Surface Treatments of Titanium with Antibacterial Agents for Implant Applications

  • Chapter
  • First Online:
Biomedical and Pharmaceutical Applications of Electrochemistry

Part of the book series: Modern Aspects of Electrochemistry ((MAOE,volume 60))

Abstract

It was only in the twentieth century that technology enabled the isolation of metallic titanium from its minerals [1]. Thus, industrial production of titanium began relatively late, in 1946. Due to its low density and high corrosion resistance, titanium became indispensable in the aerospace industry. The use of titanium in biomedical applications dates from 1965. Commercially pure titanium and its alloy Ti–6Al–4V are the most commonly used titanium-based biomaterials, especially in orthopedics. Millions of patients are treated with various joint replacements, many patients also with other types of prostheses, such as tumor prostheses, small joint prostheses, fracture-treatment devices, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Glycocalix—the glycoprotein–polysaccharide covering that surrounds many cells.

  2. 2.

    PI is a membrane-impermeable fluorescent dye that is used to detect permeation of the cell membrane.

  3. 3.

    There are several possibilities to evaluate cell viability and proliferation:

    • MTT reagent [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolim bromide] is usually used to detect cell viability or proliferation of cells in contact with the material surface. MTT reagent reacts directly with mitochondrial to form formazan crystals on metabolically active cells.

    • Alamar blue® assay is designed to measure quantitatively the proliferation of various human and animal cell lines, bacteria, and fungi. It incorporates a fluorometric/colorimetric growth indicator based on detection of metabolic activity. Specifically, the system incorporates an oxidation–reduction indicator that both fluoresces and changes color in response to chemical reduction of growth medium resulting from cell growth.

    • Double-stranded DNA (dsDNA) test using an ultrasensitive fluorescent nucleic acid stain for quantitating dsDNA in solution. Detecting and quantitating small amounts of DNA is extremely important in a wide variety of biological applications.

    • Lactate dehydrogenase (LDH) activity, which is a marker for tissue damage.

  4. 4.

    The activity and attachment of osteoblast cells can be evaluated by:

    • Cell adhesion analyzed under electron microscope after culturing with osteoblast cell line.

    • Osteoblast activity measured by alkaline phosphatase (ALP) activity. ALP is a hydrolase enzyme responsible for removing phosphate groups from many types of molecules, including nucleotides, proteins, and alkaloids. Also, ALP increases if there is active bone formation occurring, as ALP is a by-product of osteoblast activity.

References

  1. Milošev I (2011) Metallic materials for biomedical applications: laboratory and clinical studies. Pure Appl Chem 83:309–324

    Google Scholar 

  2. Namba RS, Inacio MC, Paxton EW (2012) Risk factors associated with surgical site infection in 30,491 primary total hip replacements. J Bone Joint Surg 94:1330–1338

    Article  CAS  Google Scholar 

  3. Schmidmaier G, Lucke M, Wildemann B, Haas NP, Raschke M (2006) Prophylaxis and treatment of implant-related infections by antibiotics-coated implants: a review. Injury 37:S105–S112

    Article  Google Scholar 

  4. Goodman SB, Yao Z, Keeney M, Yang F (2013) The future of biologic coatings for orthopaedic implants. Biomaterials 34:3174–3183

    Article  CAS  Google Scholar 

  5. Campoccia D, Montanaro L, Arciola CR (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  CAS  Google Scholar 

  6. Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366

    Article  CAS  Google Scholar 

  7. Zhao L, Chu PK, Zhang Y, Wu Z (2009) Antibacterial coatings on titanium implants. J Biomed Mater Res 91B:470–480

    Article  CAS  Google Scholar 

  8. Durmus NG, Webster TJ (2012) Nanostructured titanium: the ideal material for improving orthopedic implant efficacy. Nanomedicine 7:791–793

    Article  CAS  Google Scholar 

  9. Ercan B, Webster TJ (2010) The effect of biphasic electrical stimulation on osteoblast function at anodized nanotubular titanium surfaces. Biomaterials 31:3684–3693

    Article  CAS  Google Scholar 

  10. Kulkarni M, Mazare A, Gongadze E, Pertukova Š, Kralj-Iglič V, Milošev I, Schmuki P, Iglič A, Mozetič M (2015) Titanium nanostructures for biomedical applications. Nanotechnology 26:062002 (18p)

    Article  CAS  Google Scholar 

  11. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595

    Article  CAS  Google Scholar 

  12. Anselme K, Davidson P, Popa AM, Giazzon M, Liley M, Ploux L (2010) The interaction of cells and bacteria with surfaces structured at the nanometre scale. Acta Biomater 6:3824–3846

