Inference of Hidden Structures in Complex Physical Systems by Multi-scale Clustering

  • Chapter
  • First Online:
Information Science for Materials Discovery and Design

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 225))

Abstract

We survey the application of a relatively new branch of statistical physics—“community detection ”—to data mining. In particular, we focus on the diagnosis of materials and automated image segmentation. Community detection describes the quest of partitioning a complex system involving many elements into optimally decoupled subsets or communities of such elements. We review a multiresolution variant which is used to ascertain structures at different spatial and temporal scales. Significant patterns are obtained by examining the correlations between different independent solvers. Similar to other combinatorial optimization problems in the NP complexity class, community detection exhibits several phases. Typically, illuminating orders are revealed by choosing parameters that lead to extremal information theory correlations .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C.A. Angell, Formation of glasses from liquids and biopolymers. Science 267(5206), 1924–1935 (1995)

    Article  Google Scholar 

  2. W.H. Zachariasen, The atomic arrangement in glass. J. Am. Chem. Soc. 54, 3841 (1932)

    Article  Google Scholar 

  3. T. Nakamura, E. Matsubara, M. Sakurai, M. Kasai, A. Inoue, Y. Waseda, Structural study in amorphous Zr-noble metal (Pd, Pt and Au) alloys. J. Non-Cryst. Solids 312–314, 517 (2002)

    Article  Google Scholar 

  4. J. Saida, K. Itoh, S. Sato, M. Imafuku, T. Sanada, A. Inoue, Evaluation of the local environment for nanoscale quasicrystal formation in Zr\(_{80}\)Pt\(_{20}\) glassy alloy using Voronoi analysis. J. Phys. Condens. Matter 21, 375104 (2009)

    Article  Google Scholar 

  5. D.J. Sordelet, R.T. Ott, M.Z. Li, S.Y. Wang, C.Z. Want, M.F. Besser, A.C.Y. Liu, M.J. Kramer, Structure of Zr\(_{x}\) Pt\(_{100-x}\) (\(73 \le x \le 77\)) metallic glasses. Metall. Mater. Trans. A 39A, 1908–1916 (2008)

    Article  Google Scholar 

  6. S.Y. Wang, C.Z. Wang, M.Z. Li, L. Huang, R.T. Ott, M.J. Kramer, D.J. Sordelet, K.M. Ho, Short- and medium-range order in a Zr\(_{73}\)Pt\(_{27}\) glass: experimental and simulation studies. Phys. Rev. B 78, 184204 (2008)

    Article  Google Scholar 

  7. R.L. McGreevy, Understanding liquid structures. J. Phys. Condens. Matter 3, F9 (1991)

    Article  Google Scholar 

  8. D.A. Keen, R.L. McGreevy, Structural modelling of glasses using reverse Monte Carlo simulation. Nature 344, 423–5 (1990)

    Article  Google Scholar 

  9. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, E. Ma, Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419–425 (2006)

    Article  Google Scholar 

  10. J.L. Finney, Random packings and the structure of simple liquids. I. The geometry of random close packing. Proc. R. Soc. Lond. Ser. A 319(1539), 479–493 (1970)

    Article  Google Scholar 

  11. J. Dana Honeycutt, H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)

    Google Scholar 

  12. P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983)

    Article  Google Scholar 

  13. T.R. Kirkpatrick, D. Thirumalai, P.G. Wolynes, Scaling concepts for the dynamics of viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989)

    Article  Google Scholar 

  14. V. Lubchenko, P.G. Wolynes, Theory of structural glasses and supercooled liquids. Annu. Rev. Phys. Chem. 58, 235–266 (2007)

    Article  Google Scholar 

  15. G. Tarjus, S.A. Kivelson, Z. Nussinov, P. Viot, The frustration-based approach of supercooled liquids and the glass transition: a review and critical assessment. J. Phys. Condens. Matter 17, R1143–R1182 (2005)

    Article  Google Scholar 

  16. Z. Nussinov, Avoided phase transitions and glassy dynamics in geometrically frustrated systems and non-Abelian theories. Phys. Rev. B 69, 014208 (2004)

