Applications of MN4 Macrocyclic Metal Complexes in Electroanalysis

  • Chapter
  • First Online:
Electrochemistry of N4 Macrocyclic Metal Complexes

Abstract

The rich and wide redox chemistry of N4 metal macrocyclic complexes allied to the several strategies for immobilizing them on the surface of different types of solids and electrode materials have opened innumerous possibilities of using these molecules as electron mediators in electrochemical devices. This chapter describes and discusses the main aspects related to the molecular anchoring of metallomacrocyclic complexes on the surface of inorganic solids (silica and carbon-based materials) and conventional electrodes through different types of chemical and physical interactions, as well as the application of these systems in the electroanalysis of compounds with technological, biological, and environmental interest. Particular attention was focused on the discussions of the properties and structure-activity relationships that have allowed designing materials with interesting sensing ability in distinct types of electrochemical interfaces and configurations, ranging from chemically modified electrodes with hybrid solid materials and thin films to a low-cost paper-based analytical device. Our emphasis was not to make comparisons between particular examples with respect to sensor performances, but rather to focus on the potentiality of N4 metal macrocyclic complexes to be applied in the design and development of platforms useful in electroanalysis, highlighting the diversity of support materials suitable for immobilizing the active redox mediator as well as the broad range of analytes that can be analyzed by electroanalytical methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zagal JH, Bedioui F, Dodelet JP (2006) N4-macrocyclic metal complexes. Springer, New York

    Book  Google Scholar 

  2. Buchler JW (1978) Synthesis and properties of metalloporphyrins. In: Dolphin D (ed) The porphyrins. Academic Press, New York, pp 389–483

    Google Scholar 

  3. McKeown NB (1998) Phthalocyanine materials: synthesis, structure, and function. Cambridge University Press, Cambridge

    Google Scholar 

  4. Sorokin AB (2013) Phthalocyanine metal complexes in catalysis. Chem Rev 113:8152–8191

    Article  CAS  Google Scholar 

  5. Meunier B (1992) Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem Rev 92:1411–1456

    Article  CAS  Google Scholar 

  6. Flora WH, Hall HK, Armstrong NR (2002) Guest emission processes in doped organic light-emitting diodes: use of phthalocyanine and naphthalocyanine near-IR dopants. J Phys Chem B 107:1142–1150

    Article  Google Scholar 

  7. Murata K, Ito S, Takahashi K et al (1997) Photocurrent from photocorrosion of aluminum electrode in porphyrin/Al Schottky-barrier cells. Appl Phys Lett 71:674–676

    Article  CAS  Google Scholar 

  8. Tachikawa H, Faulkner LR (1978) Electrochemical and solid state studies of phthalocyanine thin film electrodes. J Am Chem Soc 100:4379–4385

    Article  CAS  Google Scholar 

  9. Jaeger CD, Fan F-RF, Bard AJ (1980) Semiconductor electrodes. 26. Spectral sensitization of semiconductors with phthalocyanine. J Am Chem Soc 102:2592–2598

    Article  CAS  Google Scholar 

  10. Giraudeau A, Fan F-RF, Bard AJ (1980) Semiconductor electrodes. 30. Spectral sensitization of the semiconductors titanium oxide (n-TiO2) and tungsten oxide (n-WO3) with metal phthalocyanines. J Am Chem Soc 102:5137–5142

    Article  CAS  Google Scholar 

  11. Zagal JH, Griveau S, Silva JF et al (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coordin Chem Rev 254:2755–2791

    Article  CAS  Google Scholar 

  12. Jasinski R (1964) A new fuel cell cathode catalyst. Nature 201:1212–1213

    Article  CAS  Google Scholar 

  13. Collman JP, Wagenknecht PS, Hutchison JE (1994) Molecular catalysts for multielectron redox reactions of small molecules: the “cofacial metallodiporphyrin” approach. Angew Chem Int Ed 33:1537–1554

    Article  Google Scholar 

  14. Anson FC, Shi C, Steiger B (1997) Novel multinuclear catalysts for the electroreduction of dioxygen directly to water. Acc Chem Res 30:437–444

    Article  CAS  Google Scholar 

  15. Ma J, Liu Y, Zhang P et al (2008) A simple direct borohydride fuel cell with a cobalt phthalocyanine catalyzed cathode. Electrochem Commun 10:100–102

    Article  CAS  Google Scholar 

  16. Zagal JH, Griveau S, Santander-Nelli M et al (2012) Carbon nanotubes and metalloporphyrins and metallophthalocyanines-based materials for electroanalysis. J Porphyr Phthalocya 16:713–740

    Article  CAS  Google Scholar 

  17. Sekota M, Nyokong T (1997) Catalytic behavior of osmium(II), rhodium(III) and ruthenium(II) Phthalocyanines towards the electrooxidation of cysteine on glassy carbon electrodes. Electroanalysis 9:1257–1261

