Narcolepsy and Idiopathic Hypersomnia

  • Chapter
  • First Online:
Orexin and Sleep
  • 925 Accesses

Abstract

Recent progress for understanding the pathophysiology of excessive daytime sleepiness (EDS) particularly owes itself to the discovery of narcolepsy genes (i.e., hypocretin receptor and peptide genes) in animals in 1999 and the subsequent discovery in 2000, of hypocretin ligand deficiency (i.e., loss of hypocretin neurons in the brain) in idiopathic cases of human narcolepsy-cataplexy. The hypocretin deficiency can be clinically detected by cerebrospinal fluid (CSF) hypocretin-1 measures; low CSF hypocretin-1 levels are seen in over 90 % of narcolepsy-cataplexy patients (Type 1 narcolepsy by ICSD-3). Type 1 narcolepsy is tightly associated with human leukocyte antigen (HLA) DQB1*0602, suggesting an involvement of immune-mediated mechanisms in the loss of hypocretin neurons. Anatomical and functional studies demonstrate that the hypocretin systems integrate and coordinate the multiple wake-promoting systems, such as monoamine and acetylcholine systems to keep subjects  alert and prevent abnormal REM sleep manifestations. Hypocerin deficiency is not observed in Type 2 narcolepsy and  idiopathic hyperemia and pathophysiological mechanisms in these diseases are largely unknown. This review focuses on pathophysiological mechanisms and nosological aspects of Type 1 narcolepsy, Type 2 narcolepsy  and idiopathic hypersomnia. 

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alaila SL (1992) Life effects of narcolepsy: measures of negative impact, social support and psychological well-being. In: M Goswanmi et al. (eds) Loss, grief and care: psychosocial aspects of narcolepsy. Haworth Press, New York. p 1–22

    Google Scholar 

  • Aldrich MS (1989) Automobile accidents in patients with sleep disorders. Sleep 12:487–494

    CAS  PubMed  Google Scholar 

  • Aldrich MS, Chervin RD, Malow BA (1997) Value of the multiple sleep latency test (MSLT) for the diagnosis of narcolepsy. Sleep 20(8):620–629

    CAS  PubMed  Google Scholar 

  • Aran A et al (2009) Elevated anti-streptococcal antibodies in patients with recent narcolepsy onset. Sleep 32(8):979–983

    PubMed Central  PubMed  Google Scholar 

  • Aston-Jones G et al (2001) A neural circuit for circadian regulation of arousal. Nature Neurosci. 4(7):732–738

    Article  CAS  PubMed  Google Scholar 

  • Baraitser M, Parkes JD (1978) Genetic study of narcoleptic syndrome. J Med Genet 15:254–259

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bassetti C, Aldrich MS (1997) Idiopathic hypersomnia. A series of 42 patients. Brain 120(Pt 8):1423–1435

    Article  PubMed  Google Scholar 

  • Bassetti C et al (2003) The narcoleptic borderland: a multimodal diagnostic approach including cerebrospinal fluid levels of hypocretin-1 (orexin A). Sleep Med 4(1):7–12

    Article  PubMed  Google Scholar 

  • Bassetti CL et al (2010) Cerebrospinal fluid histamine levels are decreased in patients with narcolepsy and excessive daytime sleepiness of other origin. J Sleep Res 19(4):620–623

    Article  PubMed  Google Scholar 

  • Billiard M, Besset A, Cadilhac J (1983) The clinical and polygraphic development of narcolepsy. In: C Guilleminault, E Lugaresi (eds) Sleep/wake disorders: natural history, epidemiology and longterm evolution. Raven Press, New York, p 171–185

    Google Scholar 

  • Billiard M et al (1994) Family studies in narcolepsy. Sleep 17: S-54–S-59

    Google Scholar 

  • Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: A Björklund, T Hökfelt (eds) Handbook of chemical neuroanatomy, vol 2, classical transmitter in the CNS, Part I. Elsevier, Amsterdam. pp 55–121

    Google Scholar 

  • Broughton R, Q Ghanem (1976) The impact of compound narcolepsy on the life of the patient. In: C Guilleminault, WC Dement, P Passouant (eds) Narcolepsy. Spectrum, New York, p 201–220