    Article  Google Scholar 

  17. http://www.whitehouse.gov/mgi

  18. S. James, The Wisdom of Crowds (Anchor Books, New York, 2005). ISBN: 0-385-72170-6

    Google Scholar 

  19. P. Ronhovde, Z. Nussinov, An improved potts model applied to community detection. Phys. Rev. E 81, 046114 (2010)

    Article  Google Scholar 

  20. P. Ronhovde, Z. Nussinov, Multiresolution community detection for megascale networks by information-based replica correlations. Phys. Rev. E 80, 016109 (2009)

    Article  Google Scholar 

  21. B. Sun, B. Leonard, P. Ronhovde, Z. Nussinov, An interacting replica approach applied to the traveling salesman problem (2014). ar**v:1406.7282.pdf

  22. M. Dorigo, T. Sttzle, Ant Colony Optimization (MIT Press, Cambridge, 2004) ISBN: 0-262-04219-3

    Google Scholar 

  23. M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, Cambridge, 1996)

    Google Scholar 

  24. S. Fortunato, Community detection in graphs. Phys. Rep. 486, 75–174 (2010)

    Article  Google Scholar 

  25. M.E.J. Newman, Modularity and community structure in networks. Proc. Natl. Acad. Sci. USA 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  26. M.E.J. Newman, M. Girvan, Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  27. S. Fortunato, M. Barthelemy, Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  28. A. Lancichinetti, S. Fortunato, Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009)

    Article  Google Scholar 

  29. V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in large networks. J. Stat. Mech. 10, 10008 (2008)

    Article  Google Scholar 

  30. M.E.J. Newman, Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  31. V. Gudkov, V. Montelaegre, S. Nussinov, Z. Nussinov, Community detection in complex networks by dynamical simplex evolution. Phys. Rev. E 78, 016113 (2008)

    Article  Google Scholar 

  32. M. Rosvall, C.T. Bergstrom, Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105, 1118–1123 (2008)

    Article  Google Scholar 

  33. U. Brandes, D. Dellng, M. Gaertler, R. Gorke, M. Hoefer, Z. Nikoloski, D. Wagner, On finding graph clusterings with maximum modularity. In Graph-Theoretic Concepts in Computer Science. Lecture Notes in Computer Science (Springer, Berlin, 2007). doi:10.1007/978-3-540-74839-7

    Google Scholar 

  34. R.K. Darst, D.R. Reichman, P. Ronhovde, Z. Nussinov, An edge density definition of overlap** and weighted graph communities (2013). ar**v:1301.3120

  35. M.E.J. Newman, Spectral methods for community detection and graph partitioning. Phys. Rev. E 88, 042822 (2013)

    Article  Google Scholar 

  36. M.E.J. Newman, Community detection and graph partitioning. Europhys. Lett. 103, 28003 (2013)

    Article  Google Scholar 

  37. R.K. Darst, Z. Nussinov, S. Fortunato, Improving the performance of algorithms to find communities in networks. Phys. Rev. E 89, 032809 (2014)

    Article  Google Scholar 

  38. J. Reichardt, S. Bornholdt, Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006)

    Article  Google Scholar 

  39. P. Tiago Piexoto, Efficient Monte Carlo and greedy heuristic for the inference of stochastic block models., Phys. Rev. E 89, 012804 (2014)

    Google Scholar 

  40. J.M. Kumpula, J. Saramaki, K. Kaski, J. Kertesz, Limited resolution in complex network community detection with Potts model approach. Eur. Phys. J. B 56, 41 (2007)

    Article  Google Scholar 

  41. P. Ronhovde, Z. Nussinov, Local multi resolution order in community detection. J. Stat. Mech. P01001 (2015)

    Google Scholar 

  42. L.G.S. Jeub, P. Balachandran, M.A. Porter, P.J. Mucha, M.W. Mahoney, Think locally, act locally: the detection of small, medium-sized, and large communities in large networks (2014). ar**v:1403.3795.pdf