    Article  CAS  Google Scholar 

  13. Wu Y, Zitelli JP, TenHuisen KS, Yu X, Libera MR (2011) Differential response of Staphylococci and osteoblasts to varying titanium surface roughness. Biomaterials 32:951–960

    Article  CAS  Google Scholar 

  14. Puckett SD, Taylor E, Raimondo T, Webster TJ (2010) The relationship between the nanostructure of titanium surfaces and bacterial attachment. Biomaterials 31:706–713

    Article  CAS  Google Scholar 

  15. Gallardo-Moreno AM, Pacha-Olivenza MA, Saldana L, Perez-Giraldo C, Bruque JM, Vilaboa N, González-Martín ML (2009) In vitro biocompatibility and bacterial adhesion of physico-chemically modified Ti6Al4V surface by means of UV irradiation. Acta Biomater 5:181–192

    Article  CAS  Google Scholar 

  16. Grigorescu S, Ungureanu C, Kirchgeorg R, Schmuki P, Demetrescu I (2012) Various sized nanotubes on TiZr for antibacterial surfaces. Appl Surf Sci 270:190–196

    Article  CAS  Google Scholar 

  17. Mathew D, Bhardwaj G, Wang Q, Sun L, Ercan B, Geetha M, Webster TJ (2014) Decreased Staphylococcus aureus and increased osteoblast density on nanostructured electrophoretic-deposited hydroxyapatite on titanium without the use of pharmaceutical. Int J Nanomed 9:1775–1781

    Article  CAS  Google Scholar 

  18. Neoh KG, Hu X, Zheng D, Kang ET (2012) Balancing osteoblast functions and bacterial adhesion on functionalized titanium surfaces. Biomaterials 33:2813–2822

    Article  CAS  Google Scholar 

  19. Gowri S, Gandhi R Rajiv, Snethil S, Sundrarajan M (2015) Effect of calcination temperature of Nyctanthes plant mediated zirconia nanoparticles; optical and antibacterial activity for optimized zirconia. J Bionanosci 9:181−189

    Google Scholar 

  20. Verissimo NC, Gailich BM, Oliveira HG, Caram R, Webster TJ (2015) Reducing Staphylococcus aureus growth on Ti alloy nanostructured surfaces through the addition of Sn. J Biomed Mater Res A 103A:3757–3763

    Article  CAS  Google Scholar 

  21. Guo L, Yuan W, Lu Z, Li CM (2013) Polymer/nanosilver composite coatings for antibacterial applications. Colloid Surf A 439:69–83

    Article  CAS  Google Scholar 

  22. Leckband D, Sheth S, Halperin A (1999) Grafted poly (ethylene oxide) brushes as nonfouling surface coatings. J Biomater Sci 10:1125–1147

    Article  CAS  Google Scholar 

  23. Wittschier N, Lengsfeld C, Vorthems S, Stratmann U, Ernst JF, Verspohl EJ, Hensel A (2007) Large molecules as anti-adhesive compounds against pathogens. J Pharm Pharmacol 59:777–786

    Article  CAS  Google Scholar 

  24. Wang J, Wang Z, Guo S, Zhang J, Song Y, Dong X, Wang, Jihong Yu X (2011) Antibacterial and anti-adhesive zeolite coatings on titanium alloy surface. Microporous Mesoporous Mater 146:216–222

    Google Scholar 

  25. Ungureanu C, Pirvu C, Mindroiu M, Demetrescu I (2012) Antibacterial polymeric coating based on polypyrrole and polyethylene glycol on a new alloy TiAlZr. Prog Org Coat 75:349–355

    Article  CAS  Google Scholar 

  26. Dumitriu C, Popescu M, Ungureanu C, Pirvu C (2015) Antibacterial efficiencies of TiO2 nanostructured layers prepared in organic viscous electrolytes. Appl Surf Sci 341:157–165

    Article  CAS  Google Scholar 

  27. Harris LG, Tosatti S, Wieland M, Textor M, Richards RG (2004) Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers. Biomaterials 25:4135–4148

    Article  CAS  Google Scholar 

  28. Maddikeri RR, Tosatti S, Schuler M, Chessari S, Textor M, Richards RG, Harris LG (2008) Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: A first step toward cell selective surfaces. J Biomed Mater Res 84A:425–435

    Article  CAS  Google Scholar 

  29. Chen J, Cao J, Wang J, Maitz FM, Guo L, Zhao Y, Li Q, **ong K, Huang N (2012) Biofunctionalization of titanium with PEG and anti-CD34 for hemocompatibility and stimulated endothelialization. J Colloid Interface Sci 368:636–647

