Beach Morphodynamics in Subarnarekha Delta Plain

  • Chapter
  • First Online:
Coastal Morphodynamics

Part of the book series: SpringerBriefs in Geography ((BRIEFSGEOGRAPHY))

  • 358 Accesses

Abstract

While hydrodynamic processes respond instantaneously to morphological change, morphological change requires the redistribution of sediment. As sediment takes a finite time to move, there is a lag in the morphological response to hydrodynamic forcing. Sediment can therefore be considered to be a time-dependent coupling mechanism. Since the boundary conditions of hydrodynamic forcing change regularly this may mean that the beach never attains equilibrium. Morphodynamic processes exhibit positive and negative feedbacks nonlinearities and threshold behavior. The present study deals with beach morphodynamics using Mopla module of SMC which is a numerical system called Coastal Modeling System ( SMC) is a part of the Spanish Beach Nourishment Manual (SBM). Mopla module of SMC further incorporated with wave propagation model (Karkby and Dalrym model), current model (Navier and Slokes equation) and the sediment model (Bailard and Soulsby model). Three study points (Kirtania, Choumukh and Rasalpur) have been chosen for beach morphodynamics using this wave, current and sediment model at the Balasore coast, Odish, India. The results shows that the significant wave height is 0.62–1.20 m in Kirtaniya, 0.00–0.90 m in Choumukh and 0.10–0.85 m in Rasalpur. The present study also reveals the potential transport of sediment at near shore region which is 0.25–0.1 m3/h/ml at Kirtaniya sector, 0.01–0.04 m3/h/ml at Choumukh and 0.015–0.06 m3/h/ml at Rasalpur sector. The height of sediment of erosion and accretion is bounded between −0.05 and 0.02 m at Kirtaniya, −0.01 and 0.001 m at Choumukh and −0.02 and 0.01 m at Rasalpur sector after the 48 h duration of model calibration. The area of erosion and accretion can also be presented at the each point of study. So one can easily estimate the volume of sediment mobilization by measuring the area under erosion and accretion respectively in a particular beach and also can take the management measures for that particular coastal area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bernabeu, A., Medina, R., Vidal, C., & Munoz-Perez, J. J. (2001). Estudio morfologico del perfil de playa: Modelo de perfil de equilibrio en dos tramos. Rev. Soc. Geil. Espana, 14(3–4), 227–236.3.

    Google Scholar 

  • Bird, E. C. F. (1985). Coastline changes: A global review. Chichester, U.K.: Wiley.

    Google Scholar 

  • Bodge, K. R, Olson, E. J, & Creed, C. G. (1993). Performance of beach nourishment at Hilton Head Island, S.C. Beach Nourishment Engineering and Management Considerations. Proc. Co. Zone ’93. (pp 16–30). New Orleans: ASCE.

    Google Scholar 

  • Bruun, P. (1954). Coast erosion and the development of beach profiles. Beach Erosion Board Technical Memo No. 44. U.S. Army Corps of Engineers.

    Google Scholar 

  • Camenen, B, & Larson, M. (2007). A suspended load sediment transport formula for the nearshore. Journal of Coastal Research.

    Google Scholar 

  • Chen, S. X., & Liu, J. S. (1997). Statistical applications of the poisson- binomial and conditional bernoulli distributions. Statistica Sinica, 7, 875–892.

    Google Scholar 

  • Chen, X. H., Dempster, A. P., & Liu, J. S. (1994). Weighted finite population sampling to maximize entropy. Biometrika, 81, 457–469.

    Article  Google Scholar 

  • Coastal engineering research centre (CERC). (2003).

    Google Scholar 

  • Cooker, M. J., Peregrine, D. H., Videal, C., & Dold, J. W. (1990). The interaction between a solitary wave and a submerged semicircular cylinder. Journal of Fluid Mechanics, 215, 1–22.

    Article  Google Scholar 

  • De Vriend, H. J., Copabianco, M., Chesher, T., de Swart, H. D., Latteux, B., & Stive, M. J. F. (1993). Approaches to long-term modelling of coastal morphology: A review. Coastal Engineering, 21, 225–269.

    Article  Google Scholar 

  • Dean, R. G. (1977). Equilibrium beach profiles, U.S. Atlantic and Gulf Coasts. Technical Report No. 12. U. Newark, Delaware.

    Google Scholar 

  • Fredsoe, J., & Deigaard, R. (1992). Mechanics of coastal sediment transport: Advanced series on ocean engineering. Singapore: World Science.

    Google Scholar 

  • Gomea-Pina, G. (1995). Analisis de perfiles de playa en las fachadas cantabrica y atlantica de la coasta Espanola y su aplicacion a proyectos de regeneracion. MsC. Thesis. University of Cantabria.

    Google Scholar 

  • González, M., & Medina, R. (1999). Equilibrium shoreline response behind a single offshore breakwater. In Proceedings Coastal Sediments ’99 (pp. 844–859). ASCE.

    Google Scholar 

  • Hasselmann, K. (1974). On the spectral dissipation of ocean waves due to white cap**. Boundary-Layer Meteorology, 6(1–2), 107–127.

    Google Scholar 

  • Ho, S. K. (1971). Crenulate shaped bays. Master of Engineering Thesis 346. Bangkok: Asian Institute of Technology.