  43. M. De Domenico, A. Insolia, Entropic approach to multiscale clustering analysis. Entropy 14, 865 (2012)

    Google Scholar 

  44. P. Tiago Piexoto, Hierarchical block structures and high-resolution model selection in large networks. Phys. Rev. X 4, 011047 (2014)

    Google Scholar 

  45. S. Wiseman, M. Blatt, E. Domany, Superparamagnetic clustering of data. Phys. Rev. E 57, 3767 (1998)

    Article  Google Scholar 

  46. A.L.N. Fred, A.K. Jain, Robust data clustering. In 2003 Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2 (2003), pp. 128–133

    Google Scholar 

  47. M. Meil, Comparing clusterings—an information based distance. J. Multivar. Anal. 98, 873–895 (2007)

    Article  Google Scholar 

  48. L. Danon, A. Diaz-Guilera, J. Duch, A. Arenas, Comparing community structure identification. J. Stat. Mech. Theory Exp. 9, 09008 (2005)

    Google Scholar 

  49. G. Bianconi, Statistical mechanics of multiplex networks: entropy and overlap. Phys. Rev. E 87, 062806 (2013)

    Article  Google Scholar 

  50. P. Ronhovde, S. Chakrabarty, M. Sahu, K.F. Kelton, N.A. Mauro, K.K. Sahu, Z. Nussinov, Detecting hidden spatial and spatio-temporal structures in glasses and complex physical systems by multiresolution network clustering. Eur. Phys. J. E 34, 105 (2011)

    Article  Google Scholar 

  51. P. Ronhovde, S. Chakrabarty, M. Sahu, K.K. Sahu, K.F. Kelton, N. Mauro, Z. Nussinov, Detection of hidden structures on all scales in amorphous materials and complex physical systems: basic notions and applications to networks, lattice systems, and glasses. Sci. Rep. 2, 329 (2012)

    Article  Google Scholar 

  52. D. Hu, P. Ronhovde, Z. Nussinov, A replica inference approach to unsupervised multi-scale image segmentation. Phys. Rev. E 85, 016101 (2012)

    Article  Google Scholar 

  53. L.G. Shapiro, G.C. Stockman, Computer Vision (Prentice-Hall, New Jersey, 2001), pp. 279–325. ISBN: 0-13-030796-3

    Google Scholar 

  54. J. Shi, J. Malik, Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905

    Google Scholar 

  55. L. Wang, H. Cheng, Z. Liu, C. Zhu, A robust elastic net approach for feature learning. J. Vi. Commun. Image Represent. 25, 313 (2014)

    Article  Google Scholar 

  56. A.A. Abin, F. Mahdisoltani, H. Beigy, WISECODE: wise image segmentation based on community detection. Imaging Sci. J. 62, 327 (2014)

    Article  Google Scholar 

  57. H. Dandan, P. Sarder, P. Ronhovde, S. Bloch, S. Achilefu, Z. Nussinov, Automatic segmentation of fluorescence lifetime microscopy images of cells using multiresolution community detection: a first study. J. Microsc. 253(1), 54–64 (2014)

    Article  Google Scholar 

  58. D. Hu, P. Sarder, P. Ronhovde, S. Bloch, S. Achilefu, Z. Nussinov, Community detection for fluorescent lifetime microscopy image segmentation. In Proceedings of the SPIE 8949, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XXI (2014), p. 89491K. http://dx.doi.org/10.1117/12.2036875

  59. http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grou**/

  60. See http://www.gifford.co.uk/?principia/Illusions/dalmatian.htm

  61. D. Hu, P. Ronhovde, Z. Nussinov, Phase transitions in random Potts systems and the community detection problem: spin-glass type and dynamic perspectives. Philos. Mag. 92(4), 406–445 (2012). ar**v:1008.2699 (2010)

    Google Scholar 

  62. H. Dandan, P. Ronhovde, Z. Nussinov, Stability-to-instability transition in the structure of large-scale networks. Phys. Rev. E 86, 066106 (2012)