    Article  CAS  Google Scholar 

  30. Zhang F, Zhang Z, Zhu X, Kang E-T, Neoh K-G (2008) Silk-functionalized titanium surfaces for enhancing osteoblast functions and reducing bacterial adhesion. Biomaterials 29:47515–47519

    Google Scholar 

  31. Kugel A, Stafslien S, Chisholm BJ (2011) Antimicrobial coatings produced by “tethering” biocides to the coating matrix: A comprehensive review. Prog Org Coat 72:222–252

    Article  CAS  Google Scholar 

  32. Costa F, Carvalho IF, Montelaro RC, Gomes P, Martins ACL (2011) Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterials surfaces. Acta Biomater 7:1431–1440

    Article  CAS  Google Scholar 

  33. Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6:1543–1575

    Article  CAS  Google Scholar 

  34. Hilpert K, Elliot M, Jenssen H, Kindrachuk J, Fjell CD, Körner J, Winkler DFH, Weaver LL, Henklein P, Ulrich AS, Chiang SHY, Farmer SW, Pante N, Volkmer R, Hancock REW (2009) Screening and characterization of surface-tethered cationic peptides for antimicrobial activity. Chem Biol 16:58–69

    Article  CAS  Google Scholar 

  35. Brogden KA (2005) Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 3:238–250

    Article  CAS  Google Scholar 

  36. Fjell CD, Jenssen H, Hilper K, Cheung WA, Panté N, Hancock REW, Cherkasov A (2009) Identification of novel antimicrobial peptides by chemoinformatics and machine learning. J Med Chem 52:2006–2015

    Article  CAS  Google Scholar 

  37. Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JTJ, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK, Brooks DE, Chew BH, Hancock REW, Kizhakkedathu JN (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32:3899–3909

    Article  CAS  Google Scholar 

  38. Lin W, Junjian C, Chengzhi C, Lin S, Sa L, Li R, Yingjun W (2015) Multi-biofunctionalization of a titanium surface with a mixture of peptides to achieve excellent antimicrobial activity and biocompatibility. J Mater Chem B 3:30–33

    Article  CAS  Google Scholar 

  39. Corrales Ureňa YR, Wittig L, Vieira Nascimento M, Luiz Faccioni J, Filho PNL, Rischka K (2015) Influences of the pH on the adsorption properties of an antimicrobial peptide on titanium surfaces. Appl Adhes Sci 3:7

    Article  Google Scholar 

  40. Kazemzadeh-Narbat M, Kindrachuk Juan K, Jenssen H, Hancock REW, Wang R (2010) Antimicrobial peptides on calcium phosphate-coated titanium for the prevention of implant-associated infections. Biomaterials 21:9519–9526

    Article  CAS  Google Scholar 

  41. Kazemzadeh-Narbat M, Lai BFL, Ding C, Kizhakkedathu JN, Jancock REW, Wang R (2013) Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34:5969–5977

    Article  CAS  Google Scholar 

  42. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W (2003) Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4:1457–1465

    Article  CAS  Google Scholar 

  43. Raafat D, Sahl HG (2009) Chitosan and its antimicrobial potential—a critical literature survey. Microb Biotechnol 2:186–201

    Article  CAS  Google Scholar 

  44. Goy RC, de Britto D, Assis OBG (2009) A review of the antimicrobial activity of chitosan. Polímeros 19:241–247

    Article  CAS  Google Scholar 

  45. Kong M, Chen XG, **ng K, Park HJ (2010) Antimicrobial properties of chitosan and mode of action: A state of the art review. Int J Food Microbiol 144:51–63

    Article  CAS  Google Scholar 

  46. Muzzarelli RAA, Muzzarelli C (2005) Chitosan chemistry: relevance to the biomedical sciences. Adv Polym Sci 186:151–209

    Article  CAS  Google Scholar 

  47. Day AJ, Sheehan JK (2001) Hyaluronan: polysaccharide chaos to protein organisation. Curr Opin Chem Biol 11:617–622

    CAS  Google Scholar 

  48. Barbucci R, Lamponi S, Borzacchiello A, Ambrosio L, Fini M, Torricelli P, Giardino R (2002) Hyaluronic acid hydrogel in the treatment of osteoarthritis. Biomaterials 23:4503–4513

    Article  CAS  Google Scholar 

  49. Gribbon P, Heng BC, Hardingham TE (2000) The analysis of intermolecular interactions in concentrated hyaluronan solutions suggest no evidence for chain-chain association. Biochem J 350:329–335

    CAS  Google Scholar 

  50. Carlson GA, Dragoo JL, Samimi B, Bruckner DA, Bernard GW, Hedrick M, Benhaim P (2004) Bacteriostatic properties of biomatrices against common orthopaedic pathogens. Biochem Biophys Res Commun 321:472–478

