Local Acoustic Resonance Spectroscopy

  • Reference work entry
  • First Online:
Handbook of Advanced Nondestructive Evaluation

Abstract

The local acoustic resonance spectroscopy (LARS) is a novel nondestructive testing (NDT) technique that is based on the well-known coin-tap** test. This rather old test utilizes the effect that a defect (such as a large void, crack, or delamination), that is invisible from the surface, causes a change of acoustic waves emitted from the structure as a person taps on it – e.g., using a coin or a small hammer. This procedure has obvious drawbacks as it depends strongly on the skills – tap** correctly and listening carefully to the sound emitted – of an experienced person who needs to apply this simple technique by hand being close to the structure. Proper interpretation of the emitted sound is often difficult – even for experienced investigators. However, the benefits of easy implementation, relatively fast surveying, and cost-efficiency are evident as well. This was the motivation for the instrumentation of this technique, where all steps are automated, including a contact-free recording microphone and a robot-based instrumented excitation of the component under test. The technique can be locally applied to structures constructed from fiber-reinforced polymers and uses the acoustic waves that are analyzed in the frequency domain according to resonance peak content. For industrial applications, LARS can be used as a rapid but reliable NDT technique to obtain an initial overview about larger defects in a structure prior to implementing more detailed investigations, thus raising the escalation level of quality control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 759.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abrate S (2005) Impact on composite structure. Cambridge University Press, Cambridge

    Google Scholar 

  • Andreisek G, Korthals D, Grosse CU, Seeber BU (2016) The virtual tap test – a training system for wind turbine rotor blade inspectors. In: Proceedings of the 19th world conference on non-destructive testing. WCNDT 2016, Th.4.E.3. pp 1–7

    Google Scholar 

  • Andreisek G, Grosse CU, Seeber BU (2015) Attribute zur Beschreibung akustischer Unterschiede von Fehlstellen an Rotorblättern von Windenergieanlagen. Fortschritte der Akustik – DAGA ’15. Dt. Ges. f. Akustik, Berlin, pp 513–515

    Google Scholar 

  • Carino NJ, Sansalone M, Hsu NN (1986) A point source−point receiver technique for flaw detection in concrete. J Am Conc Inst 83(2):199–208

    Google Scholar 

  • Cawley P, Adams RD (1988) The mechanics of the coin-tap method of non-destructive testing. J Sound Vib 122:299–316

    Article  Google Scholar 

  • Gibson A, Popovics JS (2005) Lamb wave basis for impact-echo method analysis. ASCE J Eng Mech 131:438–443

    Article  Google Scholar 

  • Groschup R, Grosse CU (2015) MEMS microphone Array sensor for air-coupled impact-Echo. Sensors 15:14932–14945. https://doi.org/10.3390/s150714932

    Article  Google Scholar 

  • Grosse CU, Goldammer M, Grager JC, Heichler G, Jahnke P, Jatzlau P, Kiefel D, Mosch M, Oster R, Sause MGR, Stößel R, Ulrich M (2016) Comparison of NDT Techniques to Evaluate CFRC – Results Obtained in a MAIzfp Round Robin Test. In: Proceedings of the world conference on NDT. German Society of NDT, München

    Google Scholar 

  • Ham S, Popovics J (2015) Application of micro-electro-mechanical sensors contactless NDT of concrete structures. Sensors 15:9078–9096

    Article  Google Scholar 

  • Hertz H (1881) Über die Berührung fester elastischer Körper. Journal für reine und angewandte Mathematik 92:156–171

    MATH  Google Scholar 

  • Hornfeck C, Geiss C, Rücker M, Grosse CU (2015) Comparative study of state of the art nondestructive testing methods with the local acoustic resonance spectroscopy to detect damages in GFRP. J Nondestruct Eval 34(2):1–14

