of science. Scientometrics 64, 351–374 (2005)

    Article  Google Scholar 

  6. R.M. Shiffrin, K. Börner, Map** knowledge domains. PNAS 101, 5183–5185 (2004)

    Article  Google Scholar 

  7. K. Börner, L. Dall’Asta, W. Ke, A. Vespignani, Studying the emerging global brain: analyzing and visualizing the impact of co-authorship teams. Complexity 10, 57–67 (2005)

    Article  Google Scholar 

  8. A. Skupin, A cartographic approach to visualizing conference abstracts. Comput. Graphics Appl. 22, 50–58 (2002)

    Article  Google Scholar 

  9. D. Hakken, The Knowledge Landscapes of Cyberspace (Routledge, London, 2004)

    Google Scholar 

  10. E. Bruckner, W. Ebeling, A. Scharnhorst, The application of evolution models in scientometrics. Scientometrics 18, 21–41 (1990)

    Article  Google Scholar 

  11. E. Bruckner, W. Ebeling, M.A. Jimenez Montano, A. Scharnhorst. Hyperselection and innovation described by a stochastic model of technological evolution, in Evolutionary Economics and Chaos Theory. New directions in Technology Studies ed. by L. Leydesdorff, P. van den Besselaar (St. Martin’s Press, 1994) pp. 79–90

    Google Scholar 

  12. E. Bruckner, W. Ebeling, M.A. Jimenez, Montano, A. Scharnhorst. Nonlinear stochastic effects of substitution—an evolutionary approach. J. Evol. Econ. 6, 1–30 (1996)

    Google Scholar 

  13. E. Bruckner, W. Ebeling, A. Scharnhorst, Stochastic dynamics of instabilities in evolutionary systems. Sys. Dyn. Rev. 5, 176–191 (1989)

    Article  Google Scholar 

  14. W. Ebeling, Karmeshu, A. Scharnhorst. Dynamics of economic and technological search processes in complex adaptive landscapes. Adv. Complex Syst. 4, 71–88 (2001)

    Google Scholar 

  15. W. Ebeling, A. Scharnhorst, Selforganization models for field mobility of physicists. Czech J. Phys. 36, 43–46 (1986)

    Article  Google Scholar 

  16. W. Ebeling, A. Scharnhorst, M.A.J. Montano, Karmeshchu. Evolutions-und Innovationsdynamik als Suchprozeß in Komplexe Systeme und Nichtlineare Dynamik in Natur und Gesellschaft: Komplexitätsforschung in Deutschland auf dem Weg ins nächste Jahrhundert ed. by K. Mainzer (Springer, Berlin, 1999)

    Google Scholar 

  17. D. Helbing, Quantitative Sociodynamics: Stochastic Methods and Models of Social Interaction Processes (Springer, Berlin, 2010)

    Book  MATH  Google Scholar 

  18. F. Schweitzer, Brownian Agents and Active Particles: Collective Dynamics in the Natural and Social Sciences (Springer, Berlin, 2003)

    Google Scholar 

  19. F. Schweitzer (ed.), Self-Organization of Complex Structures: From Individual to Collective Dynamics (Gordon and Breach, Australia, 1997)

    MATH  Google Scholar 

  20. B. Skyrms, Social Dynamics (Oxford University Press, Oxford, 2014)

    Book  Google Scholar 

  21. M. Matthies, H. Malchow, J. Kriz (eds.), Integrative Systems Approaches to Natural and Social Dynamics (Springer, Berlin, 2001)

    Google Scholar 

  22. J. Klüver. The dynamics and evolution of social systems, in New Foundations of a Mathematical Sociology (Kluwer, Dordrecht, 2000)

    Google Scholar 

  23. N.B. Tuma, M.T. Hannan. Social Dynamics. Models and Methods (Academic Press, Orlando, FL, 1984)

    Google Scholar 

  24. A. Bejan, W. Merkx, Constructal Theory of Social Dynamics (Springer, New York, 2007)

    Google Scholar 

  25. G. Naldi, L. Pareshi, G. Toscani (eds.), Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences (Springer, New York, 2010)