    Article  CAS  Google Scholar 

  51. Ardizzoni A, Neglia RG, Baschieri MC, Cermelli C, Caratozzolo M, Righi E, Palmieri B, Blasi E (2011) Influence of hyaluronic acid on bacterial and fungal species, including clinically relevant opportunistic pathogens. J Mater Sci Mater Med 22:2329–2338

    Article  CAS  Google Scholar 

  52. Harris LG, Richards RG (2004) Staphylococcus aureus adhesion to different treated titanium surfaces. J Mater Sci Mater Med 15:311–314

    Article  CAS  Google Scholar 

  53. Croll TI, O’Connor AJ, Stevens GW, Cooper-White JJ (2006) A blank slate? Layer-by-layer deposition of hyaluronic acid and chitosan onto various surfaces. Biomacromolecules 7:1610–1622

    Article  CAS  Google Scholar 

  54. Chua PH, Neoh KG, Shi Z, Kang ET (2008) Structural stability and bioapplicability assessment of hyaluronic acid–chitosan polyelectrolyte multilayers on titanium substrates. J Biomed Mater Res 87A:1061–1074

    Article  CAS  Google Scholar 

  55. Cassinelli C, Morra M, Pavesio A, Renier D (2000) Evaluation of interfacial properties of hylarunonan coated poly(methylmethacrylate) intraocular lenses. J Biomater Sci Polym Ed 11:961–977

    Article  CAS  Google Scholar 

  56. Chua P-H, Neoh K-G, Kang E-T, Wang W (2007) Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion. Biomaterials 29:1412–1421

    Article  CAS  Google Scholar 

  57. Chudobova D, Nejdl L, Gumulec J, Krystofova O, Rodrigo MAM, Kynicky J, Ruttkay-Nedecky B, Kopel P, Babula P, Adam V, Kizek R (2013) Complexes of silver(I) ions and silver phosphate nanoparticles with hyaluronic acid and/or chitosan as promising antimicrobial agents for vascular grafts. Int J Mol Sci 14:13592–13614

    Article  CAS  Google Scholar 

  58. Lv H, Chen Z, Yang X, Cen L, Zhang X, Gao P (2014) Layer-by-layer self-assembly of minocycline-loaded chitosan/alginate multilayer on titanium substrates to inhibit biofilm formation. J Dent 42:1464–1472

    Article  CAS  Google Scholar 

  59. Mishra SK, Ferreira JMF, Kannan S (2015) Mechanically stable antimicrobial chitosan–PVA–silver nanocomposite coatings deposited on titanium implants. Carbohydr Polym 121:37–48

    Article  CAS  Google Scholar 

  60. Torabi S, Mahdavian AR, Sanei M, Abdollahi A (2016) Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films. Mater Sci Eng C 59:1–9

    Article  CAS  Google Scholar 

  61. Cui X, Li CM, Bao H, Zheng X, Lu Z (2008) In situ fabrication of silver nanoarrays in hyaluronan/PDDA layer-by-layer assembled structure. J Colloid Interface Sci 327:459–465

    Article  CAS  Google Scholar 

  62. Abdel-Mohsen AM, Hrdina R, Burgert L, Krylova G, Abdel-Rahman RM, Krejcova A, Steinhart M, Benes L (2012) Green synthesis of hyaluronan fibers with silver nanoparticles. Carbohydr Polym 89:411–422

    Article  CAS  Google Scholar 

  63. Kemp MM, Kumar A, Clement D, Ajayan P, Mousa S, Linhardt RJ (2009) Hyaluronan- and heparin-reduced silver nanoparticles with antimicrobial properties. Nanomedicine 4:421–429

    Article  CAS  Google Scholar 

  64. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. App Environ Microbiol 73:1712–1720

    Article  CAS  Google Scholar 

  65. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353

    Article  CAS  Google Scholar 

  66. Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J Biomed Mater Res 52:662–668

    Article  CAS  Google Scholar 

  67. Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83

    Article  CAS  Google Scholar 

  68. Park H-J, Kim Y, Kim J, Lee J-H, Hahn J-A, Guc MB, Yoona J (2009) Silver-ion-mediated reactive oxygen species generation affecting bactericidal activity. Water Res 43:1027–1032

    Article  CAS  Google Scholar 

  69. Hwang ET, Lee JH, Chae YJ, Kim YS, Kim BC, Sang B-I, Gu MB (2008) Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria. Small 4:746–750

    Article  CAS  Google Scholar 

  70. Sondi I, Salopek-Sondi B (2003) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Article  CAS  Google Scholar 

  71. Choi O, Deng KK, Kim N-J, Ross L Jr, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Article  CAS  Google Scholar 

