Xylitol as Sweetener

  • Reference work entry
  • First Online:
Sweeteners

Abstract

Xylitol is a low-calorie, crystalline sweetener which is naturally present in fibrous plant foods and hardwood trees. It can be produced by hydrolysis from different plant sources having polysaccharides. Hemicellulose (xylan) is transformed to xylose that is further converted into xylitol through hydrogenation. In the human body, more than half of the ingested xylitol is not absorbed in the small intestine. It moves to the gut and serves as a substrate for growth of intestinal flora. Blood glucose and insulin responses to xylitol are very low as compared to sucrose. Its energy value is calculated as 2.4 kcal/g. It is the only sugar alcohol having sweetness intensity equivalent to sucrose. Although, its solubility is comparable to sucrose at ambient temperatures and greater at higher temperatures but being a monosaccharide sugar alcohol, it shows lower viscosity than sucrose in a solution of similar concentration. Due to a low-calorific-value sweetener, it is being used as a food additive in confectionery, bakery, drinks, and dairy products, as well as in pharmaceutical industry. Xylitol imparts numerous potential health benefits, being low in calories; having insulin-independent metabolism, prebiotic nature, and anabolic effects; and being safe to use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Rehman SU, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55:1514–1528

    Article  CAS  Google Scholar 

  2. Steinberg LM, Odusola F, Mandel ID (1992) Remineralizing potential, antiplaque and antigingivitis effects of xylitol and sorbitol sweetened chewing gum. Clin Prev Dent 14:31–34

    CAS  Google Scholar 

  3. Azarpazhooh A, Limeback H, Lawrence HP, Shah PS (2011) Xylitol for preventing acute otitis media in children up to 12 years of age. Cochrane Database Syst Rev 11:CD007095

    Google Scholar 

  4. Rahman M, Islam M (2014) Xylitol improves pancreatic islets morphology to ameliorate type 2 diabetes in rats: a dose response study. J Food Sci 79:436–1442

    Article  CAS  Google Scholar 

  5. Soderling E, ElSalhy M, Honkala E, Fontana M, Flannagan S, Eckert G, Kokaras A, Paster B, Tolvanen M, Honkala S (2015) Effects of short-term xylitol gum chewing on the oral microbiome. Clin Oral Invest 19:237–244

    Article  Google Scholar 

  6. FASEB (1994) The evaluation of the energy of certain sugar alcohols used as food ingredients. Federation of American Societies for Experimental Biology, Bethesda

    Google Scholar 

  7. Pepper T, Olinger PM (1988) Xylitol in sugar-free confections. Food Technol 10:98–106

    Google Scholar 

  8. Parajo JC, Domınguez H, Domınguez JM (1998) Biotechnological production of xylitol. Part 2: operation in culture media made with commercial sugars. Bioresour Technol 65:201–212

    Google Scholar 

  9. Rao RS, Pavana Jyothi C, Prakasham RS, Sharma PN, Venkateswar Rao L (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978

    Article  CAS  Google Scholar 

  10. Liu S, Okuyama Y, Tamura M, Nakagawa Y, Imai A, Tomishige K (2016) Selective transformation of hemicellulose (xylan) into n-pentane, pentanols or xylitol over a rhenium-modified iridium catalyst combined with acids. Green Chem 18:165–175

    Article  Google Scholar 

  11. Nigam P, Singh D (1995) Processes for fermentative production of xylitol – a sugar substitute. Process Biochem 30:117–124

    CAS  Google Scholar 

  12. Kang HY, Kim YS, Kim GJ, Seo JH, Ryu YW (2005) Screening and characterization of flocculent yeast, Candida sp. HY200, for the production of xylitol from d-xylose. J Microbiol Biotechnol 15:362–367

    CAS  Google Scholar 

  13. Kwon SG, Park SW, Oh DK (2006) Increase of xylitol productivity by cell-recycle fermentation of Candida tropicalis using submerged membrane bioreactor. J Biosci Bioeng 101:13–18

