iBATCGH: Integrative Bayesian Analysis of Transcriptomic and CGH Data

  • Conference paper
  • First Online:
Statistical Analysis for High-Dimensional Data

Part of the book series: Abel Symposia ((ABEL,volume 11))

  • 2622 Accesses

Abstract

We describe a method for the integration of high-throughput data from different sources. More specifically, iBATCGH is a package for the integrative analysis of transcriptomic and genomic data, based on a hierarchical Bayesian model. Through the specification of a measurement error model we relate the gene expression levels to latent copy number states which, in turn, are related to the observed surrogate CGH measurement via a hidden Markov model. Selection of relevant associations is performed employing variable selection priors that explicitly incorporate dependence information across adjacent copy number states. Posterior inference is carried out through Markov chain Monte Carlo techniques that efficiently explores the space of all possible associations. In this chapter we review the model and present the functions provided in iBATCGH, an R package based on a C implementation of the inferential algorithm. Lastly, we illustrate the method via a case study on ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Airoldi, E.M., Costa, T., Bassetti, F., Leisen, F., Guindani, M.: Generalized species sampling priors with latent Beta reinforcements. J. Am. Stat. Assoc. 109(508), 1466–1480 (2014)

    Article  MathSciNet  Google Scholar 

  2. Barbieri, M.M., Berger, J.O.: Optimal predictive model selection. Ann. Stat. 32(3), 870–897 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnes, C., Plagnol, V., Fitzgerald, T., et al.: A robust statistical method for case-control association testing with copy number variation. Nat. Genet. 40, 1245–1252 (2008)

    Article  Google Scholar 

  4. Brasseur, F., Rimoldi, D., Liénard, D., et al.: Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int. J. Cancer 63(3), 375–380 (1995)

    Article  Google Scholar 

  5. Brown, P., Vannucci, M., Fearn, T.: Multivariate Bayesian variable selection and prediction. J. R. Stat. Soc. Ser. B 60, 627–641 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cardin, N., Holmes, C., Donnelly, P., Marchini, J.: Bayesian hierarchical mixture modeling to assign copy number from a targeted CNV array. Genet. Epidemiol. 35, 536–548 (2011)

    Google Scholar 

  7. Cassese, A., Guindani, M., Tadesse, M., Falciani, F., Vannucci, M.: A hierarchical Bayesian model for inference of copy number variants and their association to gene expression. Ann. Appl. Stat. 8(1), 148–175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cassese, A., Guindani, M., Vannucci, M.: A bayesian integrative model for genetical genomics with spatially informed variable selection. Cancer Informat. 13(S2), 29–37 (2014)

    Google Scholar 

  9. Colella, S., Yau, C., Taylor, J., et al.: QuantiSNP: an objective Bayes hidden-Markov model to detect and accurately map copy number variation using SNP genoty** data. Nucleic Acids Res. 35(6), 2013–2025 (2007)

    Article  Google Scholar 

  10. Davis, S.J., Choong, D.Y., Ramakrishna, M., Ryland, G.L., Campbell, I.G., Gorringe, K.L.: Analysis of the mitogen-activated protein kinase kinase 4 (MAP2K4) tumor suppressor gene in ovarian cancer. BMC Cancer 1(11), 173 (2011)

    Article  Google Scholar 

  11. Dennis, G., Sherman, B.T., Hosack, D.A., Yang, J., Gao, W., Lane, H.C., Lempicki, R.A.: DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4(5), P3 (2003)

    Article  Google Scholar 

  12. Du, L., Chen, M., Lucas, J., Carlin, L.: Sticky hidden Markov modeling of comparative genomic hybridization. IEEE Trans. Signal Process 58(10), 5353–5368 (2010)

    Article  MathSciNet  Google Scholar 

  13. Eddelbuettel, D., Francois, R.: Rcpp: seamless R and C++ integration. J. Stat. Softw. 40(8), 1–18 (2011)

    Article  Google Scholar 

  14. George, E., McCulloch, R.: Approaches for Bayesian variable selection. Stat. Sin. 7, 339–373 (1997)

    MATH  Google Scholar 

  15. Guha, S., Li, Y., Neuberg, D.: Bayesian hidden Markov modelling of array cgh data. J. Am. Stat. Assoc. 103(482), 485–497 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Imaia, Y., Shichijo, S., Yamada, A., Katayama, T., Yano, H., Itoh, K.: Sequence analysis of the MAGE gene family encoding human tumor-rejection antigens. Gene 160(2), 287–290 (1995)

    Article  Google Scholar 

  17. **awath, N., Vasoontara, C., **awath, A., et al.: Oncoproteomic analysis reveals co-upregulation of RELA and STAT5 in carboplatin resistant ovarian carcinoma. PLoS One 5(6), e11198 (2010)

    Article  Google Scholar 

  18. Karni, R., de Stanchina, E., Lowe, S.W., Sinha, R., Mu, D., Krainer, A.R.: The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat. Struct. Mol. Biol. 14(3), 185–193 (2007)