  72. Morones-Ramirez RJ, Winkler JA, Spina CS, Collins JJ (2013) Silver enhances antibiotic activity against Gram-negative bacteria. Sci Transl Med 5:190 (11p)

    Article  CAS  Google Scholar 

  73. Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed 44:2190–2209

    Article  CAS  Google Scholar 

  74. Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C (2007) Synthesis and study of silver nanoparticles. J Chem Educ 84:322–325

    Article  CAS  Google Scholar 

  75. Shameli K, Ahmad MB, Jazayeri SD, Shabanzadeh P, Sangpour P, Jahangirian H, Gharayebi Y (2012) Investigation of antibacterial properties silver nanoparticles prepared via green method. Chem Cent J 6:73 (10p)

    Article  CAS  Google Scholar 

  76. Kim JS, Kuk E, Yu KN et al (2007) Antimicrobial effects of silver nanoparticles. Nanomedicine 3:95–101

    CAS  Google Scholar 

  77. Guin D, Manorama SV, Latha JNL, Singh S (2007) Photoreduction of silver on bare and colloidal TiO2 nanoparticles/nanotubes: synthesis, characterization, and tested for antibacterial outcome. J Phys Chem 111:13393–13397

    CAS  Google Scholar 

  78. Aguilar-Méndez MA, Martín-Martínez ES, Ortega-Arroyo L, Cobián-Portillo G, Sánchez-Espíndola E (2011) Synthesis and characterization of silver nanoparticles: effect on phytopathogen Colletotrichum gloesporioides. J Nanopart Res 13:2525–2532

    Article  CAS  Google Scholar 

  79. Zeng J, Zheng Y, Rycenga M, Tao J, Li Z-Y, Zhang Q, Zhu Y, ** agents. J Am Chem Soc 132:8552–8553

    Article  CAS  Google Scholar 

  80. George S, Lin S, Ji Z, Thomas CR, Li L, Mecklenburg M, Meng H, Wang X, Zhang H, **a T, Hohman JN, Lin S, Zink JI, Weiss PS, Nel AE (2012) Surface defects on plate-shaped silver nanoparticles contribute to its hazard potential in a fish gill cell line and zebrafish embryos. ACS Nano 6:3745–3759

    Article  CAS  Google Scholar 

  81. Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  Google Scholar 

  82. Li W-R, **e X-B, Shi Q-S, Duan S-S, Ouyang Y-S, Chen Y-B (2011) Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24:135–141

    Article  CAS  Google Scholar 

  83. Li Y, Leung P, Yao L, Song QW, Newton E (2005) Antimicrobial effect of surgical masks coated with nanoparticles. J Hosp Infect 62:58–63

    Article  Google Scholar 

  84. Hadrup N, Lam HR (2014) Oral toxicity of silver ions, silver nanoparticles and colloidal silver—a review. Regul Toxicol Pharmacol 68:1–7

    Article  CAS  Google Scholar 

  85. Wang Z, **a T, Liu S (2015) Mechanisms of nanosilver-induced toxicological effects: more attention should be paid to its sublethal effects. Nanoscale 7:7470–7481

    Article  CAS  Google Scholar 

  86. Schierholz JM, Lucas LJ, Rump A, Pulverer G (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40:257–262

    Article  CAS  Google Scholar 

  87. Gosheger G, Herdes J, Ahrens H, Streitburger A, Buerger H, Erren M, Gunsel A, Kemper FH, Winkelmann W, von Eiff C (2004) Silver-coated megaendoprostheses in a rabbit model—an analysis of the infection rate and toxicological side effects. Biomaterials 25:5547–5556

    Article  CAS  Google Scholar 

  88. Ewald A, Glückermann SK, Thull R, Gbureck U (2006) Antibacterial titanium/silver PVD coatings on titanium. Biomed Eng Online 5:22 (10p)

    Article  Google Scholar 

  89. Hauschild G, Hardes J, Gosheger G, Stoeppeler S, Ahrens H, Blaske F, Wehe C, Karst U, Höll S (2015) Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model. Biomed Res Int 2015:292406 (10p)

    Article  Google Scholar 

  90. Niinomi M (2003) Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci Technol Adv Mater 4:445–454

    Article  CAS  Google Scholar 

  91. Šupová M (2015) Substituted hydroxyapatites for biomedical applications: A review. Ceram Int 41:9203–9231

    Article  CAS  Google Scholar 

  92. Rameshbabu N, Sampath Kumar TSS, Prabhakar TG, Sastry VS, Murty KVGK, Rao KP (2007) Antibacterial nanosized silver substituted hydroxyapatite: Synthesis and characterization. J Biomed Mater Res A 80A:581–591