    Article  CAS  Google Scholar 

  14. Sampaio FC, Chaves-Alves VM, Converti A, Lopes Passos FM, CavalcanteCohelo JL (2008) Influences of cultivation conditions on xylose-to-xylitol bioconversion by a new isolate of Debaryomyces hansenii. Bioresour Technol 99:502–508

    Article  CAS  Google Scholar 

  15. Silva CJSM, Mussatto SI, Roberto IC (2006) Study of xylitol production by Candida guilliermondii a bench reactor. J Food Eng 75:115–119

    Article  CAS  Google Scholar 

  16. Du Preez JC (1994) Process parameters and environmental factors affecting d-xylose fermentation by yeasts. Enzyme Microb Technol 16:944–956

    Article  Google Scholar 

  17. Bobleter O (1994) Hydrothermal degradation of polymers derived from plants. Prog Polym Sci 19:797–841

    Article  CAS  Google Scholar 

  18. Eda SA, Ohnishi A, Kato K (1976) Xylan isolated from the stalk of Nicoliana labacul1l. Agric Biol Chem 40:359–364

    CAS  Google Scholar 

  19. Kormelink FJ, Voragen AG (1993) Degradation of different glucurono arabinoxylans by a combination of purified xylan-degrading enzymes. Appl Microbiol Biotechnol 38:688–695

    Article  CAS  Google Scholar 

  20. Shibuya N, Iwasaki T (1985) Structural features of rice bran hemicellulose. Phytochem 24:285–289

    Article  CAS  Google Scholar 

  21. Gruppen H, Hamer RJ, Voragen AGJ (1992) Water-unextractable cell wall material from wheat flour. 2. Fractionation of alkali-extracted polymers and comparison with water extractable arabinoxylans. J Cereal Sci 16:53–67

    Article  CAS  Google Scholar 

  22. Doner LW, Hicks KB (1997) Isolation of hemicellulose from corn fiber by alkaline hydrogen peroxide extraction. Cereal Chem 74:176–181

    Article  CAS  Google Scholar 

  23. da Silva AE, Marcelino HR, Gomes MCS, Oliveira EE, Egito EST, Toshiyuki N Jr (2012) Xylan, a promising hemicellulose for pharmaceutical use. In: Verbeek J (ed) Products and applications of biopolymers. In Tech, University Campus, Slavka Krautzeka, Rijeka, pp 61–84. ISBN 978-953-51-0226-7

    Google Scholar 

  24. Saulnier L, Vilarot C, Chanliaud E, Thibault JF (1995) Cell wall polysaccharide interactions in maize bran. Carbohydr Polym 26:279–287

    Article  CAS  Google Scholar 

  25. Hood EE, Hood KR, Fritz SE (1991) Hydroxyproline-rich glycoproteins in cell walls of pericarp from maize. Plant Sci 79:13–22

    Article  CAS  Google Scholar 

  26. Carvalho W, Santos JC, Canilha L, Silva SS (2005) Xylitol production from sugarcane bagasse hydrolysate; Metabolic behaviour of Candida guilliermondii cells entrapped in Ca-alginate. Biochem Eng J 25:25–31

    Article  CAS  Google Scholar 

  27. Villarreal MLM, Prata AMR, Felipe MGA, Almeida E, Silva JB (2006) Detoxification procedures of eucalyptus hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Enzyme Microb Technol 40:17–24

    Article  CAS  Google Scholar 

  28. Carvalheiro F, Duarte LC, Lopes S, Parajo JC, Pereira H, Giyrio FM (2005) Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI 941. Process Biochem 40:1215–1223

    Article  CAS  Google Scholar 

  29. Schirmer-Michel AC, Flores SH, Hertz PF, Matos GS, Ayub MAZ (2008) Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresour Technol 99:2898–2904