    MATH  Google Scholar 

  26. P. Doreian, F.N. Stokman (eds.), Evolution of Social Networks (Routledge, Amsterdam, 2013)

    MATH  Google Scholar 

  27. S. de Marchi, Computational and Mathematical Modeling in the Social Sciences (Cambridge Iniversity Press, Cambridge, 2005)

    Book  Google Scholar 

  28. G.A. Marsan, N. Bellomo, A. Tosin. Complex Systems and Society. Modeling and Simulation. (Springer, Berlin, 2013)

    Google Scholar 

  29. N. Bellomo. Modeling Complex Living Systems. A Kinetic Theory and Stochastic Game Approach. (Birkhäuser, Boston, 2008)

    Google Scholar 

  30. J. Lorenz, H. Rauhut, F. Schweitzer, D. Helbing, How social influence can undermine the wisdom of crowd effect. PNAS 108, 9020–9025 (2011)

    Article  Google Scholar 

  31. L.M.A. Bettencourt, J. Lobo, D. Helbing, C. Kühnert, G.B. West, Growth, innovation, scaling, and the pace of life in cities. PNAS 104, 7301–7306 (2007)

    Article  Google Scholar 

  32. J.A. Holyst, K. Kacperski, F. Schweitzer. Social impact models of opinion dynamics, in Annual reviews of Computationsl Physics IX ed. by D. Stauffer (World Scientific, Singapore, 2001)

    Google Scholar 

  33. D. Helbing, P. Molnar, Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  34. D. Helbing, Verkehrsdynamik: neue physikalische Modellierungskonzepte (Springer, Berlin, 2013)

    Google Scholar 

  35. D. Helbing, J. Keltsch, P. Molnar, Modelling the evolution of human trail systems. Nature 388(6637), 47–50 (1997)

    Article  Google Scholar 

  36. F. Schweitzer, J. Steinbrink, Estimation of megacity growth: simple rules versus complex phenomena. Appl. Geogr. 18, 69–81 (1998)

    Article  Google Scholar 

  37. F. Schweitzer, W. Ebeling, H. Rose, O. Weiss, Optimization of road networks using evolutionary strategies. Evol. Comput. 5, 419–438 (1997)

    Article  Google Scholar 

  38. F. Schweitzer (ed.), Modeling Complexity in Economic and Social Systems (World Scientific, Singapore, 2002)

    MATH  Google Scholar 

  39. F. Schweitzer, R. Mach. The epidemics of donations: logistic growth and power-laws. PLos One 3, e 1458 (2008)

    Google Scholar 

  40. F. Schweitzer, L. Behera, Nonlinear voter models: the transition from invasion to coexistence. Eur. J. Phys. B 67, 301–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Lucio-Arias, A. Scharnhorst. Mathematical approaches to modeling science from an algorithmic-historiography perspective, in Models of Science Dynamics ed. by A. Scharnhorst, K.Börner, P. van den Besselaar (Springer, Berlin, 2012), pp. 23–66

    Google Scholar 

  42. D. Crouch, J. Irvine, B.R. Martin. Bibliometric analysis for science policy: an evaluation of the United Kingdom’s research performance in ocean currents and protein crystallography. Scientometrics 9, 239–267 (1986)

    Google Scholar 

  43. N. Payette. Agent-based models of science, in Models of Science Dynamics ed. by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer, Berlin, 2012) pp. 127–157

    Google Scholar 

  44. M. Hanauske. Evolutionary game theory and complex network of scientific information. Models of Science Dynamics ed. by A. Scharnhorst, K. Börner, P. van den Besselaar (Springer, Berlin, 2012), pp. 159–191

    Google Scholar 

  45. J.M. Russel, R. Rousseau. Bibliometrics and institutional evaluation, in Encyclopedia of Life Support Systems (EOLSS). Part 19.3: Science and Technology Policy ed. by In R. Arvantis (EOLSS Publishers, Oxford, UK, 2002), pp. 1–20

    Google Scholar 

  46. D.J. de Solla, Price. A general theory of bibliometric and other cumulative advantage processes. J. Am. Soc. Inform. Sci. 27, 292–306 (1976)