    Google Scholar 

  • Hsu, J. R. C, Silveste, R., & **a, Y. M. (1987). New characteristics of equilibrium shaped bays. In Proceedings 25th Coastal Engineering Conference (pp. 3986–3999). ASCE.

    Google Scholar 

  • Inman, D. L., & Jenkins, S. A. (2002). Model to predict mine migration and related bed form. Annual report submitted to ONR Code 322 MG (Tom Drake), 8 pp., 5 figs. http://www.onr.navy.mil.

  • Khayyer, A., Gotoh, H., & Shao, S. D. (2008). Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coastal Engineering, 55, 236–250.

    Article  Google Scholar 

  • Komar, P. D. (Ed.). (1983). Beach processes and erosion—an introduction. In Handbook of Coastal Processes and Erosion. p. 30l, Washington: CRC Press.

    Google Scholar 

  • Koutitas, C. G. (1988). Mathematical models in coastal engineering. London: Pen tech Press.

    Google Scholar 

  • Larson, J., Lynch, G., Games, D., & Seubert, P. (1999). Alterations in synaptic transmission and long-term potentiation in hippocampal slices from young and aged PDAPP mice. Brain Research, 840, 23–35.

    Article  Google Scholar 

  • Lippmann, T. C., & Holman, R. A. (1991). Phase speed and angle of breaking waves measured with video techniques. Coastal Sediments ’91, Vol. 1, pp. 542–556.

    Google Scholar 

  • Liu, P. L. F., & Tsay, T. K. (1983). On weak reflection of water waves. Journal of Fluid Mechanics, 131, 59–71.

    Article  Google Scholar 

  • Madsen, J. D., Sutherland, J. W., Bloomfield, J. A., Eichler, L. W., & Boylen, C. W. (1991). The decline of native vegetation under dense Eurasian water milfoil canopies. Journal of Aquatic Plant Management, 29, 94–99.

    Google Scholar 

  • Medina, R., Bernabeu, A. M., Vidal, C., & Gonzalez, M. (2000). Relationships between beach morphodynamics and equilibrium profiles. In Proceedings of the 27th International Coastal Engineering Conference (pp. 2589–2601). ASCE.

    Google Scholar 

  • Millot, C., & Crepon, M. (1981). Inertial oscillations on the continental shelf of the Gulf of Lions-Observations and theory. Journal of Physical Oceanography, 11(5): 639–657.

    Google Scholar 

  • Mooers, C. N. (1975). Several effects of a baroclinic current on the cross stream propagation of inertial-internal waves. Geophysical and Astrophysical Fluid Dynamics, 6, 245–275.

    Article  Google Scholar 

  • Nielsen, P. (1992). Coastal bottom boundary layers and sediment transport: Advanced series on ocean engineering. Singapore: World Scientific Publication.

    Google Scholar 

  • Rattanapitikon, W., & Shibayama, T. (2006). Breaking wave formulas for breaking depth and orbital to phase velocity ratio. Coastal Engineering, 42, 389–406.

    Google Scholar 

  • Rijn, L. C. (1988). Handbook on sediment transport by currents and waves. Delft, The Netherlands: Delft Hydraulics.

    Google Scholar 

  • Seymour, R.J. (1996). Wave climate variability in Southern California. Journal of Waterway, Port, Coastal, and Ocean Engineering, ASCE, 122(4) 182–186.

    Google Scholar 

  • Silvester, R., & Hsu, J. R. C. (1993). Coastal stabilization: Innovative concepts. Englewood Cliffs, N.J.: Prentice-Hall.

    Google Scholar 

  • Silvester, R., & Hsu, J. R. C. (1997). Coastal Stabilization. Advanced Series on Ocean Engineering. Vol. 14. World Scientific Publishing: Singapore.

    Google Scholar 

  • Sleath, J. F. A. (1984). Sea Bed Mechanics. New York: Wiley.

    Google Scholar 

  • Suhayda, J. N., & Pettigrew, N. R. (1977). Observations of wave height and wave celerity in the surf zone. Journal of Geophysical Research, 82(9), 1419–1424.

    Article  Google Scholar 

  • Tsai, C. P., Chen, H. B., Hwung, H. H., & Huang, M. J. (2005). Examination of emperical formulas for wave shoaling and breaking on steep slopes. Ocean Engineering, 32, 469–483.

    Article  Google Scholar 

  • Vinje, T., & Brevig, P. (1980). Numerical simulation of breaking waves. Finite Elements in Water Resources, 2, 196–210.

    Google Scholar 

  • Wang, H. (1975). Modelling an ocean pond. A two-dimensional finite element hydrodynamic model of Ninigret Pond, Charlestown, Rhode Island. University of Rhode Island/Marine Technical Report 40.

    Google Scholar 

  • **ng, J., & Davies, A. M. (2002). Processes influencing the non-linear interaction between inertial oscillations, near inertial internal waves and internal tides. Geophysical Research Letters, 29(5): 1067. doi:10.1029/2001GL014199.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilay Kanti Barman .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Barman, N.K., Chatterjee, S., Paul, A.K. (2016). Beach Morphodynamics in Subarnarekha Delta Plain. In: Coastal Morphodynamics. SpringerBriefs in Geography. Springer, Cham. https://doi.org/10.1007/978-3-319-33575-9_5

Download citation

Publish with us

Policies and ethics

Navigation