    Article  CAS  Google Scholar 

  30. Liaw WC, Chen CS, Chang WS, Chen KP (2008) Xylitol production from rice straw hemicellulose hydrolysate by polyacrylic hydrogel thin films with immobilized Candida subtropicalis WF79. J Biosci Bioeng 105:97–105

    Article  CAS  Google Scholar 

  31. Iranmahboob J, Nadim F, Monemi S (2002) Optimizing acid hydrolysis: a critical step for production of ethanol from mixed wood chips. Biomass Bioenerg 22:401–404

    Article  CAS  Google Scholar 

  32. Goldstein IS, Easter JM (1992) An improved process for converting cellulose to ethanol. Tappi 75:135–140

    CAS  Google Scholar 

  33. Saha BC, Bothast RJ (1999) Pretreatment and enzymatic saccharification of corn fiber. Appl Biochem Biotechnol 76:65–77

    Article  CAS  Google Scholar 

  34. Koullas DP, Christakopoulos PF, Kekos D, Koukios EG, Macris BG (1993) Effect of alkali delignification on wheat straw saccharification by Fusarium oxysporum cellulases. Biomass Bioenerg 4:9–13

    Article  CAS  Google Scholar 

  35. Clark DP, Mackie KL (1987) Steam explosion of the softwood Pinus radial Cl with sulphur dioxide addition I process optimization. J Wood Chem Technol 7:373–403

    Article  CAS  Google Scholar 

  36. Gould JM (1984) Alkaline peroxide delignification of agricultural residues to enhance enzymatic saccharification. Biotechnol Bioeng 26:46–52

    Article  CAS  Google Scholar 

  37. Fernandez-Bolanos J, Felizon B, Heredia A, Rodriquez R, Guillen R, Jimenez A (2001) Steam-explosion of olive-stones: hemicellulose solubilization and enhancement of enzymatic hydrolysis of cellulose. Bioresour Technol 79:53–61

    Article  CAS  Google Scholar 

  38. Dale BE, Leong CK, Pham TK, Esquivel VK, Rios L, Latimur VM (1996) Hydrolysis at low enzyme levels: application of the AFEX process. Bioresour Technol 56:111–116

    Article  CAS  Google Scholar 

  39. Schimidt AS, Thomsen AB (1998) Optimization of wet oxidation pretreatment of wheat straw. Bioresour Technol 64:139–151

    Article  Google Scholar 

  40. Kaar WE, Holtzaple MT (2000) Using lime pretreatment to facilitate the enzymatic hydrolysis of corn stover. Biomass Bioenerg 18:189–199

    Article  CAS  Google Scholar 

  41. Laser M, Schulman D, Allen SG, Lichwa J, Antal MJ, Lynd LR (2002) A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresour Technol 81:33–44

    Article  CAS  Google Scholar 

  42. Chum HL, Johnsoon DK, Black S (1988) Organosolv pretreatment for enzymatic hydrolysis of poplars: 1. enzyme hydrolysis of cellulosic residues. Biotechnol Bioeng 31:643–649

    Article  CAS  Google Scholar 

  43. Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11

    Article  CAS  Google Scholar 

  44. Vinals-Verde MI, Maciel-de-Mancilha J, Batista-de-Almeida ES, NapolesSolenzar AL (2006) Métodos de purificación de hidrolizados de bagazo de caña de azúcarpara la obtención de xilitol. Cienc Tecnol Aliment 5:129–134

    Article  CAS  Google Scholar 

  45. Herrera A, Tellez-Luis SJ, Gonzalez-Cabriales JJ, Ramírez JA, Vazquez M (2004) Effect of the hydrochloric acid concentration and time on the hydrolysis of sorghum straw at atmospheric pressure. J Food Eng 63:103–109