    Article  Google Scholar 

  63. P. Ronhovde, H. Dandan, Z. Nussinov, Global disorder transition in the community structure of large-q Potts systems. EPL (Europhys. Lett.) 99(3), 38006 (2012)

    Article  Google Scholar 

  64. O. Melchert, A.K. Hartmann, Information-theoretic approach to ground-state phase transitions for two- and three-dimensional frustrated spin systems. Phys. Rev. E 87, 022107 (2013)

    Article  Google Scholar 

  65. S. Cook, The complexity of theorem-proving procedures. In Proceedings of the 3rd Annual ACM Symposium on Theory of Computing (Association for Computing Mchinery, New York, 1971) pp. 151–158

    Google Scholar 

  66. P. Cheeseman , B. Kanefsky, W.M. Taylor, Where the really hard problems are? In Proceedings of 12th International Joint Conference on AI (IJCAI-91) Automated Reasoning vol. 1, ed. by J. Mylopoulos, R. Reiter (1991), p. 331

    Google Scholar 

  67. R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, Lidror Troyansky, Nature 400, 133 (1999)

    Article  Google Scholar 

  68. M. Mezard, G. Parisi, R. Zecchina, Analytic and algorithmic solution of random satisfiability problems. Science 297, 812 (2002)

    Article  Google Scholar 

  69. A. Decelle, F. Krzakala, C. Moore, L. Zdeborova, Phase transition in the detection of modules in sparse networks. Phys. Rev. Lett. 107, 065701 (2011). ar**v:1102.1182

  70. E. Mossel, J. Neeman, A. Sly, Stochastic block models and reconstruction (2012). ar**v:1202.1499

  71. R.R. Nadakuditi,M.E.J. Newman, Graph spectra and the detectability of community structure in networks. Phys. Rev. Lett. 108, 188701 (2012)

    Google Scholar 

  72. R.K. Darst, D.R. Reichman, P. Ronhovde, Z. Nussinov, Algorithm independent bounds on community detection problems and associated transitions in stochastic block model graphs. J. Complex Netw. (2014). doi:10.1093/comnet/cnu042

    Google Scholar 

  73. G. Ver Steeg, C. Moore, A. Galstyan, A. Allahverdyan, Phase transitions in community detection: a solvable toy model. Europhys. Lett. 106, 48004 (2014)

    Google Scholar 

  74. A. Montanari, Finding one community in a sparse graph (2015). ar**v:1502.05680

    Google Scholar 

  75. X. Zhang, R.R. Nadakuditi, M.E.J. Newman, Spectra of random graphs with community structure and arbitrary degrees. Phys. Rev. E 89, 042816 (2014)

    Google Scholar 

  76. J. Reichardt, M. Leone, (Un)detectable cluster structure in sparse networks. Phys. Rev. Lett. 101, 78701 (2008)

    Article  Google Scholar 

  77. S. Kirkpatrick, C.D. Gelatt Jr, M.P. Vecchi, Optimization by simulated annealing. Science 220, 671 (1983)

    Google Scholar 

  78. J. Villain, R. Bidaux, J.P. Carton, R. Conte, Order as an effect of disorder. J. Physique 41, 1263 (1980)

    Article  Google Scholar 

  79. C.L. Henley, Ordering due to disorder in a frustrated vector antiferromagnet. Phys. Rev. Lett. 62, 2056 (1989)

    Article  Google Scholar 

  80. Z. Nussinov, M. Biskup, L. Chayes, J. van den Brink, Orbital order in classical models of transition-metal compounds. Europhys. Lett. 67, 990 (2004)

    Article  Google Scholar 

  81. P.G. Wolynes, Folding funnels and energy landscapes of larger proteins within the capillarity approximation. Proc. Natl. Acad. Sci. USA 94(12), 6170–6175 (1997)

    Article  Google Scholar 

  82. D.S. Bassett, E.T. Owens, K.E. Daniels, M.A. Porter, Influence of network topology on sound propagation in granular materials. Phys. Rev. E 86, 041306 (2012)

