Emergence and Evolution of Early Life in the Geological Environment

  • Chapter
  • First Online:
The Cnidaria, Past, Present and Future

Abstract

Based on our current assumptions, life on Earth started long before 3.5 billion years ago, the age of the oldest (accepted) terrestrial fossils. The issue on how life emerged from a non-living world, however, is still waiting for a solution. Aside from the many ideas generated by theoretical speculations, however, the issue on origin and evolution of the primordial life can be addressed through some of the oldest environmental conditions still preserved on the terrestrial sedimentary record (and their alleged modern analogues), and other planetary bodies, especially Mars, where rovers, orbiters and spectrometers can deal with unaltered rocks much older than the oldest one preserved on our planet and, perhaps, finally able to reveal some evidence of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abramov O, Kring DA (2005) Impact-induced hydrothermal activity on early Mars. J Geophys Res 110, E12S09

    Article  Google Scholar 

  • Abramov O, Mojzsis SJ (2009) Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459(7245):419–422

    Article  CAS  PubMed  Google Scholar 

  • Allwood AC, Walter MR, Kamber BS et al (2006) Stromatolite reef from the early Archaean era of Australia. Nature 441(7094):714–718

    Article  CAS  PubMed  Google Scholar 

  • Arndt NT, Nisbet EG (2012) Processes on the young Earth and the habitats of early life. Annu Rev Earth Planet Sci 40:521–549

    Article  CAS  Google Scholar 

  • Bada JL, Lazcano A (2003) Prebiotic soup – revisiting the Miller experiment. Science 300(5260):745–746

    Article  CAS  PubMed  Google Scholar 

  • Banerjee NR, Simonetti A, Furnes H et al (2007) Direct dating of Archean microbial ichnofossils. Geology 35(6):487–490

    Article  CAS  Google Scholar 

  • Barbieri R, Cavalazzi B (2014) How do modern extreme hydrothermal environments inform the identification of Martian habitability? The case of the El Tatio Geyser Field. Challenges 5(2):430–443

    Article  Google Scholar 

  • Bełka Z, Berkowski B (2005) Discovery of thermophilic corals in an ancient hydrothermal vent community, Devonian, Morocco. Acta Geol Pol 55(1):1–7

    Google Scholar 

  • Berkowski B (2004) Monospecific rugosan assemblage from the Emsian hydrothermal vents of Morocco. Acta Palaeontol Pol 49(1):75–84

    Google Scholar 

  • Beukes NJ, Lowe DR (1989) Environmental control on diverse stromatolite morphologies in the 3000Ma Pongola Supergroup, South Africa. Sedimentology 36(3):383–397

    Article  Google Scholar 

  • Bowring S, Housh T (1995) The Earth’s early evolution. Science 269(5230):1535–1540

    Article  CAS  PubMed  Google Scholar 

  • Brack A (2009) Astrobiology: impacts and origins of life. Nat Geosci 2:8–9

    Article  CAS  Google Scholar 

  • Brack A, Baglioni P, Borruat G et al (2002) Do meteoroids of sedimentary origin survive terrestrial atmospheric entry? The ESA artificial meteorite experiment STONE. Planet Space Sci 50(7–8):763–772

    Article  CAS  Google Scholar 

  • Brack A, Horneck G, Cockell CS et al (2010) Origin and evolution of life on terrestrial planets. Astrobiology 10(1):69–76

    Article  CAS  PubMed  Google Scholar 

  • Brasier M, McLoughlin N, Green OG et al (2006) A fresh look at the fossil evidence for early Archaean cellular life. Philos Trans R Soc B 361:887–902

    Article  CAS  Google Scholar 

  • Brock TD, Brock ML (1966) Temperature optima for algal development in Yellowstone and Iceland hot springs. Nature 209:733–734

    Article  Google Scholar 

  • Catling DC, Glein CR, Zahnle KJ et al (2005) Why O2 is required by complex life on habitable planets and the concept of planetary “oxygenation time”. Astrobiology 5(3):415–438

    Article  CAS  PubMed  Google Scholar 

  • Cavalazzi B (2013) Global to nano-scale relevance of Ca-carbonate biosignatures. Boll Soc Pal It 52(2):139–140

    Google Scholar 

  • Cavalazzi B (2007) Chemotrophic filamentous microfossils from the Hollard Mound (Devonian, Morocco) as investigated by Focused Ion Beam. Astrobiology 7(2):402–415

    Google Scholar 

  • Childress JJ, Girguis PR (2011) The metabolic demands of endosymbiotic chemoautotrophic metabolism on host physiological capacities. J Exp Biol 214:312–325

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS, Brack A, Wynn-Williams DD et al (2007) Interplanetary transfer of photosynthesis: an experimental demonstration of a selective dispersal filter in planetary island biogeography. Astrobiology 7(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Cohen BA, Swindle DT, Kring DA (2000) Support for the lunar cataclysm hypothesis from lunar meteorite impact melt ages. Science 290(5497):1754–1756

    Article  CAS  PubMed  Google Scholar 

  • Corliss JB, Ballard RD (1977) Oases of life in the cold abyss. Natl Geogr Mag 152:441–453

    Google Scholar 

  • Deamer DW (2007) The origin of cellular life. In: Sullivan WT, Baross JA (eds) Planets and life: the emerging science of astrobiology. Cambridge University Press, Cambridge, pp 46–65

    Google Scholar 

  • Ehrenfreund P, Spaans M, Spaans M, Holm NG (2011) The evolution of organic matter in space. Philos Trans R Soc A 369(1936):538–554

    Article  CAS  Google Scholar 

  • Farquhar J, Bao HM, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289(5480):756–758

    Article  CAS  PubMed  Google Scholar 

  • Fedo CM, Whitehouse MJ, Kamber BS (2006) Geological constraints on detecting the earliest life on Earth: a perspective from the Early Archaean (older than 3.7 Gyr) of southwest Greenland. Philos Trans R Soc B 361:851–8867

    Article  CAS  Google Scholar 

  • Forterre P, Gribaldo S (2007) The origin of modern terrestrial life. HFSP J 1(3):156–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K et al (2004) Early life recorded in Archean pillow lavas. Science 304(5670):578–581

    Article  CAS  PubMed  Google Scholar 

  • Geiss J, Rossi AP (2013) On the chronology of lunar origin and evolution implications for Earth, Mars and the solar system as a whole. Astron Astrophys Rev 21:21–68

    Article  Google Scholar 

  • Golding SD, Glikson M (2011) Earliest life on earth: habitats, environments and methods of detection. Springer, Dordrecht

    Book  Google Scholar 

  • Grosch EG, Mcloughlin N (2014) Reassessing the biogenicity of Earth’s oldest trace fossil with implications for biosignatures in the search for early life. Proc Natl Acad Sci 111(23):8380–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grotzinger JP, Sumner DY, Kah LC et al (2014) A habitable fluvio-lacustrine environment at Yellowknife Bay, Gale Crater, Mars. Science 343(6169):1242777

    Article  CAS  PubMed  Google Scholar 

  • Hazen RM (2012) The story of Earth. Penguin, New York

    Google Scholar 

  • Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities and the origin of life. Cold Spring Harb Perspect Biol 2(5):a002162

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmann A (2011) Archaean hydrothermal systems in the Barberton greenstone belt and their significance as ah for early life. In: Golding SD, Glikson M (eds) Earliest life on earth: habitats, environments and methods of detection. Springer, Dordrecht, pp 51–78

    Chapter  Google Scholar 

  • Holm NG (1992) Marine hydrothermal systems and the origin of life – report of SCOR Working Group 91. Springer, Dordrecht

    Book  Google Scholar 

  • Kasting JF, Whitmire DP, Reynolds RT (1993) Habitable zones around main sequence stars. Icarus 101(1):108–128

    Article  CAS  PubMed  Google Scholar 

  • Kelley PH, Fastovsky DE, Wilson MA et al (2013) From paleontology to paleobiology: a half-century of progress in understanding life history. GSA Special Papers 500:191–232

    Google Scholar 

  • Kelly DS, Karson JA, Früh-Green GL et al (2005) A serpentinite-hosted ecosystem: the Lost City hydrothermal field. Science 307(5714):1428–1434

    Article  Google Scholar 

  • Kopp RE, Kirschvink JL, Hilburn IA, Nash CZ (2005) The Paleoproterozoic snowball Earth: a climate disaster triggered by the evolution of oxygenic photosynthesis. Proc Natl Acad Sci 102(32):11131–11136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lane N, Allen JF, Martin W (2010) How did LUCA make a living? Chemiosmosis in the origin of life. Bioessays 32:271–280

    Article  CAS  PubMed  Google Scholar 

  • Levin GV (2007) Possible evidence for panspermia: the labelled release experiment. Int J Astrobiol 6(2):95–108