    Article  Google Scholar 

  46. Bungay H (1992) Product opportunities for biomass refining. Enzyme Microb Technol 14:501–507

    Article  CAS  Google Scholar 

  47. Palmqvist E, Hahn-Hagerdal B (2000) Fermentation of lignocellulosic hydrolysates I: inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  48. Bower S, Wickramasinghe SR, Nagle NJ, Schell DJ (2008) Modeling sucrose hydrolysis in dilute sulfuric acid solutions at pretreatment conditions for lignocellulosic biomass. Bioresour Technol 99:7354–7362

    Article  CAS  Google Scholar 

  49. Mussatto SI, Roberto IC (2004) Alternatives for detoxification of diluted acid lignocellulosic hydrolysates for use in fermentative processes: a review. Bioresour Technol 93:1–10

    Article  CAS  Google Scholar 

  50. Martinez A, Rodriguez ME, Wells ML, York SW, Preston JF, Ingram LO (2001) Detoxification of dilute acid hydrolysates of lignocellulose with lime. Biotechnol Prog 17:287–293

    Article  CAS  Google Scholar 

  51. Vogel-Lowmeier EM, Sopher CR, Lee H (1998) Intracellular acidification as a mechanism for the inhibitors of xylose fermentation by yeast. J Indus Microbiol Biotechnol 20:75–81

    Article  CAS  Google Scholar 

  52. Villa P, Felipe MGA, Rodriguez RCL, Vitolo M, Luis dos Reis E, Silva SS, Napoles AI, Mancilha IM (1998) Influence of phenolic compounds on the bioprocess of xylitol production by Candida guilliermondii. In: Esbes-2 European symposium on biochemical engineering science, Porto

    Google Scholar 

  53. Felipe MGA, Vieira DC, Vitolo M, Silva SS, Roberto IC, Mancilha IM (1995) Effect of acetic-acid on xylose fermentation to xylitol by Candida guilliermondii. J Basic Microbiol 35:171–177

    Article  CAS  Google Scholar 

  54. Prakasham RS, Merrie JS, Sheela R, Saswathi N, Ramakrishna SV (1999) Biosorption of chromium VI by free and immobilized Rhizopus arrhizus. Environ Pollut 104:421–427

    Article  CAS  Google Scholar 

  55. Taherzadeh MJ, Niklasson C, Liden G (2000) On-line control of fed-batch production of xylose. Bioresour Technol 98:554–559

    Google Scholar 

  56. Larsson S, Reimann A, Nilvebrant N, Jonsson LJ (1999) Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl Biochem Biotechnol 77–79:91–103

    Article  Google Scholar 

  57. Nilvebrant NO, Reimann A, Larsson S, Jonsson LJ (2001) A detoxification of lignocellulose hydrolysates with ion exchange resins. Appl Biochem Biotechnol 91(93):35–49

    Article  Google Scholar 

  58. Moreira RFPM, Jose HJ, Soares JL (2000) Isotermas De Adsorção de Corantes Reativos Sobre Carvão Ativado. In: Florianopolis SC, Pinto LT (eds) 2 Encontro Brasileiro Sobreadsorçao, Brasil, pp 85–91

    Google Scholar 

  59. Schneider H (1996) Selective removal of acetic acid from hardwood-spent sulfite liquor using mutant yeast. Enzyme Microb Technol 19:94–98

    Article  CAS  Google Scholar 

  60. Hyvonen L, Koivistoinen P, Voirol F (1982) Food technological evaluation of xylitol. In: Chichester CO, Mrak EM, Stewart G (eds) Advances in food research. Academic, New York, pp 373–403

    Google Scholar 

  61. Granstrom T, Ojamo H, Leisola M (2001) Chemostat study of xylitol production by Candida guilliermondii. Appl Microbiol Biotechnol 55:36–42

    Article  CAS  Google Scholar 

  62. Nicklin I, Graeme-Cook K, Paget T, Killington RA (1999) Notes in microbiology. Springer, New York

    Google Scholar 

  63. Granstrom T, Wu X, Airaksinen U, Leisola M (2002) Candida guilliermondii grows on rare pentoses – implications on production of pure xylitol. Biotechnol Lett 24:507–510