    Article  CAS  Google Scholar 

  18. Sonoyama N, Kirii M, Sakata T (1999) Electrochemical reduction of CO2 at metal-porphyrin supported gas diffusion electrodes under high pressure CO2. Electrochem Commun 1:213–216

    Article  CAS  Google Scholar 

  19. Švancara I, Vytřas K, Kalcher K et al (2009) Carbon paste electrodes in facts, numbers, and notes: a review on the occasion of the 50-years jubilee of carbon paste in electrochemistry and electroanalysis. Electroanalysis 21:7–28

    Article  Google Scholar 

  20. Halbert MK (1985) Electrocatalytic and analytical response of cobalt phthalocyanine containing carbon paste electrodes toward sulfhydryl compounds. Anal Chem 57:591–595

    Google Scholar 

  21. Korfhage KM, Ravichandran K, Baldwin RP (1984) Phthalocyanine-containing chemically modified electrodes for electrochemical detection in liquid chromatography/flow injection systems. Anal Chem 56:1514–1517

    Article  CAS  Google Scholar 

  22. Ozoemena K, Westbroek P, Nyokong T (2001) Long-term stability of a gold electrode modified with a self-assembled monolayer of octabutylthiophthalocyaninato-cobalt(II) towards l-cysteine detection. Electrochem Commun 3:529–534

    Article  CAS  Google Scholar 

  23. Nyokong T, Bedioui F (2006) Self-assembled monolayers and electropolymerized thin films of phthalocyanines as molecular materials for electroanalysis. J Porphyr Phthalocya 10:1101–1115

    Article  CAS  Google Scholar 

  24. Ozoemena KI, Nyokong T (2005) Surface electrochemistry of iron phthalocyanine axially ligated to 4-mercaptopyridine self-assembled monolayers at gold electrode: Applications to electrocatalytic oxidation and detection of thiocyanate. J Electroanal Chem 579:283–289

    Article  CAS  Google Scholar 

  25. Ozoemena KI, Nyokong T, Westbroek P (2003) Self-assembled monolayers of cobalt and iron phthalocyanine complexes on gold electrodes: comparative surface electrochemistry and electrocatalytic interaction with thiols and thiocyanate. Electroanal 15:1762–1770

    Article  CAS  Google Scholar 

  26. Obirai J, Nyokong T (2005) Synthesis, electrochemical and electrocatalytic behaviour of thiophene-appended cobalt, manganese and zinc phthalocyanine complexes. Electrochim Acta 50:5427–5434

    Article  CAS  Google Scholar 

  27. Ozoemena KI, Nyokong T (2006) Comparative electrochemistry and electrocatalytic activities of cobalt, iron and manganese phthalocyanine complexes axially co-ordinated to mercaptopyridine self-assembled monolayer at gold electrodes. Electrochim Acta 51:2669–2677

    Article  CAS  Google Scholar 

  28. Ozoemena KI, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162–168

    Article  CAS  Google Scholar 

  29. Bedioui F, Griveau S, Nyokong T et al (2007) Tuning the redox properties of metalloporphyrin- and metallophthalocyanine-based molecular electrodes for the highest electrocatalytic activity in the oxidation of thiols. Phys Chem Chem Phys 9:3383–3396

    Article  CAS  Google Scholar 

  30. Bedioui F, Devynck J, Bied-Charreton C (1995) Immobilization of metalloporphyrins in electropolymerized films: design and applications. Acc Chem Res 28:30–36

    Article  CAS  Google Scholar 

  31. Obirai J, Nyokong T (2004) Electrochemical and catalytic properties of chromium tetraaminophthalocyanine. J Electroanal Chem 573:77–85

    CAS  Google Scholar 

  32. Trombach N, Hild O, Schlettwein D et al (2002) Synthesis and electropolymerisation of pyrrol-1-yl substituted phthalocyanines. J Mater Chem 12:879–885

    Article  CAS  Google Scholar 

  33. Obirai J, Nyokong T (2004) Electrochemical studies of manganese tetraamminophthalocyanine monomer and polymer. Electrochim Acta 49:1417–1428

    Article  CAS  Google Scholar 

  34. Santhiago M, Wydallis JB, Kubota LT et al (2013) Construction and electrochemical characterization of microelectrodes for improved sensitivity in paper-based analytical devices. Anal Chem 85:5233–5239

    Article  CAS  Google Scholar 

  35. Recio FJ, Gutierrez CA, Venegas R et al (2014) Optimization of the electrocatalytic activity of MN4-macrocyclics adsorbed on graphite electrodes for the electrochemical oxidation of L-cysteine by tuning the M(II)/(I) formal potential of the catalyst: an overview. Electrochim Acta 140:482–488