    Article  CAS  Google Scholar 

  • Lunine JI (2013) Earth: evolution of a habitable world. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Martin W, Baross J, Kelley D et al (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6(11):805–814

    CAS  PubMed  Google Scholar 

  • McKay CP (2010) An origin of life on Mars. Cold Spring Harb Perspect Biol 2(4):a003509

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller SL (1953) The production of amino acids under possible primitive Earth conditions. Science 117:528–529

    Article  CAS  PubMed  Google Scholar 

  • Mojzsis SJ, Arrhenius G, Keegan KD et al (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  CAS  PubMed  Google Scholar 

  • Noffke N (2010) Geobiology: microbial mats in sandy deposits from the Archean Era to today. Springer, Heidelberg

    Book  Google Scholar 

  • O’Neil J, Carlson RW, Paquette JL et al (2012) Formation, age and metamorphic history of the Nuvvuagittuq greenstone belt. Precambrian Res 220–221:23–44

    Article  Google Scholar 

  • Oehler DZ, Cady SL (2014) Biogenicity and syngeneity of organic matter in ancient sedimentary rocks: recent advances in the search for evidence of past life. Challenges 5(2):260–283

    Article  Google Scholar 

  • Ohmoto H, Watanabe Y, Ikemi H et al (2006) Sulphur isotope evidence for an oxic Archaean atmosphere. Nature 442:908–911

    Article  CAS  PubMed  Google Scholar 

  • Orò J (1990) The origin and early evolution of life. Annu Rev Earth Planet Sci 18:317–356

    Article  PubMed  Google Scholar 

  • Papineau D, De Gregorio BT, Cody GD et al (2011) Young poorly crystalline graphite in the >3:8-Gyr-old Nuvvuagittuq banded iron formation. Nat Geosci 4:376–379

    Article  CAS  Google Scholar 

  • Rosing MT (1999) 13C depleted carbon microparticles in >3700-Ma seafloor sedimentary rocks from West Greenland. Science 283(5402):674–676

    Article  CAS  PubMed  Google Scholar 

  • Rosing M, Bird DK, Sleep N et al (2010) No climate paradox under the faint early Sun. Nature 464:744–747

    Article  CAS  PubMed  Google Scholar 

  • Russell MJ, Arndt NT (2005) Geodynamic and metabolic cycles in the Hadean. Biogeosciences 2:97–111

    Article  CAS  Google Scholar 

  • Russell MJ, Hall AJ (2006) The onset and early evolution of life. In Kesler SE, Ohmoto H (eds) Evolution of early earth’s atmosphere, hydrosphere, and biosphere – constraints from Ore deposits. Geological Society of America Memoir 198. Geological Society of America, Boulder, pp 1–32

    Google Scholar 

  • Russell MJ, Daniel RM, Hall AJ (1993) On the emergence of life via catalytic iron-sulphide membranes. Terra Nova 5:343–347

    Article  Google Scholar 

  • Russell MJ, Hall AJ, Martin W (2010) Serpentinization as a source of energy at the origin of life. Geobiology 8(5):355–371

    Article  CAS  PubMed  Google Scholar 

  • Ryder G (2002) Mass flux in the ancient Earth-Moon system and benign implications for the origin of life on Earth. J Geophys Res 107. doi:10.1029/2001JE001583

  • Sagan C, Chyba C (1997) The early Sun paradox: organic shielding of ultraviolet-labile greenhouse gases. Science 276:1217–1221

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW (2006) Fossil evidence of Archaean life. Philos Trans R Soc B 361:869–885

    Article  CAS  Google Scholar 

  • Schopf JW, Bottjer J (2009) World summit on ancient microscopic fossils. Precambrian Res 173(1–4):1–222

    Article  CAS  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Agresti DG et al (2002) Laser-Raman imagery of Earth’s earliest fossils. Nature 416:73–76

    Article  CAS  PubMed  Google Scholar 

  • Schopf JW, Kudryavtsev AB, Czaja AD et al (2007) Evidence of Archean life: stromatolites and microfossils. Precambrian Res 158(3–4):141–155

    Article  CAS  Google Scholar 

  • Schrenk MO, Brazelton WJ, Lang SQ (2013) Serpentinization, carbon, and deep life. Rev Mineral Geochem 75:575–606

    Article  CAS  Google Scholar 

  • Schulte M, Blake D, Hoehler T, McCollom T (2006) Serpentinization and its implications for life on the early Earth and Mars. Astrobiology 6(2):364–376

    Article  CAS  PubMed  Google Scholar 

  • Schulze-Makuch D, Dohm JM, Fan C et al (2007) Exploration of hydrothermal targets on Mars. Icarus 189(2):308–324

    Article  Google Scholar 

  • Sephton MA, Hazen RM (2013) On the origins of deep hydrocarbons. Rev Mineral Geochem 75:449–465

    Article  CAS  Google Scholar 

  • Shaheen R, Niles PB, Chong K et al (2013) Carbonate formation events in ALH 84001 trace the evolution of the Martian atmosphere. Proc Natl Acad Sci 112:336–341

    Article  Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archean Era. Nature 410:77–81

    Article  CAS  PubMed  Google Scholar 

  • Sleep NH (2010) The Hadean-Archean environment. Cold Spring Harb Perspect Biol 2:a002527

    Article  PubMed  PubMed Central  Google Scholar 

  • Sleep NH, Zahnle K, Neuhoff PS (2001) Initiation of clement surface conditions on the early Earth. Proc Natl Acad Sci 98:3666–3672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sleep NH, Bird DK, Pope E (2012) Paleontology of Earth’s mantle. Annu Rev Earth Planet Sci 40:277–300

    Article  CAS  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc B 361:1837–1843

    Article  CAS  Google Scholar 

  • Tice MM, Lowe DR (2004) Photosynthetic microbial mats in the 3,416-Myr-old ocean. Nature 431:549–552

    Article  CAS  PubMed  Google Scholar 

  • Tyler SA, Barghoorn ES (1954) Occurrence of structurally preserved plants in Precambrian rocks of the Canadian Shield. Science 119:606–608

    Article  CAS  PubMed  Google Scholar 

  • Valley JM, Peck WH, King EM et al (2002) A cool early Earth. Geology 30(4):351–354

    Article  CAS  Google Scholar 

  • Van Kranendonk MJ (2006) Volcanic degassing, hydrothermal circulation and the flourishing of early life on Earth: a review of the evidence from c. 3490–3240 Ma rocks of the Pilbara Supergroup, Pilbara Craton, Western Australia. Earth Sci Rev 74(3–4):197–240

    Article  Google Scholar 

  • Van Kranendonk MJ (2012) A chronostratigraphic division of the Precambrian. In: Gradstein FM, Ogg JG, Schmitz MD, Ogg GM (eds) The geologic time scale 2012. Elsevier, Boston, pp 299–392

    Chapter  Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Bennett VC (2007) Earth’s oldest rocks. Elsevier, Amsterdam

    Google Scholar 

  • Walsh MM, Lowe DR (1985) Filamentous microfossils from the 3500-Myr-old Onverwacht Group, Barberton mountain land, South Africa. Nature 314:530–532

    Article  Google Scholar 

  • Westall F, Cavalazzi B, Lemelle L et al (2011) Implications of in situ calcification for photosynthesis in a ~3.3 Ga-old microbial biofilm from the Barberton greenstone belt, South Africa. Earth Planet Sci Lett 310(3–4):468–479

    Article  CAS  Google Scholar 

  • Wilde SA, Valley JW, Peck WH et al (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  CAS  PubMed  Google Scholar 

  • Wolff T (2005) Composition and endemism of the deep-sea hydrothermal vent fauna. Cah Biol Mar 46:97–104

    Google Scholar 

  • Zahnle K, Sleep HH (2006) Impacts and the early evolution of life. In: Thomas PJ, Hicks RD, Chyba CF, McKay CP (eds) Comets and the origin and evolution of life. Springer, New York, pp 207–251

    Google Scholar 

  • Zahnle K, Arndt N, Cockell C et al (2007) Emergence of a habitable. Planet Space Sci Rev 129:35–78

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We very much appreciated the invitation to this publication by the Editors. This work is a contribution to the FP7-PEOPLE-2013-CIG/INACMa, and to the Trans Domain European COST Action Life-ORIGINS (TD1308). We thank André Brack for comments that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cavalazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cavalazzi, B., Barbieri, R. (2016). Emergence and Evolution of Early Life in the Geological Environment. In: Goffredo, S., Dubinsky, Z. (eds) The Cnidaria, Past, Present and Future. Springer, Cham. https://doi.org/10.1007/978-3-319-31305-4_1

Download citation

Publish with us

Policies and ethics

Navigation