    Article  CAS  Google Scholar 

  64. Saha BC, Bothast RJ (1997) Fuels and chemicals from biomass, vol. 666. ACS symposium series. American Chemical Society, Washington, DC, pp 307–319

    Google Scholar 

  65. Cheng KK, Zhang JA, Ling HZ, ** WX, Huang W, Ge JP, Xu JM (2009) Optimization of pH and acetic acid concentration for bioconversion of hemicellulose from corncobs to xylitol by Candida tropicalis. Biochem Eng J 43:203–207

    Article  CAS  Google Scholar 

  66. Kim JH, Ryuo YW, Seol JH (1999) Analysis and optimization of two-substrate fermentation for xylitol production using Candida tropicalis. J Ind Microbiol Biotechnol 22:181–186

    Article  CAS  Google Scholar 

  67. Fond O, Jansen NB, Tsao GT (1985) A model of acetic acid and 2, 3-butanediol inhibition of the growth and metabolism of Klebsiella oxytoca. Biotechnol Lett 7:727–732

    Article  CAS  Google Scholar 

  68. El-Batal A, Khalaf S (2004) Xylitol production from corn cobs hemicellulosic hydrolysate by Candida tropicalis immobilized cells in hydrogel copolymer carrier. Int J Agri Biol 6:1066–1073

    CAS  Google Scholar 

  69. Rodrigues DCGA, Silva SS, Prata MR, Felipe MGA (1998) Biotechnological production of xylitol from agricultural residues evaluation bioprocess. Appl Biochem Biotechnol 70–72:869–875

    Article  Google Scholar 

  70. Sreenivas RR, Prakasham RS, Prasad KK, Rajesham S, Sharma PN, Rao LV (2004) Xylitol production by Candida sp.: parameter optimization using Taguchi appraoach. Process Biochem 39:951–956

    Article  CAS  Google Scholar 

  71. Slininger PJ, Bolen PL, Kurtzman CP (1987) Pachysolen tannophilus: properties and process consideration for ethanol production from d-xylose. Enzyme Microb Technol 9:5–15

    Article  CAS  Google Scholar 

  72. Palnitkar S, Lachke A (1992) Effect of nitrogen sources on oxidoreductive enzymes and ethanol production during xylose fermentation by Candida shehatae. Can J Microbiol 38:258–260

    Article  CAS  Google Scholar 

  73. Winkelhausen E, Kuzmanova S (1998) Microbial conversion of d-xylose to xylitol. J Ferment Bioeng 861:1–14

    Article  Google Scholar 

  74. Gurgel PV, Mancilha IM, Pecanha RP, Siqueira JFM (1995) Xylitol recovery from fermented sugarcane bagasse hydrolysate. Bioresour Technol 52:219–223

    Article  CAS  Google Scholar 

  75. Siripurkpong P, Prajan S, Kongkhum S (2014) Xylitol does not directly affect adiponectin production and adipogenesis in 3T3-L1 cells. Songklanakarin J Sci Technol 36:425–432

    Google Scholar 

  76. Bar A (1991) Xylitol. In: Nabors LO, Gelardi RC (eds) Alternative sweetener, 2nd edn. Marcel Dekker Inc, Hong-Kong, pp 349–379

    Google Scholar 

  77. Olinger PM, Pepper T (2001) Xylitol. In: Nabors LO (ed) Alternative sweetners. Marcel Dekker, New York, pp 335–365

    Google Scholar 

  78. Edgar E (1998) Sugar substitutes, chewing gum and dental caries-a review. Br Dent J 184:29–31

    Article  CAS  Google Scholar 

  79. Hyvonen L, Espo A (1981) Replacement of sucrose in bakery products. In: Cakes and cookies, EKT-Ser. 569. University of Helsinki, Finland