    Article  CAS  Google Scholar 

  36. Silva ISD, Araújo MFA, Ferreira HA et al (2011) Quantification of N-acetylcysteine in pharmaceuticals using cobalt phthalocyanine modified graphite electrodes. Talanta 83:1701–1706

    Article  Google Scholar 

  37. Oni J, Nyokong T (2001) Simultaneous voltammetric determination of dopamine and serotonin on carbon paste electrodes modified with iron(II) phthalocyanine complexes. Anal Chim Acta 434:9–21

    Article  CAS  Google Scholar 

  38. Shahrokhian S, Ghalkhani M, Amini MK (2009) Application of carbon-paste electrode modified with iron phthalocyanine for voltammetric determination of epinephrine in the presence of ascorbic acid and uric acid. Sens Actuators B Chem 137:669–675

    Article  CAS  Google Scholar 

  39. Do Nascimento RF, Selva TMG, Ribeiro WF et al (2013) Flow-injection electrochemical determination of citric acid using a cobalt(II)-phthalocyanine modified carbon paste electrode. Talanta 105:354–359

    Article  Google Scholar 

  40. Medina-Plaza C, Revilla G, Muñoz R et al (2014) Electronic tongue formed by sensors and biosensors containing phthalocyanines as electron mediators. J Porphyr Phthalocya 18:76–86

    Article  CAS  Google Scholar 

  41. Parra V, Arrieta AA, Fernández-Escudero JA et al (2006) Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in wines. Sens Actuators B Chem 118:448–453

    Article  CAS  Google Scholar 

  42. Santos WJR, Sousa AL, Luz RCS et al (2006) Amperometric sensor for nitrite using a glassy carbon electrode modified with alternating layers of iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin and cobalt(II) tetrasulfonated phthalocyanine. Talanta 70:588–594

    Article  CAS  Google Scholar 

  43. Hs Yin, Yl Zhou, Sy Ai (2009) Preparation and characteristic of cobalt phthalocyanine modified carbon paste electrode for bisphenol A detection. J Electroanal Chem 626:80–88

    Article  Google Scholar 

  44. Siangproh W, Chailapakul O, Laocharoensuk R et al (2005) Microchip capillary electrophoresis/electrochemical detection of hydrazine compounds at a cobalt phthalocyanine modified electrochemical detector. Talanta 67:903–907

    Article  CAS  Google Scholar 

  45. Foster CW, Metters JP, Kampouris DK et al (2014) Ultraflexible screen-printed graphitic electroanalytical sensing platforms. Electroanalysis 26:262–274

    Article  CAS  Google Scholar 

  46. Merkoçi A, Pumera M, Llopis X et al (2005) New materials for electrochemical sensing VI: carbon nanotubes. TrAC Trends Anal Chem 24:826–838

    Article  Google Scholar 

  47. Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421–426

    Article  CAS  Google Scholar 

  48. Banks CE, Davies TJ, Wildgoose GG et al (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 829–841

    Google Scholar 

  49. Karuppiah C, Devasenathipathy R, Chen SM et al (2015) Fabrication of nickel tetrasulfonated phthalocyanine functionalized multiwalled carbon nanotubes on activated glassy carbon electrode for the detection of dopamine. Electroanalysis

    Google Scholar 

  50. Moraes FC, Golinelli DLC, Mascaro LH et al (2010) Determination of epinephrine in urine using multi-walled carbon nanotube modified with cobalt phthalocyanine in a paraffin composite electrode. Sen Actuators B Chem 148:492–497

    Article  CAS  Google Scholar 

  51. Luz RCS, Damos FS, Tanaka AA et al (2008) Electrocatalysis of reduced l-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes. Talanta 76:1097–1104

    Article  CAS  Google Scholar 

  52. Luz RCS, Maroneze CM, Tanaka AA et al (2010) The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards l-glutathione, and its determination in human erythrocytes. Microchim Acta 171:169–178

    Article  CAS  Google Scholar 

  53. Rangel Argote M, Sánchez Guillén E, Gutiérrez Porras AG et al (2014) Preparation and characterization of electrodes modified with pyrrole surfactant, multiwalled carbon nanotubes and metallophthalocyanines for the electrochemical detection of thiols. Electroanalysis 26:507–512

    Article  CAS  Google Scholar 

  54. Qiu B, Lin Z, Wang J et al (2009) An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode. Talanta 78:76–80

    Article  CAS  Google Scholar 

  55. Liang X, Chen Z, Wu H et al (2014) Enhanced NH3-sensing behavior of 2,9,16, 23-tetrakis(2,2,3,3-tetrafluoropropoxy) metal(II) phthalocyanine/multi-walled carbon nanotube hybrids: an investigation of the effects of central metals. Carbon 80:268–278