    Article  Google Scholar 

  83. F. Cerina, V. De Leo, M. Barthelemy, A. Chessa, Spatial correlations in attribute communities. PLoS ONE 7(5), e37507 (2012)

    Article  Google Scholar 

  84. P. Holme, J. Saramaki, Temporal networks. Phys. Rep. 519, 97 (2012)

    Article  Google Scholar 

  85. A. Cardillo, J. Gmez-Gardenes, M. Zanin, M. Romance, D. Papo, F. del Pozo, S. Boccaletti, Emergence of network features from multiplexity. Sci. Rep. 3, 1344 (2013)

    Article  Google Scholar 

  86. G. Petri, P. Expert, Temporal stability of network partitions. Phys. Rev. E 90, 022813 (2014)

    Article  Google Scholar 

  87. R.L. Jack, A.J. Dunleavy, C. Patrick Royall, Information-theoretic measurements of coupling between structure and dynamics in glass formers. Phys. Rev. Lett. 113, 095703 (2014)

    Google Scholar 

  88. J.-P. Bouchaud, G. Biroli, On the Adams-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J. Chem. Phys. 121, 7347 (2004)

    Article  Google Scholar 

  89. M. Mosayebi, E.D. Gado, P. Iig, H.C. Ottinger, Probing a critical length at the glass transition. Phys. Rev. Lett. 104, 205704 (2010)

    Article  Google Scholar 

  90. L. Berthier, G. Biroli, J.-P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hote, F. Ladieu, M. Pierno, Direct experimental evidence of a growing length scale accompanying the glass transition. Science 310, 1797 (2005)

    Article  Google Scholar 

  91. S. Karmakar, C. Dasgupta, S. Sastry, Growing length and time scales in glass-forming liquids. Proc. Natl. Acad. Sci. USA 106, 3675 (2010)

    Article  Google Scholar 

  92. J. Kurchan, D. Levine, Correlation length for amorphous systems (2009). ar**v:0904.4850

  93. C. Dasgupta, A.V. Indrani, S. Ramaswamy, M.K. Phani, Is there a growing correlation length near the glass transition? Europhys Lett. 15, 307 (1991)

    Article  Google Scholar 

  94. A. Montanari, G. Semerjian, Rigorous inequalities between length and time scales in glassy systems. J. Stat. Phys. 125, 23–54 (2006)

    Article  Google Scholar 

  95. W. Kob, H.C. Andersen, Testing made-coupling theory for a supercooled binary Lennard-Jones mixture: the van Hove correlation function. Phys. Rev. E 51, 4626 (1995)

    Article  Google Scholar 

  96. R. Soklaski, Z. Nussinov, Z. Markow, K.F. Kelton, L. Yang, Connectivity of icosahedral network and a dramatically growing static length scale in Cu-Zr binary metallic glasses. Phys. Rev. B 87, 184203 (2013)

    Google Scholar 

Download references

Acknowledgments

We have benefited from interactions with numerous colleagues. In particular, we would like to thank S. Achilefu, S. Bloch, R. Darst, S. Fortunato, V. Gudkov, K.F. Kelton, T. Lookman, M.E.J. Newman, S. Nussinov, D.R. Reichman, and P. Sarder for numerous discussions and collaboration on some of the problems reviewed in this work and their outgrowths. We are further grateful to support by the NSF under Grants No. DMR-1106293 and DMR-1411229. ZN is indebted to the hospitality and support of the Feinberg foundation for visiting faculty program at the Weizmann Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z. Nussinov , P. Ronhovde or Dandan Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nussinov, Z. et al. (2016). Inference of Hidden Structures in Complex Physical Systems by Multi-scale Clustering. In: Lookman, T., Alexander, F., Rajan, K. (eds) Information Science for Materials Discovery and Design. Springer Series in Materials Science, vol 225. Springer, Cham. https://doi.org/10.1007/978-3-319-23871-5_6

Download citation

Publish with us

Policies and ethics

Navigation