    Google Scholar 

  80. Winkelhausen E, Malinovska RJ, Velickova E, Kuzmanova S (2007) Sensory and microbiological quality of a baked product containing xylitol as an alternative sweetener. Int J Food Prop 10:639–649

    Article  CAS  Google Scholar 

  81. Withers C, Barnagaud C, Mehring P, Ferris S, Thomson DMH (2016) Adapting and enhancing sequential profiling to understand the effects of successive ingestion, using the sensory characteristics of high intensity sweeteners as a case study. Food Qual Prefer 47:139–147

    Article  Google Scholar 

  82. Feigal RJ, Jensen ME, Mensing CA (1981) Dental caries potential of liquid medications. Pediatrics 68:416–419

    CAS  Google Scholar 

  83. Uhari M, Kontiokari T, Koskela M, Niemela M (1996) Xylitol chewing gum in prevention of acute otitis media: double blind randomized trial. BMJ 313:1180–1184

    Article  CAS  Google Scholar 

  84. Maloney PC, Amburdkar SV (1989) Functional reconstitution of prokaryote and eukaryote membrane-proteins. Arch Biochem Biophys 269:1–10

    Article  CAS  Google Scholar 

  85. Laakso R, Sneck K, Kristoffersson E (1982) Xylitol and Avicel PH-102 as excipients in tablets made by direct compression and from granulate. Acta Pharm Fenn 91:47–54

    CAS  Google Scholar 

  86. Smits MT, Arends J (1988) Influence of extraoral xylitol and sucrose dip**s on enamel demineralization in vivo. Caries Res 22:160–165

    Article  CAS  Google Scholar 

  87. Featherstone JDB, Cutress TW, Rodgers BE, Dennison PJ (1982) Remineralization of artificial caries-like lesions in vivo by a self-administered mouthrinse or paste. Caries Res 16:235–242

    Article  CAS  Google Scholar 

  88. Wang YM, Eys V (1981) Nutritional significance of fructose and sugar alcohols. Ann Rev Nutr 1:437–475

    Article  CAS  Google Scholar 

  89. Salminen E, Prokka L, Koivistoinen P (1984) The effects of xylitol on gastric emptying and secretion of gastric inhibitory polypeptide in the rat. J Nutr 114:2201–2203

    CAS  Google Scholar 

  90. Cao NJ, Gong RCS, Chen LF (1994) The effect of cell density on the production of xylitol from d-xylose by yeast. Appl Biochem Biotechnol 46:515–519

    Article  Google Scholar 

  91. Emodi A (1978) Xylitol: its properties and food applications. Food Technol 32:20–32

    Google Scholar 

  92. Hassinger W, Auer G, Cordes U (1981) The effects of equal caloric amounts of xylitol, sucrose and starch on insulin requirements and blood glucose levels in insulin-dependent diabetics. Diabetologia 21:37–40

    Article  CAS  Google Scholar 

  93. Beutler HO (1984) Xylitol. In: Hans Ulrich BW (ed) Methods of enzymatic analysis, vol 6, 3rd edn. Verlag Chemie, Deerfield Beach, pp 484–490

    Google Scholar 

  94. Aguirre-Zero O, Zero DT, Proskin HM (1993) Effect of chewing xylitol chewing gum on salivary flow rate and the acidogenic potential of dental plaque. Caries Res 27:55–59

    Article  CAS  Google Scholar 

  95. Manz U, Vanninen E, Voirol F (1973) Xylitol- its properties and use as a sugar. In: Food RA Symposium sugar and sugar replacements, London

    Google Scholar 

  96. Schricker T, Gross G, Wolfel R, Georgieff M (1995) Enhancement of fatty acid mobilization and oxidation by glucose-xylitol compared to glucose alone in posttraumatic and septic patients. Nutr Hosp 10:13–18

    CAS  Google Scholar 

  97. Natah SS, Hussien KR, Tuominen JA, Koivisto VA (1997) Metabolic response to lactitol and xylitol in healthy men. Am J Clin Nutr 65:947–950

