Plant Proteomics: An Overview

  • Chapter
  • First Online:
Plant Omics: Trends and Applications
  • 2098 Accesses

Abstract

The proteins encoded in a plant have a significant role in its survival and adaptation to external stresses. The cell wall, being the outermost layer, helps in defense against pathogens by production of glycoside hydrolases and proteases that degrade the pathogen external wall. The cell membrane assists in the movement of different molecules into and out of the cell. Different cells communicate with each other with the help of specific signals. Osmotic and salt concentrations are maintained by the embedded ion pumps in the cell membrane. The chloroplast, the only photosynthetic apparatus present in plants, leads to production of energy and also utilizes sunlight for the process of photosynthesis. A number of complex reactions, cycles, and pathways are present in the chloroplast. The mitochondria, also called the powerhouses of the cells, are rich in energy-producing cycles that are required for most of the activities of plants. In the matrix and cristae, a number of enzymes are active continuously. The mitochondrial membrane assists in the survival of the mitochondrion as an independent organelle. The nucleolus, the hub of all the protein-encoding genome, contains many processes. When we begin the analysis of a protein, protein extraction is the first issue. The plant possesses a cell wall that is a critical barrier which should be overcome. Many detergents and other chemicals are applied to break the bonding present in the cell wall, and we then extract our target protein, which is separated using gel electrophoresis. Two-dimensional sodium dodecyl-sulfate-polyacrylamide gel electrophoresis (2D SDS-PAGE) facilitates the reaction by separating the proteins with respect to isoelectric point as well as molecular weight. Target proteins are visualized and then digested in gel to process it further for identification of the protein. A mass spectrometer is applied for this purpose to characterize each protein on the basis of charge to mass ratio, leading to unambiguous results. Bioinformatics tools are also used for confirmation of our target protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1994) Molecular biology of the cell, 5th edn. Garland, New York

    Google Scholar 

  • Abe H, Urao T, Seiki M, Shinozaki Y (2003)Arabidopsis AtMYC2 and AtMYB2 function as transcription regulator in abscisic acid signaling. Plant Cell 15:68–73

    Article  CAS  Google Scholar 

  • Albenne C, Canut H, Jamet E (2013) Plant cell wall proteomics: the leadership ofArabidopsis thaliana. Front Plant Sci 4:111

    Article  PubMed  PubMed Central  Google Scholar 

  • Aebersold R, Goodlett DR (2001) Mass spectrometry in proteomics. Chem Rev 101:269–295

    Article  CAS  PubMed  Google Scholar 

  • Barrett AJ (1994) Classification of peptides. Methods Enzymol 244:1–15

    Article  CAS  PubMed  Google Scholar 

  • Benning C, Xu C, Awai K (2006) Non-vesicular and vesicular lipid trafficking involving plastids. Curr Opin Plant Biol 9(3):241–247

    Article  CAS  PubMed  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Babadzhanova MP, Babadzhanova MA, Aliev KA (2002) Free and membrane bound multienzyme complexes with Calvin cycle activities in cotton leaves. Russ J Plant Physiol 49:592–597

    Article  CAS  Google Scholar 

  • Berggren K, Chernokalskaya E, Stenberg TH, Kemper C, Lopez MF, Diwu Z, Haugland RP, Patton WF (2000) Background free, high sensitivity staining of proteins in one and two dimensional sodium dodecyl sulphate–polyacrylamide gels using a luminescent ruthenium complex. Electrophoresis 21:2509–2521

    Article  CAS  PubMed  Google Scholar 

  • Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical map** of cellular proteins. Trends Biotechnol 17:121–127

    Article  CAS  PubMed  Google Scholar 

  • Bardor M, Loutelier BC, Marvin L, Cabanes MM, Lange C, Lerouge P, Faye L (1999) Analyses of plant glycoproteins by matrix assisted laser desorption ionization mass spectrometry: application to the N glycosylation analyses of bean phytohemagglutinin. Plant Physiol Biochem 37:319–325

    Article  CAS  Google Scholar 

  • Chipuk JE, Hayes BL, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13(8):1396–1402

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI (1998) Plant cell wall proteins. Annu Rev Plant Physiol Plant Mol Biol 49:281–309

    Article  CAS  PubMed  Google Scholar 

  • Casati P (2012) Recent advances in maize nuclear proteomic studies reveal histone modifications. Front Plant Sci 3:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Costello CE (1999) Bioanalytical applications of mass spectrometry. Curr Opin Biotechnol 10:22–28