    Article  Google Scholar 

  47. J. Enders, R. Whitley, J. Glser (eds.), The Changing Governance of the Sciences. The Advent of Research Evaluation Systems. Sociology of the Sciences Yearbook (Springer, Dordrecht, 2007)

    Google Scholar 

  48. L. Leydesdorff, L. Bornmann, R. Mutz, T. Opthof, Turning the tables on citation analysis one more time: principles for comparing sets of documents. J. Am. Soc. Inform. Sci. Technol. 62, 1370–1381 (2011)

    Article  Google Scholar 

  49. O. Amsterdamska, L. Leydesdorff, Citations: indicators of significance? Scientometrics 15, 449–471 (1989)

    Article  Google Scholar 

  50. E.C.M. Noyons, H.F. Moed, M. Luwel, Combining map** and citation analysis for evaluative bibliometric purposes: a bibliometric study. J. Am. Soc. Inform. Sci. 50, 115–131 (1999)

    Article  Google Scholar 

  51. C. Oppenheim, S.P. Renn, Highly cited old papers and the reasons why they continue to be cited. J. Am. Soc. Inform. Sci. 29, 225–231 (1978)

    Article  Google Scholar 

  52. H. Small, E. Sweeney, Clustering the science citation index using co-citations i: a comparison of methods. Scientometrics 7, 391–409 (1985)

    Article  Google Scholar 

  53. H. Small, E. Sweeney, E. Greenlee, Clustering the science citation index using co-citations. ii: map** science. Scientometrics 8, 321–340 (1985)

    Article  Google Scholar 

  54. R. Rousseau, A. Zuccala, A classification of author co-citations: definitions and search strategies. J. Am. Soc. Inform. Sci. Technol. 55, 513–529 (2004)

    Article  Google Scholar 

  55. H. Small, Macro-level changes in the structure of co-citation clusters: 1983–1989. Scientometrics 26, 5–20 (1993)

    Article  Google Scholar 

  56. L. Leydesdorff, On the normalization and visualization of author co-citation data: Salton’s cosine versus the Jaccard index. J. Am. Soc. Inform. Sci. Technol. 59, 77–85 (2008)

    Article  Google Scholar 

  57. H.D. White, K.W. McCain, Vizualizing a discipline: an author co-citation analysis of information science, 1972–1995. J. Am. Soc. Inform. Sci. 49, 327–355 (1998)

    Article  Google Scholar 

  58. M. Zitt, E. Bassecoulard, Development of a method for detection and trend analysis of research fronts built by lexical or cocitation analysis. Scientometrics 30, 333–351 (1994)

    Article  Google Scholar 

  59. H.D. White, B.C. Griffith, Author cocitation: a literature measure of intellectual structure. J. Am. Soc. Inform. Sci. 32, 163–171 (1981)

    Article  Google Scholar 

  60. Y. Ding, R. Rousseau, D. Wolfram (eds.), Measuring Scholarly Impact Methods and Practice (Springer, Chaim, 2014)

    Google Scholar 

  61. N.J. van Eck, L. Waltman, Vizualizing bibliometric networks, in Measuring Scholarly Impact Methods and Practice ed. by Y. Ding, R. Rousseau, D. Wolfram (Springer, Chaim, 2014), pp. 285–320

    Google Scholar 

  62. K. Börner, Atlas of Science: Visualizing What We Know (MIT Press, Cambridge, MA, 2010)

    Google Scholar 

  63. K. Börner, C. Chen, K.W. Boyack, Visualizing knowledge domains. Annu. Rev. Inform. Sci. Technol. 37(1), 179–255 (2003)

    Article  Google Scholar 

  64. W.D. Nooy, A. Mrvar, Y.V. Batageli, Exploratory Social Network Analysis with Pajek, 2nd edn. (Cambridge University Press, Cambridge, 2011)

    Book  Google Scholar 

  65. M. Bastian, S. Heymann, M. Jacomy. Gephi: An open source software for exploring and manipulating networks. in Proceedings of the Third International ICWSM Conference (2009), pp. 361–362