    CAS  Google Scholar 

  98. Hamber O, Almdal TP (1996) Effects of xylitol on urea synthesis in normal humans: relation to glucagon. J Parentr Enteral Nutr 20:139–144

    Article  Google Scholar 

  99. Marti N, Funes LL, Saura D, Micol V (2008) An update on alternative sweeteners. Int Sugar J 110:425–429

    CAS  Google Scholar 

  100. Vasilescu R, Ionescu AM, Mihai A, Carniciu S, Ionescu-Tirgoviste C (2011) Sweeteners and metabolic diseases: xylitol as a new player. Proc Rom Acad B 2:125–128

    Google Scholar 

  101. Chen X, Jiang ZH, Chen S, Qin W (2010) Microbial and bioconversion production of d-xylitol and its detection and application. Int J Biol Sci 6:834–844

    Article  CAS  Google Scholar 

  102. Mazur A, Remedy C, Gurus E, Leveret AM, Demigne C (1990) Effects of diet rich in fermentable carbohydrates on plasma lipoprotein levels and on lipoprotein catabolism in rats. J Nutr 120:1037–1045

    CAS  Google Scholar 

  103. Maguire A, Rugg-Gunn AJ (2003) Xylitol and caries prevention – is it a magic bullet? Br Dent J 194:429–436

    Article  CAS  Google Scholar 

  104. Reusens B (2004) Functional foods, ageing and degenerative disease. Woodhead Publishing, Cambridge, UK, p 202

    Google Scholar 

  105. Scheinin A (1993) Dental caries, sugars and xylitol. Ann Med 25:519–521

    CAS  Google Scholar 

  106. Mickenautsch S, Yengopal V (2012) Effect of xylitol versus sorbitol: a quantitative systematic review of clinical trials. Int Dent J 62:175–188

    Article  Google Scholar 

  107. Ritter AV, Bader JD, Leo MC, Preisser JS, Shugars DA, Vollmer WM, Amaechi BT, Holland JC (2013) Tooth-surface-specific effects of xylitol: randomized trial results. J Dent Res 92:512–517

    Article  CAS  Google Scholar 

  108. Lee BD, Park MK, Djeric DR, Folic MM, Blazic SR, Djoric IB, Ozbay C, Dundar R, Kulduk E, Soy KF, Aslan M (2014) Effects and safety of xylitol on middle ear epithelial cells. Int Adv Otol 10:19–24

    Article  Google Scholar 

  109. Jones A (2001) Intranasal xylitol, recurrent otitis media, and asthma: report of three cases. Clin Pract Alt Med 2:112–117

    Google Scholar 

  110. Sato H, Ide Y, Nasu M, Numabe Y (2011) The effects of oral xylitol administration on bone density in rat femur. Odontology 99:28–33

    Article  CAS  Google Scholar 

  111. Stanhope KL, Bremer AA, Medici V, Nakajima K, Ito Y, Nakano T, Chen G, Fong TH, Lee V, Menorca RI, Keim NL (2011) Consumption of fructose and high fructose corn syrup increase postprandial triglycerides, LDL-cholesterol, and apolipoprotein-B in young men and women. J Clin Endocrinol Metabol 96:E1596–E1605

    Article  CAS  Google Scholar 

  112. Grizard D, Barthomeuf C (1999) Non-digestible oligosaccharides used as prebiotic agents: mode of production and beneficial effects on animal and human health. Reprod Nutr Dev 39:563–588

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Salim-ur Rehman , Mian Anjum Murtaza or Zarina Mushtaq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rehman, Su., Murtaza, M.A., Mushtaq, Z. (2018). Xylitol as Sweetener. In: Mérillon, JM., Ramawat, K. (eds) Sweeteners. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-27027-2_30

Download citation

Publish with us

Policies and ethics

Navigation