    Article  CAS  PubMed  Google Scholar 

  • Caudron-Herger M, Rippe K (2012) Nuclear architecture by RNA. Curr Opin Genet Dev 22:179–187

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MK, Basu D, Datta A, Chakraborty S (2009) Dehydration responsive nuclear proteome of rice (Oryza sativa L.) illustrates protein network, novel regulators of cellular adaptation and evolutionary perspective. Mol Cell Proteomics 8:1579–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danielli JF, Davson H (1935) A contribution to the theory of permeability of thin films. J Cell Comp Physiol 5(4):495

    Article  CAS  Google Scholar 

  • Dahl KN, Ribeiro AJS, Lammerding J (2008) Nuclear shape mechanics and mechanotransduction. Circ Res 102:1307–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douc R, Joyard J (1990) Biochemistry and function of the plastid envelope. Annu Rev Cell Biol 6:173–216

    Article  Google Scholar 

  • De Brito OM, Scorrano L (2010) An intimate liaison: spatial organization of the endoplasmic reticulum–mitochondria relationship. EMBO J 29(16):2715–2723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ellis M, Egelund J, Schultz CJ, Bacic A (2010) Arabinogalactan proteins: key regulators at the cell surface? Plant Physiol 153:403–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Y, Yang Z (2001) Rop GTPase: a master switch of cell polarity developments in plants. Trends Plant Sci 12:545–547

    Article  Google Scholar 

  • Flugge UI (2000) Transport in and out of plastids: does the outer envelope membrane control the flow? Trends Plant Sci 5:135–137

    Article  CAS  PubMed  Google Scholar 

  • Freeman WM, Hemby SE (2004) Proteomics in protein expression profiling in neuroscience. Neurochem Res 29(6):1065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Filipowicz W, Pojacic V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14:319–327

    Article  CAS  PubMed  Google Scholar 

  • Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318

    Article  CAS  PubMed  Google Scholar 

  • Gaspar YM, Nam J, Schultz CJ, Lee LY, Gilson PR, Gelvin SB, Bacic A (2004) Characterization ofArabidopsis lysine rich arabinogalactin-protein AtAGP17 mutant (rat1) that results in a decreased efficiency of agrobacterium transformation. Plant Physiol 135(4):2162–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldschmidt CM (1998) Coordination of nuclear and chloroplast gene expression in plant cells. Int Ref Cytol 177:115–180

    Article  Google Scholar 

  • Gorg A, Obermair C, Boguth G, Harder A, Schiebe B, Wildgruber R, Weiss W (2000) The current state of two dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21:1037–1053

    Article  CAS  PubMed  Google Scholar 

  • Gorg A, Weiss W, Dunn MJ (2004) Current two dimensional electrophoresis technologies for proteomics. Protemics 4:3665

    Article  CAS  Google Scholar 

  • Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature (Lond) 415:141–147

    Article  CAS  Google Scholar 

  • Gorg A, Obermair C, Boguth G, Csordas A, Diaz JJ, Madjar JJ (1999) Recent developments in two dimensional electrophoresis with immobilized pH gradients: wide pH gradients up to pH 12, longer separation distances and simplified procedures. Electrophoresis 20:712–717

    Article  CAS  PubMed  Google Scholar 

  • Griffin TJ, Goodlett DR, Aebersold R (2001) Advances in proteome analysis by mass spectrometry. Curr Opin Biotechnol 12:607–612

    Article  CAS  PubMed  Google Scholar 

  • Hakeem KR, Chandna R, Ahmad P, Ozturk M, Iqbal M (2012) Relevance of proteomic investigations in plant stress physiology. OMICS J Integr Biol 16(11):621–635

    Article  CAS  Google Scholar 

  • Herrmann JM, Neupert W (2000) Protein transport into mitochondria. Curr Opin Microbiol 3(2):210–214

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Rizzuto R, Hajnoczky G, Su TP (2009) MAM: more than just a housekeeper. Trends Cell Biol 19(2):81–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hale JE, Butler JP, Gelfanova V, You JS, Knierman MD (2004) A simplified procedure for the reduction and alkylation of cysteine residues in protein prior to proteolytic digestion and mass spectral analyses. Anal Biochem 333:174–181

    Article  CAS  PubMed  Google Scholar 

  • Hiltbrunner A, Bauer J, Alvarez HM, Kessler F (2001) Protein translocon at theArabidopsis outer chloroplast membrane. Biochem Cell Biol 79:629–635

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Lonsdale M, Upadhyaya NM, Higgins TJ, Hirano H, Akhrust R (2004) Protein extraction from mature rice leaves for two dimensional gel electrophoresis and its application in proteome analyses. Proteomics 4:1903