    Article  CAS  Google Scholar 

  56. Coates M, Nyokong T (2013) Characterization of glassy carbon electrodes modified with carbon nanotubes and iron phthalocyanine through grafting and click chemistry. Electrochim Acta 91:158–165

    Article  CAS  Google Scholar 

  57. Agboola BO, Ozoemena KI, Nyokong T et al (2010) Tuning the physico-electrochemical properties of novel cobalt (II) octa[(3,5-biscarboxylate)-phenoxy] phthalocyanine complex using phenylamine-functionalised SWCNTs. Carbon 48:763–773

    Article  CAS  Google Scholar 

  58. Mugadza T, Arslanolu Y, Nyokong T (2012) Characterization of 2, (3)-tetra-(4-oxo-benzamide) phthalocyaninato cobalt (II)—single walled carbon nanotube conjugate platforms and their use in electrocatalysis of amitrole. Electrochim Acta 68:44–51

    Article  CAS  Google Scholar 

  59. Shao Y, Wang J, Wu H et al (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanalysis 22:1027–1036

    Article  CAS  Google Scholar 

  60. Yang W, Ratinac KR, Ringer SR et al (2010) Carbon nanomaterials in biosensors: should you use nanotubes or graphene. Angew Chemie Int Ed 49:2114–2138

    Article  CAS  Google Scholar 

  61. Xu H, **ao J, Liu B et al (2015) Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 66:438–444

    Article  CAS  Google Scholar 

  62. Pakapongpan S, Mensing JP, Phokharatkul D et al (2014) Highly selective electrochemical sensor for ascorbic acid based on a novel hybrid graphene-copper phthalocyanine-polyaniline nanocomposites. Electrochim Acta 133:294–301

    Article  CAS  Google Scholar 

  63. Li YJ, Ma MJ, Yin G et al (2013) Phthalocyanine-sensitized graphene-CdS nanocomposites: an enhanced photoelectrochemical immunosensing platform. Chem Eur J 19:4496–4505

    Article  CAS  Google Scholar 

  64. Wang Q, Lei J, Deng S et al (2013) Graphene-supported ferric porphyrin as a peroxidase mimic for electrochemical DNA biosensing. Chem Commun 49:916–918

    Article  CAS  Google Scholar 

  65. Hu Y, Xue Z, He H et al (2013) Photoelectrochemical sensing for hydroquinone based on porphyrin-functionalized Au nanoparticles on graphene. Biosens Bioelectron 47:45–49

    Article  CAS  Google Scholar 

  66. Toledo M, Lucho AMS, Gushikem Y (2004) In situ preparation of Co phthalocyanine on a porous silica gel surface and the study of the electrochemical oxidation of oxalic acid. J Mater Sci 39:6851–6854

    Article  CAS  Google Scholar 

  67. Rahim A, Santos LSS, Barros SBA et al (2013) Dissolved O2 sensor based on cobalt(II) phthalocyanine immobilized in situ on electrically conducting carbon ceramic mesoporous SiO2/C material. Sens Actuators B Chem 177:231–238

    Article  CAS  Google Scholar 

  68. Santos LSS, Landers R, Gushikem Y (2011) Application of manganese (II) phthalocyanine synthesized in situ in the SiO2/SnO2 mixed oxide matrix for determination of dissolved oxygen by electrochemical techniques. Talanta 85:1213–1216

    Article  CAS  Google Scholar 

  69. Rahim A, Santos LSS, Barros SBA et al (2014) Electrochemical detection of nitrite in meat and water samples using a mesoporous carbon ceramic SiO2/C electrode modified with in situ generated manganese(II) phthalocyanine. Electroanalysis 26:541–547

    Article  CAS  Google Scholar 

  70. Fujiwara ST, Pessôa CA, Gushikem Y (2002) Copper(II) tetrasulpho-phthalocyanine entrapped in a propylpyridiniumsilsesquioxane polymer immobilized on a SiO2/Al2O3 surface: use for electrochemical oxidation of ascorbic acid. Anal Lett 35:1117–1134

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the support from São Paulo Research Foundation (FAPESP), National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Level Education Personnel (CAPES) and National Institute of Science and Technology in Bioanalytics (INCTBio).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauro Tatsuo Kubota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maroneze, C.M., Gushikem, Y., Kubota, L.T. (2016). Applications of MN4 Macrocyclic Metal Complexes in Electroanalysis. In: Zagal, J., Bedioui, F. (eds) Electrochemistry of N4 Macrocyclic Metal Complexes. Springer, Cham. https://doi.org/10.1007/978-3-319-31332-0_3

Download citation

Publish with us

Policies and ethics

Navigation