Unsupervised and Accurate Extraction of Primitive Unit Cells from Crystal Images

  • Conference paper
  • First Online:
Pattern Recognition (DAGM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9358))

Included in the following conference series:

  • 2238 Accesses

Abstract

We present a novel method for the unsupervised estimation of a primitive unit cell, i.e. a unit cell that can’t be further simplified, from a crystal image. Significant peaks of the projective standard deviations of the image serve as candidate lattice vector angles. Corresponding fundamental periods are determined by clustering local minima of a periodicity energy. Robust unsupervised selection of the number of clusters is obtained from the likelihoods of multi-variance cluster models induced by the Akaike information criterion. Initial estimates for lattice angles and periods obtained in this manner are refined jointly using non-linear optimization. Results on both synthetic and experimental images show that the method is able to estimate complex primitive unit cells with sub-pixel accuracy, despite high levels of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974)

    Article  MathSciNet  Google Scholar 

  2. Boerdgen, M., Berkels, B., Rumpf, M., Cremers, D.: Convex relaxation for grain segmentation at atomic scale. In: Fellner, D. (ed.) Vision, Modeling and Visualization, pp. 179–186. Eurographics Association (2010)

    Google Scholar 

  3. Bragg, W.L.: The determination of parameters in crystal structures by means of fourier series. Proc. Roy. Soc. Lond. A Math. Phys. Eng. Sci. 123, 537–559 (1929)

    Google Scholar 

  4. Browning, N., Chisholm, M., Pennycook, S.: Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366(6451), 143–146 (1993)

    Article  Google Scholar 

  5. Buades, A., Coll, B., Morel, J.M.: Image denoising methods: a new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010)

    Article  MathSciNet  Google Scholar 

  6. Burnham, K.P., Anderson, D.R.: Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33(2), 261–304 (2004)

    Article  MathSciNet  Google Scholar 

  7. Cava, R., Ji, H., Fuccillo, M., Gibson, Q., Hor, Y.: Crystal structure and chemistry of topological insulators. J. Mater. Chem. C 1(19), 3176–3189 (2013)

    Article  Google Scholar 

  8. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  9. De La Cuadra, P., Master, A., Sapp, C.: Efficient pitch detection techniques for interactive music. In: Proceedings of the 2001 International Computer Music Conference, pp. 403–406 (2001)

    Google Scholar 

  10. Elsey, M., Wirth, B.: Fast automated detection of crystal distortion and crystal defects in polycrystal images. Multiscale Model. Simul. 12(1), 1–24 (2014)

    Article  MathSciNet  Google Scholar 

  11. Hamerly, G., Elkan, C.: Learning the k in k-means. In: Neural Information Processing Systems, p. 2003. MIT Press (2003)

    Google Scholar 

  12. Hanson, M.A., Roth, C.B., Jo, E., Griffith, M.T., Scott, F.L., Reinhart, G., Desale, H., Clemons, B., Cahalan, S.M., Schuerer, S.C., et al.: Crystal structure of a lipid g protein-coupled receptor. Science 335(6070), 851–855 (2012)

    Article  Google Scholar 

  13. Kimoto, K., Asaka, T., Yu, X., Nagai, T., Matsui, Y., Ishizuka, K.: Local crystal structure analysis with several picometer precision using scanning transmission electron microscopy. Ultramicroscopy 110(7), 778–782 (2010)

    Article  Google Scholar 

  14. Klug, A.: Image analysis and reconstruction in the electron microscopy of biological macromolecules. Chemica Scripta 14, 245–256 (1978–1979)

    Google Scholar 

  15. Klug, H.P., Alexander, L.E., et al.: X-ray Diffraction Procedures, vol. 2. Wiley, New York (1954)

    Google Scholar 

  16. Mevenkamp, N., Binev, P., Dahmen, W., Voyles, P.M., Yankovich, A.B., Berkels, B.: Poisson noise removal from high-resolution stem images based on periodic block matching. Adv. Struct. Chem. Imag. 1(1), 1–19 (2015)

    Article  Google Scholar 

  17. Pelleg, D., Moore, A.W.: X-means: extending k-means with efficient estimation of the number of clusters. In: ICML, pp. 727–734 (2000)

    Google Scholar 

  18. Putnis, A.: An Introduction to Mineral Sciences. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  19. Sang, X., LeBeau, J.M.: Revolving scanning transmission electron microscopy: correcting sample drift distortion without prior knowledge. Ultramicroscopy 138, 28–35 (2014)

    Article  Google Scholar 

  20. Wang, Z., Song, Y., Shi, H., Wang, Z., Chen, Z., Tian, H., Chen, G., Guo, J., Yang, H., Li, J.: Microstructure and ordering of iron vacancies in the superconductor system k y fe x se 2 as seen via transmission electron microscopy. Phys. Rev. B 83(14), 140505 (2011)

    Article  Google Scholar 

  21. Williams, D.B., Carter, C.B.: The Transmission Electron Microscope. Springer, New York (1996)

    Book  Google Scholar 

  22. Zeng, Y.M., Wu, Z.Y., Liu, H.B., Zhou, L.: Modified amdf pitch detection algorithm. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 1, pp. 470–473. IEEE (2003)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank P.M. Voyles for providing experimental STEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niklas Mevenkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Mevenkamp, N., Berkels, B. (2015). Unsupervised and Accurate Extraction of Primitive Unit Cells from Crystal Images. In: Gall, J., Gehler, P., Leibe, B. (eds) Pattern Recognition. DAGM 2015. Lecture Notes in Computer Science(), vol 9358. Springer, Cham. https://doi.org/10.1007/978-3-319-24947-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24947-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24946-9

  • Online ISBN: 978-3-319-24947-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation