Microfauna Within Biological Soil Crusts

  • Chapter
  • First Online:
Biological Soil Crusts: An Organizing Principle in Drylands

Part of the book series: Ecological Studies ((ECOLSTUD,volume 226))

Abstract

Biocrusts serve as unique habitat for a broad range of microfauna, including protozoa, nematodes, tardigrades, rotifers, mites, collembolans, and even larger arthropods and mollusks. These microfauna feed on the bacteria, cyanobacteria, algae, fungi, bryophytes, and plant roots that are found in the biocrusts, and the consumer food web as a whole performs several important functions, such as cycling nutrients, dispersing propagules, and moderating their microbial prey populations. Many species of biocrust microfauna tolerate periods of drought in an anhydrobiotic dormant state, so they are typically active only during brief windows of time. Most microfaunal groups tend to be more abundant, species rich, and diverse in mature, late-successional stage biocrusts that are dominated by diverse microflora (such as lichens, mosses, fungi, and cyanobacteria) than in early successional stage biocrusts that are dominated by less diverse microflora (such as cyanobacteria alone). Biocrust microfauna are susceptible to the same surface disturbances that affect biocrust microflora, such as physical trampling or altered temperature and summer precipitation, but the specific ecosystem consequences of altered community composition due to surface disturbances are still largely unknown. To fully understand the ecosystem consequences of biocrust microfauna, we propose that the three main research needs in the future are to: (1) identify specific feeding behaviors of individual species, (2) increase the taxonomic resolution of ecological studies to the level of species, and (3) identify the ecologically relevant genetic and genomic aspects of microfaunal adaptations to the biocrust habitat.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 199.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 249.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bakonyi G, Nagy P (2000) Temperature- and moisture-induced changes in the structure of the nematode fauna of a semiarid grassland—patterns and mechanisms. Glob Chang Biol 6:697–707

    Article  Google Scholar 

  • Bamforth SS (1984) Microbial distributions in Arizona deserts and woodlands. Soil Biol Biochem 16:133–137

    Article  Google Scholar 

  • Bamforth SS (2004) Water film fauna of microbiotic crusts of a warm desert. J Arid Environ 56:413–423

    Article  Google Scholar 

  • Bamforth SS (2008) Protozoa of biological soil crusts of a cool desert in Utah. J Arid Environ 72:722–729

    Article  Google Scholar 

  • Bamforth SS, Bennett LW (1985) Soil protozoa of 2 Utah cool deserts. Pedobiologia 28:423–426

    Google Scholar 

  • Bamforth SS, Wall DH, Virginia RA (2005) Distribution and diversity of soil protozoa in the McMurdo dry valleys of Antarctica. Polar Biol 28:756–762

    Article  Google Scholar 

  • Belnap J (1995) Surface disturbances: their role in accelerating desertification. Environ Monit Assess 37:39–57

    Article  CAS  PubMed  Google Scholar 

  • Belnap J, Phillips SL (2001) Soil biota in an ungrazed grassland: response to annual grass (Bromus Tectorum) invasion. Ecol Appl 11:1261–1275

    Article  Google Scholar 

  • Belnap J, Phillips SL, Sherrod SK, Moldenke A (2005) Soil biota can change after exotic plant invasion: does this affect ecosystem processes? Ecology 86:3007–3017

    Article  Google Scholar 

  • Bik HM, Porazinska DL, Creer S, Caporaso JG, Knight R, Thomas WK (2012) Sequencing our way towards understanding global eukaryotic biodiversity. Trends Ecol Evol 27:233–243

    Article  PubMed  PubMed Central  Google Scholar 

  • Birkemoe T, Liengen T (2000) Does collembolan grazing influence nitrogen fixation by cyanobacteria in the high arctic? Polar Biol 23:589–592

    Article  Google Scholar 

  • Bongers T (1990) The maturity index: an ecological measure of environmental disturbance based on nematode species composition. Oecologia 83:14–19

    Article  Google Scholar 

  • Buse T, Ruess L, Filser J (2013) New trophic biomarkers for Collembola reared on algal diets. Pedobiologia 56:153–159

    Article  Google Scholar 

  • Chen Y-W, Li X-R (2012) Spatio-temporal distribution of nests and influence of ant (Formica cunicularia Lat.) Activity on soil property and seed bank after revegetation in the Tengger Desert. Arid Land Res Manag 26:365–378