    Article  CAS  PubMed  Google Scholar 

  • Jarvis P, Soll J (2002) Toc, tic, and chloroplast protein import. Biochim Biophys Acta 1590:177–189

    Article  CAS  PubMed  Google Scholar 

  • Jach G, Gornhardt B, Mundy J, Logemann J, Pinsdorf E, Leah R, Schell J, Maas C (1995) Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J 8:97–109

    Article  CAS  PubMed  Google Scholar 

  • Jamet E, Canut H, Boudart G, Pont-Lezica RF (2006) Cell wall proteins: a new insight through proteomics. Trends Plant Sci 11(1):33–39

    Article  CAS  PubMed  Google Scholar 

  • Joyard J, Teyssier E, Mege C, Berny SD, Marechal E, Block MA, Dorne AJ, Rolland N, Ajlali G, Douce R (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118:715–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kotake T, Dina S, Konishi T, Kaneko S, Igarashi K, Samejima M, Watanabe Y, Kimura K, Tsumuraya Y (2005) Molecular cloning of a β-galactosidase from radish that specifically hydrolyses β-(1→3)- and β-(1→6)-galactosyl residues of arabinogalactan protein. Plant Physiol 138(3):1563–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knox JP (1995) The extracellular matrix in higher plants: developmentally regulated proteoglycans and glycoproteins of plant cell surface. FASEB J 9:1004–1012

    CAS  PubMed  Google Scholar 

  • Kleffmann T, Russenberger D, von Zychlinski A, Christopher W, Sjölander K, Gruissem W, Baginsky S (2004) TheArabidopsis thaliana chloroplast proteome reveals pathway abundance and novel protein functions. Curr Biol 14(5):354–362

    Article  CAS  PubMed  Google Scholar 

  • Koberna K, Malinsky J, Pliss A, Masata M, Vecerova J, Fialova M, Bednar J, Raska I (2002) Ribosomal genes in focus: new transcripts label the dense fibrillar components and form clusters indicative of Christmas trees. J Cell Biol 157:743–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee RE, Kugrens P (1999) Acidity of thylakoid lumen in plastids makes sense from an evolutionary perspective. Photosynthetica 37(4):609–614

    Article  Google Scholar 

  • Leister D (2003) Chloroplast research in the genome age. Trends Genet 19:47–56

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Bai J, Liu YH, Lubman DM (1996) Characterization of SDS-PAGE separated proteins by matrix assisted laser desorption/ionization mass spectrometry. Anal Chem 68:1012–1018

    Article  CAS  PubMed  Google Scholar 

  • Lockhart DJ, Winzler EA (2000) Genomics, gene expression and DNA arrays. Nature (Lond) 405:827–835

    Article  CAS  Google Scholar 

  • Lane N (2009) Life ascending: the ten great inventions of evolution. Norton, New York

    Google Scholar 

  • Lamond AI, Earnshaw WC (1998) Structure and function in the nucleus. Science 291:843–847

    Google Scholar 

  • Lofantaine DLJ, Tollervey D (2001) The function and synthesis of ribosomes. Nat Rev Mol Cell Biol 2:514–520

    Article  CAS  Google Scholar 

  • Martin W, Herrman RG (1998) Gene transfer from organelles to the nucleus: how much, what happens and why? Plant Physiol 118:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minic Z, Jouanin L (2006) Plant glycoside hydrolases involved in cell wall polysaccharide degradation. Plant Physiol Biochem 44:435–449

    Article  CAS  PubMed  Google Scholar 

  • Ma KW, Flores C, Ma W (2011) Chromatin configuration as a battle field in plant bacteria interaction. Plant Physiol 157:537–543

    Article  CAS  Google Scholar 

  • Marmagne A, Rouet MA, Ferro M, Rolland N, Alcon O, Joyard J, Garin J, Barbier-Brygoo H, Ephritikhine G (2004) Identification of new intrinsic proteins inArabidopsis plasma membrane proteome. Mol Cell Proteomics 3:675–691

    Article  CAS  PubMed  Google Scholar 

  • Myriam F, Daniel S, Rolland R, Thierry V, Daphné S, Didier G, Jérôme-Garin-Joyard J, Norbert R (2002) Integral membrane proteins of the chloroplast envelope: identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 9(17):11487–11492

    Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporter from higher plantArabidopsis thaliana. Proc Natl Acad Sci USA 93:10519–10523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mottohashi K, Kondoh A, Stumpp MT, Hisabori T (2001) Comprehensive survey of proteins targeted by chloroplast thioredoxin. Proc Natl Acad Sci USA 98:11224–11229

    Article  Google Scholar 

  • McMillin JB, Dowhan W (2002) Cardiolipin and apoptosis. Biochim Biophys Acta 1585(2-3):97–107

    Article  CAS  PubMed  Google Scholar 

  • Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763(5-6):542–548

    Article  CAS  PubMed  Google Scholar 

  • Mann M, Hendrickson RC, Pandey A (2001) Analyses of proteins and proteomes by mass spectrometry. Annu Rev Biochem 70:437–473

    Article  CAS  PubMed  Google Scholar 

  • Maheshwari SC, Maheshwari N, Sopory SK (2001) Genomics: DNA chips and a revolution in biology. Curr Sci 80:252–261

    CAS  Google Scholar 

  • Nelson RW, Nedelkov D, Tubbs KA (2000) Biosensor chip mass spectrometry: a chip-based proteomics approach. Electrophoresis 21:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Narula K, Datta A, Chakraborty N, Chakraborty S (2013) Comparative analyses of nuclear proteome: extending its functions. Front Plant Sci 4:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Neuhas HE, Thom E, Mohlmann T, Steup M, Kampfenkel K (1997) Characterization of novel eukaryotic ATP/ADP translocator located in the plastid envelope ofArabidopsis thaliana L. Plant J 11:73–82

    Article  Google Scholar 

  • Okumura S, Mitsukawa N, Shirano Y, Shibata D (1998) Phosphate transporter gene family ofArabidopsis thaliana. DNA Res 5:261–269

    Article  CAS  PubMed  Google Scholar 

  • Ong SE, Pandey A (2001) An evaluation of the use of two dimensional gel electrophoresis in proteomics. Biomol Eng 18:195–215

    Article  CAS  PubMed  Google Scholar 

  • Pottosin II, Schönknecht G (1995) Ion channel permeable for divalent and monovalent cations in native spinach thylakoid membranes. J Membr Biol 148:143–156

    Article  CAS  PubMed  Google Scholar 

  • Packer NH, Harrison MJ (1998) Glycobiology and proteomics: is mass spectrometry the Holy Grail? Electrophoresis 19:1872–1882

    Article  CAS  PubMed  Google Scholar 

  • Robertson D, Mitchell GP, Gilroy JS, Gerrish C, Bolwell GP, Salabas AR (1997) Differential extraction and protein sequencing reveals major differences in patterns of primary cell wall proteins from plants. J Biol Chem 272:15841–15848

    Article  CAS  PubMed  Google Scholar 

  • Reiser L, Mueller LA, Rhee SY (2002) Surviving in a sea of data: a survey of plant genome data resources and issues in building data management systems. Plant Mol Biol 48:59–74

    Article  CAS  PubMed  Google Scholar 

  • Rubbi CP, Milner J (2003) Disruption of nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22:6068–6077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabilloud T, Adessi C, Giruadel A, Lunardi J (1997) Improvement of the solubilization of proteins in two dimensional electrophoresis with immobilized pH gradients. Electrophoresis 18(3-4):307

    Article  CAS  PubMed  Google Scholar 

  • Rosenfeld J, Capdevielle J, Guillemot JC, Ferrara P (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal Biochem 203:173–179

    Article  CAS  PubMed  Google Scholar 

  • Rolland N, Drone AJ, Amoroso G, Sultemeyer DF, Joyard J, Rochaix JD (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast ofChlamydomonas. EMBO J 16:6713–6726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabilloud T (2002) Two dimensional gel electrophoresis in proteomics: old, old fashioned, but it stills climb up the mountain. Proteomics 2:3–10

    Article  CAS  PubMed  Google Scholar 

  • Robinson C, Knott TG (1996) Importing, sorting and assembly of photosynthetic proteins in higher plant chloroplasts. In: Andersson B, Salter AH, Barber J (eds) Molecular genetics of photosynthesis. Oxford University Press, Oxford, pp 145–159

    Google Scholar 

  • Sharon N, Lis H (2004) History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14:53R–62R

    Article  CAS  PubMed  Google Scholar 

  • Showalter AM, Keppler B, Lichtenberg J, Gu DZ, Welch LR (2010) A bioinformatics approach to the identification, classification, and analyses of hydroxyproline-rich glycoproteins. Plant Physiol 153:485–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlumbaum A, Mauch F, Vogeli U, Boller T (1986) Plant chitinases are potent inhibitors of fungal growth. Nature (Lond) 324:365–367