    Article  CAS  Google Scholar 

  93. Arumugam SK, Sastry TP, Sreedhar B, Mandal AB (2006) One step synthesis of silver nanorods by autoreduction of aqueous silver ions with hydroxyapatite: an inorganic–inorganic hybrid nanocomposite. J Biomed Mater Res A 80:391–398

    Google Scholar 

  94. Yan Y, Zhang X, Huang Y, Ding Q, Pang X (2014) Antibacterial and bioactivity of silver substituted hydroxyapatite/TiO2 nanotube composite coatings on titanium. Appl Surf Sci 314:348–357

    Article  CAS  Google Scholar 

  95. Pang X, Zhitomirsky I (2008) Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings. Surf Coat Technol 202:3815–3821

    Article  CAS  Google Scholar 

  96. Bai X, Sandukas S, Appleford M, Ong LJ, Rabiei A (2011) Antibacterial effect and cytotoxicity of Ag-doped functionally graded hydroxyapatite coatings. J Biomed Mater Res B Appl Biomater 100B:553–561

    Article  CAS  Google Scholar 

  97. Grubova YI, Surmeneva MA, Ivanova AA, Kravchuk K, Prymak O, Epple M, Buck V, Surmenev RA (2015) The effect of patterned titanium substrates on the properties of silver-doped hydroxyapatite coatings. Surf Coat Technol 276:595–601

    Article  CAS  Google Scholar 

  98. Song WH, Ryu HS, Hong SH (2008) Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation. J Biomed Mater Res A 88A:246–254

    Article  CAS  Google Scholar 

  99. Lu X, Zhang B, Wang Y, Zhou X, Weng J, Qu S, Feng B, Watari F, Ding Y, Leng Y (2011) Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition. J R Soc Interface 8:529–539

    Article  CAS  Google Scholar 

  100. Mo A, Liao J, Xu W, **an S, Li Y, Bai S (2008) Preparation and antibacterial effect of silver–hydroxyapatite/titania nanocomposite thin film on titanium. Appl Surf Sci 255:435–438

    Article  CAS  Google Scholar 

  101. Sygnatowicz M, Keyshar K, Tiwari A (2010) Antimicrobial properties of silver-doped hydroxyapatite nano-powders and thin films. Biol Biomed Mater 62:65–70

    CAS  Google Scholar 

  102. Qu J, Lu X, Li D, Ding Y, Leng Y, Weng J, Qu S, Feng B, Watari F (2011) Silver/hydroxyapatite composite coatings on porous titanium surfaces by sol-gel method. J Biomed Mater Res Part B Appl Biomater 97B:40–48

    Article  CAS  Google Scholar 

  103. Feng QL, Cui FZ, Kim TN, Kim JW (1999) Ag-substituted hydroxyapatite coatings with both antimicrobial effects and biocompatibility. J Mater Sci Lett 18:559–561

    Article  CAS  Google Scholar 

  104. Chen W, Liu Y, Courtney HS, Bettenga M, Agrawal CM, Bumgardner JD, Ong JL (2006) In vitro anti-bacterial and biological properties of magnetron co-sputtered silver-containing hydroxyapatite coating. Biomaterials 27:5512–5517

    Article  CAS  Google Scholar 

  105. Chen Y, Zheng X, **e Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19:3603–3609

    Article  CAS  Google Scholar 

  106. Trujillo NA, Oldinski RA, Ma H, Bryers JD, Williams JD, Popat KC (2012) Antibacterial effects of silver-doped hydroxyapatite thin films sputter deposited on titanium. Mater Sci Eng 32:2135–2144

    Article  CAS  Google Scholar 

  107. Singh B, Kumar Dubey A, Kumar S, Saha N, Basu B, Gupta R (2011) In vitro biocompatibility and antimicrobial activity of wet chemically prepared Ca10−xAgx(PO4)6(OH)2(0.0 ≤ x ≤ 0.5) hydroxyapatites. Mater Sci Eng 31C:1320–1329

    Article  CAS  Google Scholar 

  108. Chen W, Oh S, Ong AP, Oh N, Liu Y, Courtney HS, Appleford M, Ong JL (2007) Antibacterial and osteogenic properties of silver-containing hydroxyapatite coatings produced using a sol gel process. J Biomed Mater Res 82A:899–906

    Article  CAS  Google Scholar 

  109. Chung R-J, Hsieh M-F, Huang K-C, Perng L-H, Chou F-I, Chin T-S (2005) Anti-microbial hydroxyapatite particles synthesized by a sol–gel route. J Sol-Gel Sci Technol 33:229–239