    Article  Google Scholar 

  • Colesie C, Green TGA, Turk R, Hogg ID, Sancho LG, Budel B (2014) Terrestrial biodiversity along the Ross Sea coastline, Antarctica: lack of a latitudinal gradient and potential limits of bioclimatic modeling. Polar Biol 37:1197–1208

    Article  Google Scholar 

  • Convey P, Wynn-Williams DD (2002) Antarctic soil nematode response to artificial climate amelioration. Eur J Soil Biol 38:255–259

    Article  Google Scholar 

  • Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Physiol A Mol Integ Physiol 131:505–513

    Article  Google Scholar 

  • Crowe JH, Cooper AF Jr (1971) Cryptobiosis. Sci Am 225:30–36

    Article  Google Scholar 

  • Crowe JH, Crowe LM (2000) Anhydrobiosis: a unique biological state. Am Zool 40:986

    Google Scholar 

  • Crowe JH, Madin KAC, Loomis SH (1977) Anhydrobiosis in nematodes: metabolism during resumption of activity. J Exp Zool 201:57–64

    Article  CAS  Google Scholar 

  • Cutler DW, Bal DV (1926) Influence of protozoa on the process of nitrogen fixation by Azotobacter chroococcum. Ann Appl Biol 13:516–534

    Article  Google Scholar 

  • Darby BJ, Neher DA (2012) Stable isotope composition of microfauna supports the occurrence of biologically fixed nitrogen from cyanobacteria in desert soil food webs. J Arid Environ 85:76–78

    Article  Google Scholar 

  • Darby BJ et al (2006) Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts. J Eukaryot Microbiol 53:507–514

    Article  PubMed  Google Scholar 

  • Darby BJ, Housman DC, Johnson SL, Neher DA, Kuske CR, Belnap J (2007a) Influence of physical trampling disturbance on desert soil food webs associated with biological soil crusts. J Phycol 43:34–35

    Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2007b) Soil nematode communities are ecologically more mature beneath late- than early-successional stage biological soil crusts. Appl Soil Ecol 35:203–212

    Article  Google Scholar 

  • Darby BJ, Neher DA, Belnap J (2010) Impact of biological soil crusts and desert plants on soil microfaunal community composition. Plant Soil 328:421–431

    Article  CAS  Google Scholar 

  • Darby BJ, Neher DA, Housman DC, Belnap J (2011) Few apparent short-term effects of elevated soil temperature and increased frequency of summer precipitation on the abundance and taxonomic diversity of desert soil micro- and meso-fauna. Soil Biol Biochem 43:1474–1481

    Article  CAS  Google Scholar 

  • Darby BJ, Todd TC, Herman MA (2013) High-throughput amplicon sequencing of rRNA genes requires a copy number correction to accurately reflect the effects of management practices on soil nematode community structure. Mol Ecol 22:5456–5471

    Article  CAS  PubMed  Google Scholar 

  • De Ley P, Bert W (2002) Video capture and editing as a tool for the storage, distribution, and illustration of morphological characters of nematodes. J Nematol 34:296–302

    PubMed  PubMed Central  Google Scholar 

  • de Ruiter PC, van Veen JA, Moore JC, Brussaard L, Hunt HW (1993) Calculation of nitrogen mineralization in soil food webs. Plant Soil 157:263–273

    Article  Google Scholar 

  • Dryden RC, Wright SJL (1987) Predation of cyanobacteria by protozoa. Can J Microbiol 33:471–482

    Article  Google Scholar 

  • Elser JJ et al (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Freckman DW (1988) Bacterivorous nematodes and organic-matter decomposition. Agric Ecosyst Environ 24:195–217

    Article  Google Scholar 

  • Freckman DW, Virginia RA (1989) Plant-feeding nematodes in deep-rooting desert ecosystems. Ecology 70:1665–1678

    Article  Google Scholar 

  • Ghabbour SI, El-Ayouty EY, Khadr MS, El Tonsi AMS (1980) Grazing by microfauna and productivity of heterocystous nitrogen-fixing blue-green algae in desert soils. Oikos 34:209–218

    Article  Google Scholar 

  • Housman DC et al (2007) Heterogeneity of soil nutrients and subsurface biota in a dryland ecosystem. Soil Biol Biochem 39:2138–2149

    Article  CAS  Google Scholar 

  • Hunt HW, Wall DH (2002) Modelling the effects of loss of soil biodiversity on ecosystem function. Glob Chang Biol 8:33–50

    Article  Google Scholar 

  • Hunt HW et al (1987) The detrital food web in a shortgrass prairie. Biol Fertil Soils 3:57–68