    Article  CAS  Google Scholar 

  • Schaller A (2004) A cut above the rest: the regulatory function of plant proteases. Planta (Berl) 220:183–197

    Article  CAS  Google Scholar 

  • Schwacke R, Schneider A, Van Der Graaff E, Fischer K, Catoni E, Desimone M, Frommer WB, Flugg UI, Kunze R (2003) ARAMEMNON, a novel database forArabidopsis integral membrane proteins. Plant Physiol 131:16–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sprague SG (1987) Structural and functional consequences of galactolipids on thylakoid membrane organization. J Bioenerg Biomembr 19(6):691–703

    Article  CAS  PubMed  Google Scholar 

  • Seigneurin Berny D, Rolland N, Garin J, Joyard J (1999) Technical advance: differential extraction of hydrophobic proteins from chloroplast envelope membranes: a subcellular-specific proteomic approach to identify rare intrinsic membrane proteins. Plant J 19:217–228

    Article  CAS  PubMed  Google Scholar 

  • Schnell DJ, Kessler F, Blobel G (1994) Isolation of components of the chloroplast protein import machinery. Science 266:1007–1012

    Article  CAS  PubMed  Google Scholar 

  • Sugita M, Sugiura M (1996) Regulation of gene expression in chloroplast of higher plants. Plant Mol Biol 32:315–326

    Article  CAS  PubMed  Google Scholar 

  • Santoni V, Rouquie D, Doumas P, Mansion M, Boutry M, Dehais P, Sahnoun I, Rossignol M (1998) Use of proteome strategy for tagging proteins present at the plasma membrane. Plant J 1998(16):633–641

    Article  Google Scholar 

  • Simpson RJ (2004) Purifying proteins for proteomics. A laboratory manual. CSHL Press, New York

    Google Scholar 

  • Somerville C, Somerville S (1999) Plant functional genomics. Science 285:380–383

    Article  CAS  PubMed  Google Scholar 

  • Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate starvation responses. Plant Cell 14:1751–1766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser NF, Lingeman H, Irth H (2005) Sample preparation for peptides and proteins in biological matrices prior to liquid chromatography and capillary zone electrophoresis. Anal Bioanal Chem 382:535

    Article  CAS  PubMed  Google Scholar 

  • Ward JM (2001) Identification of novel families of membrane proteins from the model plantArabidopsis thaliana. Bioinformatics 17:560–563

    Article  CAS  PubMed  Google Scholar 

  • Wortman JR, Haas Brian J, Hannick LI, Smith RK Jr, Maiti R, Ronning CM, Chan AP, Chunhui Y, Mulu A, Whitelaw CA, White OR, Christopher DT (2003) Annotation ofArabidopsis genome. Plant Physiol 132:461–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters RG, Shephard F, Rogers JJ, Rolfe SA, Horton P (2003) Identification of mutants ofArabidopsis defective in acclimation of photosynthesis to the light environment. Plant Physiol 131:472–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang HL, Postier BL, Burnap RL (2002) Polymerase chain reaction-based mutageneses identify key transporters belonging to multigene families involved in Na+ and pH homeostasis ofSynechocystis sp. Mol Microbiol 44:1493–1506

    Article  CAS  PubMed  Google Scholar 

  • Wasinger VC, Cordwenn SJ, Cerpapoljak A, Yan OX, Gooley AA, Wilakins MR, Duncan MW, Harris KL, Humphrey SI (1995) Product with gene product map** of the Mollicutes:Mycoplasma genitalium. Electrophoresis 16:1090–1094

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Gasteiger E, Gooley AA, Herbert BR, Molloy MP, Binz PA, Ou K, Sanchez JC, Bairoch A, Williams KL, Hochstrasser D (1999) High-throughput mass spectrometric discovery of protein post-translational modifications. Plant Mol Biol 289:645–657

    CAS  Google Scholar 

  • Xue J, Jorgensen M, Pihlgren U, Rask L (1995) The myrosinase gene family inArabidopsis thaliana: gene organization, expression and evolution. Plant Mol Biol 27:911–922

    Article  CAS  PubMed  Google Scholar 

  • Ye ZH, Song YR, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvina Gul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shahzad, M.A., Khan, A., Khalid, M., Gul, A. (2016). Plant Proteomics: An Overview. In: Hakeem, K., TombuloÄŸlu, H., TombuloÄŸlu, G. (eds) Plant Omics: Trends and Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-31703-8_12

Download citation

Publish with us

Policies and ethics

Navigation