    Article  CAS  Google Scholar 

  110. Swetha M, Sahithi K, Moorthi A, Saranya N, Saravanan S, Ramasamy K, Srinivasan N, Selvamurugan N (2012) Synthesis, characterization, and antimicrobial activity of nano-hydroxyapatite-zinc for bone tissue engineering applications. J Nanosci Nanotechnol 12:167–172

    Article  CAS  Google Scholar 

  111. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  112. Hanaor DAH, Sorrell CC (2011) Review of the anatase to rutile phase transformation. J Mater Sci 46:855–874

    Article  CAS  Google Scholar 

  113. Visai L, Nardo LD, Punta C, Melone L, Cigada A, Imbriani M, Arciola CR (2011) Titanium oxide antibacterial surfaces in biomedical devices. Int J Artif Organs 34:929–946

    Article  CAS  Google Scholar 

  114. Bonetta S, Bonetta S, Motta F, Strini A, Carraro E (2013) Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express 3:1–8

    Article  CAS  Google Scholar 

  115. Nakano R, Hara M, Ishiguro H, Yao Y, Ochiai T, Nakata K, Murakami T, Kajioka J, Sunada K, Hashimoto K, Fujishima A, Kubota Y (2013) Broad spectrum microbicidal activity of photocatalysis by TiO2. Catalysts 3:310–323

    Article  CAS  Google Scholar 

  116. Sunada K, Watanabe T, Hashimoto K (2003) Studies on photokilling of bacteria on TiO2 thin film. J Photochem Photobiol Chem 156:227–233

    Article  CAS  Google Scholar 

  117. ** C, Tang Y, Yang FG, Li XL, Xu S, Fan XY, Huang YY, Yang YJ (2011) Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biol Trace Elem Res 141:3–15

    Article  CAS  Google Scholar 

  118. Li H, Duan X, Liu G, Liu X (2008) Photochemical synthesis and characterization of Ag/TiO2 nanotube composites. J Mater Sci 43:1669–1676

    Article  CAS  Google Scholar 

  119. Zheng J, Yu H, Li X, Zhang S (2008) Enhanced photocatalytic activity of TiO2 nano-structured thin film with a silver hierarchical configuration. Appl Surf Sci 254:1630–1635

    Article  CAS  Google Scholar 

  120. Han C, Likodimos V, Khan JA, Nadagouda MN, Andersen J, Falaras P, Rosales-Lombardi P, Dionysiou DD (2014) UV–visible light-activated Ag-decorated, monodisperse TiO2 aggregates for treatment of the pharmaceutical oxytetracycline. Environ Sci Pollut Res 21:11781–11793

    Article  CAS  Google Scholar 

  121. Foster HA, Sheel DW, Sheel P, Evans P, Varghese S, Rutschke N, Yates HM (2010) Antimicrobial activity of titania/silver and titania/copper films prepared by CVD. J Photochem Photobiol Chem 216:283–289

    Article  CAS  Google Scholar 

  122. Cozzoli PD, Comparelli R, Fanizza E, Curri ML, Agostiano A, Laub D (2004) Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. J Am Chem Soc 126:3868–3879

    Article  CAS  Google Scholar 

  123. Liu Y, Wang X, Yang F, Yang X (2008) Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films. Microporous Mesoporous Mater 114:431–439

    Article  CAS  Google Scholar 

  124. Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22:1–9

    CAS  Google Scholar 

  125. Amin SA, Pazouki M, Hosseinnia A (2009) Synthesis of TiO2–Ag nanocomposite with sol–gel method and investigation of its antibacterial activity against E. coli. Powder Technol 196:241–245

    Article  CAS  Google Scholar 

  126. Guo L, Feng W, Liu X et al (2015) Sol–gel synthesis of antibacterial hybrid coatings on titanium. Mater Lett 160:448–451

    Article  CAS  Google Scholar 

  127. Wang Q, Yu H, Zhong L, Liu J, Sun J, Shen J (2006) Incorporation of silver ions into ultrathin titanium phosphate films: in situ reduction to prepare silver nanoparticles and their antibacterial activity. Chem Mater 18:1988–1994

    Article  CAS  Google Scholar 

  128. Zhao B, Chen YW (2011) Ag/TiO2 sol prepared by a sol–gel method and its photocatalytic activity. J Phys Chem Solids 72:1312–1318

    Article  CAS  Google Scholar 

  129. Fu T, Shen Y, Alajmi Z, Wang Y, Yang S, Li G (2014) Sol–gel derived Ag-containing TiO2 films on surface roughened biomedical NiTi alloy. Ceram Int 40:12423–12429