    Google Scholar 

  • Johnson SL, Budinoff CR, Belnap J, Garcia-Pichel F (2005) Relevance of ammonium oxidation within biological soil crust communities. Environ Microbiol 7:1–12

    Article  CAS  PubMed  Google Scholar 

  • Johnson SL, Neuer S, Garcia-Pichel F (2007) Export of nitrogenous compounds due to incomplete cycling within biological soil crusts of arid lands. Environ Microbiol 9:680–689

    Article  CAS  PubMed  Google Scholar 

  • Jones CG, Shachak M (1990) Fertilization of the desert soil by rock-eating snails. Nature 346:839–841

    Article  Google Scholar 

  • Li XR, Jia RL, Chen YW, Huang L, Zhang P (2011) Association of ant nests with successional stages of biological soil crusts in the Tengger Desert, Northern China. Appl Soil Ecol 47:59–66

    Article  Google Scholar 

  • Li XR, Gao YH, Su JQ, Jia RL, Zhang ZS (2014) Ants mediate soil water in arid desert ecosystems: mitigating rainfall interception induced by biological soil crusts? Appl Soil Ecol 78:57–64

    Article  Google Scholar 

  • Liu Y, Li X, Jia R, Huang L, Zhou Y, Gao Y (2011) Effects of biological soil crusts on soil nematode communities following dune stabilization in the Tengger Desert, Northern China. Appl Soil Ecol 49:118–124

    Article  Google Scholar 

  • Madin KAC, Crowe JH (1975) Anhydrobiosis in nematodes: carbohydrate and lipid metabolism during dehydration. J Exp Zool 193:335–342

    Article  CAS  Google Scholar 

  • Madin KAC, Loomis SH, Crowe JH (1985) Anhydrobiosis in nematodes—control of carbon flow through the glyoxylate cycle. J Exp Zool 234:341–350

    Article  CAS  Google Scholar 

  • Nasir SM (1923) Some preliminary investigations on the relationship of protozoa to soil fertility with special reference to nitrogen fixation. Ann Appl Biol 10:122–133

    Article  CAS  Google Scholar 

  • Neher DA (2001) Role of nematodes in soil health and their use as indicators. J Nematol 33:161–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher DA et al (2003) Biological soil crust and vascular plant communities in a sand savanna of northwestern Ohio. J Torrey Bot Soc 130:244–252

    Article  Google Scholar 

  • Neher DA, Lewins SA, Weicht TR, Darby BJ (2009) Microarthropod communities associated with biological soil crusts in the Colorado Plateau and Chihuahuan deserts. J Arid Environ 73:672–677

    Article  Google Scholar 

  • Parker LW, Freckman DW, Steinberger Y, Driggers L, Whitford WG (1984) Effects of simulated rainfall and litter quantities on desert soil biota—soil respiration, microflora, and protozoa. Pedobiologia 27:185–195

    Google Scholar 

  • Pen-Mouratov S, Hu C, Hindin E, Steinberger Y (2011) Soil microbial activity and a free-living nematode community in the playa and in the sandy biological crust of the Negev Desert. Biol Fertil Soils 47:363–375

    Article  Google Scholar 

  • Pilato G, Beasley C (2005) Haplomacrobiotus Utahensis new species of Calohypsibiidae (Eutardigrada) from North America. Zootaxa 879:1–7

    Google Scholar 

  • Robinson BS, Bamforth SS, Dobson PJ (2002) Density and diversity of protozoa in some arid Australian soils. J Eukaryot Microbiol 49:449–453

    Article  PubMed  Google Scholar 

  • Rodriguez-Zaragoza S, Mayzlish E, Steinberger Y (2005) Vertical distribution of the free-living amoeba population in soil under desert shrubs in the Negev Desert, Israel. Appl Environ Microbiol 71:2053–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruess L, Schutz K, Haubert D, Haggblom MM, Kandeler E, Scheu S (2005) Application of lipid analysis to understand trophic interactions in soil. Ecology 86:2075–2082

    Article  Google Scholar 

  • Ryszkowski L (1975) Energy and matter economy of ecosystems. In: van Dobben WH, Lowe-McConnel RH (eds) Unifying concepts in ecology. Junk, The Hague, pp 109–126

    Chapter  Google Scholar 

  • Schwarz AMJ, Green JD, Green TGA, Seppelt RD (1993) Invertebrates associated with moss communities at Canada Glacier, southern Victoria Land, Antarctica. Polar Biol 13:157–162