    Article  Google Scholar 

  • Jatzlau P, Müller M, Grosse CU (2016) Identification of flawed CFRP samples using local acoustic resonance spectroscopy (LARS). In: Proceedings of the 19th world conference on non-destructive testing, WCNDT 2016, NDT.net. 8p

  • Jüngert A (2010) Untersuchung von GFK Bauteilen mit akustischen Verfahren am Beispiel der Rotorblätter von Windenergieanlagen. Ph.D. Thesis, University of Stuttgart, 179p

    Google Scholar 

  • Jüngert A, Grosse CU, Krüger M (2013) Local acoustic resonance spectroscopy (LARS) for glass Fiber-reinforced polymer applications. J Nondestruct Eval 33(1):23–33

    Article  Google Scholar 

  • Landau LD, Lifschitz EM (1989) Lehrbuch der Theoretischen Physik, Bd. VII Elastizitätstheorie, 6. Aufl. Akademie-Verlag (Berlin), 223p

    Google Scholar 

  • McLaskey G, Glaser SD (2010) Hertzian impact: experimental study of the force pulse and resulting stress waves. J Acoust Soc Am 128(3):1087–1096

    Article  Google Scholar 

  • Mitsuhashi K, Jyomuta C, Oka F, Nishikawa H (1989) Method and apparatus for impact-type inspection of structures. US Patent No 05,048,320

    Google Scholar 

  • Müller M (2015) Möglichkeiten und Grenzen von Resonanzanalyseverfahren zur zerstörungsfreien Prüfung von Faser-Kunststoff-Verbunden. Bachelor Thesis, Technical Univ. of Munich, Chair of Non-destructive Testing, 145p

    Google Scholar 

  • Narr A (2017) Einfluss von impact-Schäden bei der experimentellen Modalanalyse von CFK-Platten. Bachelor thesis, Technical University of Munich, chair of non-destructive testing, 131p

    Google Scholar 

  • Olympus (2010) Bondmaster 1000+ − multimode adhesive bond testing application guide. Olympus, Tokyo

    Google Scholar 

  • Sansalone MJ, Carino NJ (1986) Impact-echo: a method for flaw detection in concrete using transient stress waves. In: National Bureau of Standards. NISEE, Berkeley

    Google Scholar 

  • Sansalone MJ, Streett W (1997) Impact-Echo: nondestructive evaluation of concrete and masonry. Bullbrier Press, Jersey Shore

    Google Scholar 

  • Schickert M, Neisecke J, Brameshuber W, Colla C, Flohrer C, Gardei A, Grosse CU, Krause M, Kroggel O, Krüger M, Willmes M (2009) DGZfP Merkblatt B11 – a guideline describing fundamentals and applications of the impact-Echo method, international symposium Non-Destructive Testing in Civil Engineering (NDT-CE), ISBN: 978-2-7208-2542-5, Nantes, pp 807–811

    Google Scholar 

  • Shi X, Polycarpou AA (2005) Measurement and modeling of normal contact stiffness and contact dam** at the Meso scale. J Vib Acoust 127:52–60

    Article  Google Scholar 

  • Vandewalle N (2017) Local acoustic resonance spectroscopy. Non-destructive defect detection for carbon fiber reinforced composites, research internship report (PRE) at TU Munich, ENSTA ParisTech, 43p

    Google Scholar 

  • Wolffhugel T (2016) Local acoustic resonance spectroscopy. Research internship report (PRE) at TU Munich, ENSTA ParisTech, 67p

    Google Scholar 

  • Zhu JY, Popovics JS (2007) Imaging concrete structures using air-coupled impact-echo. ASCE J Eng Mech 133:628–640

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian U. Grosse .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Grosse, C.U., Jüngert, A., Jatzlau, P. (2019). Local Acoustic Resonance Spectroscopy. In: Ida, N., Meyendorf, N. (eds) Handbook of Advanced Nondestructive Evaluation. Springer, Cham. https://doi.org/10.1007/978-3-319-26553-7_21

Download citation

Publish with us

Policies and ethics

Navigation