    Google Scholar 

  66. Sci2 Team. Science of Science (Sci2) Tool: Indiana University and SciTech Strategies (2009), http://sci2.cns.iu.edu

  67. K. Börner, D.E. Polley. Replicable science of science, in Measuring Scholarly Impact Methods and Practic, ed. by Y. Ding, R. Rousseau, D. Wolfram (Springer, Chaim, 2014), pp. 321–341

    Google Scholar 

  68. N.J. van Eck, L. Waltman, Software survey: VOSviewer, a computer program for bibliometric map**. Scientometrics 84, 523–538 (2010)

    Article  Google Scholar 

  69. M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proc. Nat. Acad. Sci. 105, 1118–1123 (2008)

    Article  Google Scholar 

  70. M. Rosvall, C.T. Bergstrom, Map** change in large networks. PLoS ONE 5, e8694 (2010)

    Article  Google Scholar 

  71. L. Bohlin, D. Edler, A. Lancichinetti, M. Rosval, Community detection and visualization of networks with the map equation framework, in Measuring Scholarly Impact ed. by Y. Ding, R. Rousseau, D. Wolfram (Springer, Chaim, 2014)

    Google Scholar 

  72. K.M. Carley, Computational and mathematical organization theory: Perspective and directions. Comput. Math. Organ. Theory 1, 39–56 (1995)

    Article  Google Scholar 

  73. K.J. Arrow, R. Radner, Allocation of resources in large teams. Econometrica 47, 361–385 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  74. A.W. Bausch, Evolving intergroup cooperation. Comput. Math. Organ. Theory 20, 369–393 (2014)

    Article  Google Scholar 

  75. N. Nan, R. Zmund, E. Yatgin, A complex adaptive systems perspective of innovation diffusion: an integrated theory and validated virtual laboratory. Comput. Math. Organ. Theory 20, 52–88 (2014)

    Article  Google Scholar 

  76. N. Hoser, Public funding in the academic field of nanotechnology: a multi-agent based model. Comput. Math. Organ. Theory 19, 253–281 (2013)

    Article  Google Scholar 

  77. Z.-S. Jiang, Y.-H. Hao, Game analysis of technology innovation alliance stability based on knowledge transfer. Comput. Math. Organ. Theory 19, 403–421 (2013)

    Article  Google Scholar 

  78. L.A. Costa, J.A. de Matos, Attitude change in arbitrary large organizations. Comput. Math. Organ. Theory 20, 219–251 (2014)

    Google Scholar 

  79. C.M. Schlick, S. Duckwitz, S. Schneider, Project dynamics and emergent complexity. Comput. Math. Organ. Theory 19, 480–515 (2013)

    Article  Google Scholar 

  80. A.L. Osipian, Corrupt organizations: modeling educators’ misconduct with cellular automata. Comput. Math. Organ. Theory 19, 1–24 (2013)

    Article  Google Scholar 

  81. K. Hansson, P. Karlström, A. Larsson, H. Verhagen, Reputation, inequality and meeting techniques: visualising user hierarchy to support collaboration. Comput. Math. Organ. Theory 20, 155–175 (2014)

    Article  Google Scholar 

  82. Y. Zhang, Y. Wu, How behaviors spread in dynamic social networks. Comput. Math. Organ. Theory 18, 419–444 (2012)

    Article  Google Scholar 

  83. L. Chen, G.G. Gable, H. Hu, Communication and organizational social networks: a simulation model. Comput. Math. Organ. Theory 19, 460–479 (2013)

    Article  Google Scholar 

  84. C. Cioffi-Revilla, Simplicity and reality in computational modeling of politics. Comput. Math. Organ. Theory 15, 26–46 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay K. Vitanov .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vitanov, N.K. (2016). Concluding Remarks. In: Science Dynamics and Research Production. Qualitative and Quantitative Analysis of Scientific and Scholarly Communication. Springer, Cham. https://doi.org/10.1007/978-3-319-41631-1_6

Download citation

Publish with us

Policies and ethics

Navigation