    Article  CAS  Google Scholar 

  130. Lan MY, Liu CP, Huang HH, Lee SW (2013) Both enhanced biocompatibility and antibacterial activity in Ag-decorated TiO2 nanotubes. PLoS ONE 8, e75364 (8p)

    Article  CAS  Google Scholar 

  131. Zhao L, Wang H, Huo K, Cui L, Zhang W, Ni H, Zhang Y, Wu Z, Chuet PK (2011) Antibacterial nano-structured titania coating incorporated with silver nanoparticles. Biomaterials 32:5706–5716

    Article  CAS  Google Scholar 

  132. Kamaraj K, George RP, Anandkumar B, Parvathavarthini N, Kamachi U, Mudali K (2015) A silver nanoparticle loaded TiO2 nanoporous layer for visible light induced antimicrobial applications. Bioelectrochemistry 106(pt B):290–297

    Article  CAS  Google Scholar 

  133. Brook LA, Evans P, Foster HA, Pemble ME, Steele A, Sheel DW, Yates HM (2007) Highly bioactive silver and silver/titania composite films grown by chemical vapour deposition. J Photochem Photobiol Chem 187:53–63

    Article  CAS  Google Scholar 

  134. Santillán MJ, Quaranta NE, Boccaccini AR (2010) Titania and titania–silver nanocomposite coatings grown by electrophoretic deposition from aqueous suspensions. Surf Coat Technol 205:2562–2571

    Article  CAS  Google Scholar 

  135. Li B, Liu X, Meng F, Chang J, Ding C (2009) Preparation and antibacterial properties of plasma sprayed nano-titania/silver coatings. Mater Chem Phys 118:99–104

    Article  CAS  Google Scholar 

  136. Gao J, Zhao C, Zhou J, Li C, Shao Y, Shi C, Zhu Y (2015) Plasma sprayed rutile titania-nanosilver antibacterial coatings. Appl Surf Sci 355:593–601

    Article  CAS  Google Scholar 

  137. Zhang P, Zhang Z, Li W (2013) Antibacterial TiO2 coating incorporating silver nanoparticles by microarc oxidation and ion implantation. J Nanomater 2013:1–8

    Google Scholar 

  138. Xu R, Yang X, Jiang J, Li P, Zhang X, Wu G, Chu PK (2015) Effects of silver plasma immersion ion implantation on the surface characteristics and cytocompatibility of titanium nitride films. Surf Coat Technol 279:166–170

    Article  CAS  Google Scholar 

  139. Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein J Nanotechnol 4:345–351

    Article  CAS  Google Scholar 

  140. Elizabeth E, Baranwal G, Krishnan AG, Menon D, Nair M (2014) ZnO nanoparticle incorporated nanostructured metallic titanium for increased mesenchymal stem cell response and antibacterial activity. Nanotechnology 25:115101 (12p)

    Article  CAS  Google Scholar 

  141. Liu W, Su P, Chen S, Wang N, Ma Y, Liu Y, Wang J, Zhang Z, Li H, Webster TJ (2014) Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale 6:9050–9062

    Article  CAS  Google Scholar 

  142. Huo K, Zhang X, Wang H, Zhao L, Liu X, Chu PK (2013) Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays. Biomaterials 34:3467–3478

    Article  CAS  Google Scholar 

  143. Jamuna-Thevi K, Bakar SA, Ibrahim S, Shahab N, Toff MRM (2011) Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering. Vacuum 86:235–241

    Article  CAS  Google Scholar 

  144. Khan MM, Ansari SA, Lee J, Cho MH (2013) Novel Ag@TiO2 nanocomposite synthesized by electrochemically active biofilm for nonenzymatic hydrogen peroxide sensor. Mater Sci Eng C 33:4692–4699

    Article  CAS  Google Scholar 

  145. Colon G, Ward BC, Webster TJ (2006) Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2. J Biomed Mater Res A 78:595–604

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank my colleague Prof. Andrej Cör, MD, PhD, of the Valdoltra Orthopaedic Hospital for critical reading of the manuscript and valuable discussions. A special thanks to my coworkers and students at the Jožef Stefan institute: B. Kapun, U. Tiringer, D. Gustinčič, and G. Šekularac for their technical help and support. Financial support by the Slovenian Research Agency is kindly acknowledged (grant No. P2-0393).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Milošev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Milošev, I. (2016). Surface Treatments of Titanium with Antibacterial Agents for Implant Applications. In: Djokić, S. (eds) Biomedical and Pharmaceutical Applications of Electrochemistry. Modern Aspects of Electrochemistry, vol 60. Springer, Cham. https://doi.org/10.1007/978-3-319-31849-3_1

Download citation

Publish with us

Policies and ethics

Navigation