    Article  Google Scholar 

  • Shachak M, Steinberger Y (1980) An algae—desert snail food chain: energy flow and soil turnover. Oecologia 46:402–411

    Article  Google Scholar 

  • Shepherd UL, Brantley SL, Tarleton CA (2002) Species richness and abundance patterns of microarthropods on cryptobiotic crusts in a piñon-juniper habitat: a call for greater knowledge. J Arid Environ 52:349–360

    Article  Google Scholar 

  • Sohlenius B, Bostrom S (1999) Effects of climate change on soil factors and metazoan microfauna (nematodes, tardigrades and rotifers) in a Swedish tundra soil—a soil transplantation experiment. Appl Soil Ecol 12:113–128

    Article  Google Scholar 

  • Sohlenius B, Bostrom S, Jonsson KI (2004) Occurrence of nematodes, tardigrades and rotifers on ice-free areas in East Antarctica. Pedobiologia 48:395–408

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the Biosphere. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Steven B, Gallegos-Graves LV, Yeager C, Belnap J, Kuske CR (2014) Common and distinguishing features of the bacterial and fungal communities in biological soil crusts and shrub root zone soils. Soil Biol Biochem 69:302–312

    Article  CAS  Google Scholar 

  • Todd TC, Blair JM, Milliken GA (1999) Effects of altered soil-water availability on a tallgrass prairie nematode community. Appl Soil Ecol 13:45–55

    Article  Google Scholar 

  • Treonis AM, Michelle EH, O’Leary CA, Austin EE, Marks CB (2010) Identification and localization of food-source microbial nucleic acids inside soil nematodes. Soil Biol Biochem 42:2005–2011

    Article  CAS  Google Scholar 

  • Ungerer MC, Johnson LC, Herman MA (2008) Ecological genomics: understanding gene and genome function in the natural environment. Heredity 100:178–183

    Article  CAS  PubMed  Google Scholar 

  • Vaculik A, Kounda-Kiki C, Sarthou C, Ponge JF (2004) Soil Invertebrate activity in biological crusts on tropical inselbergs. Eur J Soil Sci 55:539–549

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1999) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  CAS  PubMed  Google Scholar 

  • Whitford WG et al (1981) Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biol Biochem 13:417–425

    Article  Google Scholar 

  • Wood FH (1973a) Biology of Aporcelaimellus sp. (Nematoda: Aporcelaimidae). Nematologica 19:528–537

    Article  Google Scholar 

  • Wood FH (1973b) Feeding relationships of soil-dwelling nematodes. Soil Biol Biochem 5:593–601

    Article  Google Scholar 

  • Wright DJ (1975a) Elimination of nitrogenous compounds by Panagrellus redivivus, Goodey, 1945 (Nematoda: Cephalobidae). Comp Biochem Physiol B 52:247–253

    Article  CAS  PubMed  Google Scholar 

  • Wright DJ (1975b) Studies on nitrogen catabolism in Panagrellus redivivus, Goodey, 1945 (Nematoda: Cephalobidae). Comp Biochem Physiol B 52:255–260

    Article  CAS  PubMed  Google Scholar 

  • Yeager CM, Kuske CR, Carney TD, Johnson SL, Ticknor LO, Belnap J (2012) Response of biological soil crust diazotrophs to season, altered summer precipitation, and year-round increased temperature in an arid grassland of the Colorado plateau, USA. Front Microbiol 3:358

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeates GW, Bongers T, de Goede RGM, Freckman DW, Georgieva SS (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. J Nematol 25:315–331

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder M et al (2006) DESS: a versatile solution for preserving morphology and extractable DNA of nematodes. Nematology 8:367–376

    Article  CAS  Google Scholar 

  • Zaragoza SR, Whitford WG, Steinberger Y (2007) Effects of temporally persistent ant nests on soil protozoan communities and the abundance of morphological types of amoeba. Appl Soil Ecol 37:81–87

    Article  Google Scholar 

  • Zelikova T, Housman D, Grote E, Neher D, Belnap J (2012) Warming and increased precipitation frequency on the Colorado Plateau: implications for biological soil crusts and soil processes. Plant Soil 355:265–282

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian J. Darby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Darby, B.J., Neher, D.A. (2016). Microfauna Within Biological Soil Crusts. In: Weber, B., Büdel, B., Belnap, J. (eds) Biological Soil Crusts: An Organizing Principle in Drylands. Ecological Studies, vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_8

Download citation

Publish with us

Policies and ethics

Navigation