    Article  Google Scholar 

  19. King, M.C., Marks, J.H., Mandell., J.B.: Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302(5645), 643–646 (2003)

    Google Scholar 

  20. Malek, A., Bakhidze, E., Noske, A., et al.: HMGA2 gene is a promising target for ovarian cancer silencing therapy. Int. J. Cancer 132(2), 348–356 (2008)

    Article  Google Scholar 

  21. Monni, S., Tadesse, M.: A stochastic partitioning method to associate high-dimensional responses and covariates. Bayesian Anal. 4(3), 413–436 (2009)

    Article  MathSciNet  Google Scholar 

  22. Morris, J.R., Boutell, C., Keppler, M., et al.: The SUMO modification pathway is involved in the BRCA1 response to genotoxic stress. Nature 462(7275), 886–890 (2009)

    Article  Google Scholar 

  23. Newton, M.A., Noueiry, A., Sarkar, D., Ahlquist, P.: Detecting differential gene expression with a semiparametric hierarchical mixture method. Biostatistics 5(2), 155–176 (2004)

    Article  MATH  Google Scholar 

  24. Pharoah, P.D., Tsai, Y.Y., Ramus, S.J., et al.: GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer. Nat. Genet. 45(4), 362–370 (2013)

    Article  Google Scholar 

  25. Picard, F., Robin, S., Lebarbier, E., Daudin, J.: A segmentation-clustering model for the analysis of array CGH data. Biometrics 63(3), 758–766 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Resnick, M.B., Sabo, E., Kondratev, S., Kerner, H., Spagnoli, G.C., Yakirevich, E.: Cancer-testis antigen expression in uterine malignancies with an emphasis on carcinosarcomas and papillary serous carcinomas. Int. J. Cancer 101(2), 190–195 (2002)

    Article  Google Scholar 

  27. Rihardson, S., Gilks, W.R.: Conditional independence models for epidemiological studies with covariate measurement error model. Stat. Med. 12, 1703–1722 (1993)

    Article  Google Scholar 

  28. Richardson, S., Bottolo, L., Rosenthal, J.: Bayesian models for sparse regression analysis of high dimensional data. Bayesian Stat. 9, 539–569 (2010)

    Google Scholar 

  29. Sha, N., Vannucci, M., Tadesse, M., et al.: Bayesian variable selection in multinomial probit models to identify molecular signatures of disease stage. Biometrics 60(3), 812–819 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shappell, S.B., Gupta, R.A., Manning, S., et al.: 15S-Hydroxyeicosatetraenoic acid activates peroxisome proliferator-activated receptor gamma and inhibits proliferation in PC3 prostate carcinoma cells. Cancer Res. 61(2), 497–503 (2001)

    Google Scholar 

  31. Stingo, F., Chen, Y., Vannucci, M., Barrier, M., Mirkes, P.A.: Bayesian graphical modelling approach to microRNA regulatory network inference. Ann. Appl. Stat. 4(4), 2024–2048 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stingo, F., Chen, Y., Tadesse, M., Vannucci, M.: Incorporating biological information into linear models: a Bayesian approach to the selection of pathways and genes. Ann. Appl. Stat. 5(3), 1978–2002 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Subirana, I., Diaz-Uriarte, R., Lucas, G., Gonzalez, J.: CNVassoc: association analysis of CNV data using R. BMC Med. Genomics 4, 47 (2011)

    Article  Google Scholar 

  34. Tavassoli, M., Ruhrberg, C., Beaumont, V., Reynolds, K., Kirkham, N., Collins, W.P., Farzaneh F.: Whole chromosome 17 loss in ovarian cancer. Genes Chromosom. Cancer 8(3), 195–198 (1993)

    Article  Google Scholar 

  35. Venkatraman, E., Olshen, A.: A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 23(6), 657–663 (2007)

    Article  Google Scholar 

  36. Wang, K., Li, M., Hadley, D., et al.: PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genoty** data. Genome Res. 17(11), 1665–1674 (2007)

    Article  Google Scholar 

  37. Wang, Y.J., Liu, J.B., Dou, Y.C.: Sequential treatment with betulinic acid followed by 5-fluorouracil shows synergistic cytotoxic activity in ovarian cancer cells. Int. J. Clin. Exp. Pathol. 8(1), 252–259 (2015)

    Google Scholar 

  38. Yau, C., Papaspiliopoulos, O., Roberts, G.O., Holmes, C.: Bayesian nonparametric hidden Markov models with application to the analysis of copy-number-variation in mammalian genomes. J. R. Stat. Soc. Ser. B 73(1), 37–57 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Vannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cassese, A., Guindani, M., Vannucci, M. (2016). iBATCGH: Integrative Bayesian Analysis of Transcriptomic and CGH Data. In: Frigessi, A., Bühlmann, P., Glad, I., Langaas, M., Richardson, S., Vannucci, M. (eds) Statistical Analysis for High-Dimensional Data. Abel Symposia, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-27099-9_6

Download citation

Publish with us

Policies and ethics

Navigation