    Google Scholar 

  • Broughton R et al (1981) Life effects of narcolepsy in 180 patients from North America, Asia and Europe compared to matched controls. Le J Can Sci Neurol 8(4):299–303

    CAS  Google Scholar 

  • Broughton R et al (1988) Ambulatory 24 hour sleep-wake monitoring in narcolepsy-cataplexy compared to matched control. Electroenceph Clin Neurophysiol 70:473–481

    Article  CAS  PubMed  Google Scholar 

  • Brown RE, Stevens DR, Haas HL (2001) The physiology of brain histamine. Prog Neurobiol 63(6):637–672

    Article  CAS  PubMed  Google Scholar 

  • Chetrit M et al (1994) Hypnogogic hallucinations associated with sleep onset REM period in narcolepsy-cataplexy. J Sleep Res 3(Suppl 1):43

    Google Scholar 

  • Chemelli RM et al (1999) Narcolepsy in orexin knockout mice: molecular genetics of sleep regulation. Cell 98:437–451

    Article  CAS  PubMed  Google Scholar 

  • Chokroverty S (1986) Sleep apnea in narcolepsy. Sleep 9(1):250–253

    CAS  PubMed  Google Scholar 

  • Clements CS et al (2003) The crystal structure of myelin oligodendrocyte glycoprotein, a key autoantigen in multiple sclerosis. Proc Natl Acad Sci USA 100(19):11059–11064

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cohen FL, Smith KM (1989) Learning and memory in narcoleptic patients and controls. Sleep Res 18:117

    Google Scholar 

  • Crocker A et al (2005) Concomitant loss of dynorphin, NARP, and orexin in narcolepsy. Neurology 65(8):1184–1188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cvetkovic-Lopes V et al (2010) Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest 120(3):713–719

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dahlitz M, Parkes JD (1993) Sleep paralysis. Lancet 341:406–407

    Article  CAS  PubMed  Google Scholar 

  • Daniels LE (1934) Narcolepsy. Medicine 13(1):1–122

    Article  Google Scholar 

  • Dauvilliers Y et al (2001) Age at onset of narcolepsy in two large populations of patients in France and Quebec. Neurology 57(11):2029–2033

    Article  CAS  PubMed  Google Scholar 

  • Dauvilliers Y et al (2010) Post-H1N1 narcolepsy-cataplexy. Sleep 33(11):1428–1430

    PubMed Central  PubMed  Google Scholar 

  • Dauvilliers Y et al (2012) Normal cerebrospinal fluid histamine and tele-methylhistamine levels in hypersomnia conditions. Sleep 35(10):1359–1366

    PubMed Central  PubMed  Google Scholar 

  • Dement WC (1976) Daytime sleepiness and sleep “attacks”. In: C Guilleminault WC Dement, P Passouant (eds) Narcolepsy, Spectrum Publications Inc, New York. p 17–42

    Google Scholar 

  • Dement WC, Carskadon M, Ley R (1973) The prevalence of narcolepsy II. Sleep Res 2:147

    Google Scholar 

  • De Lecea L et al (1998) The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. Proc Natl Acad Sci USA 95:322–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Faraco J et al (2013) ImmunoChip study implicates antigen presentation to T cells in narcolepsy. PLoS Genet 9(2):e1003270

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fujiki N et al (2001) Changes in CSF hypocretin-1 (orexin A) levels in rats across 24 hours and in response to food deprivation. NeuroReport 12(5):993–997

    Article  CAS  PubMed  Google Scholar 

  • Fujiki N et al (2002) Analysis of onset location, laterality and propagation of cataplexy in canine narcolepsy. Psychiatry Clin Neurosci 56(3):275–276

    Article  PubMed  Google Scholar 

  • Fukuda K et al (1987) High prevalence of isolated sleep paralysis: kanashibari phenomenon in Japan. Sleep 10(3):279–286

    CAS  PubMed  Google Scholar 

  • Gelb M et al (1994) Stability of cataplexy over several months-information for the design of therapeutic trials. Sleep 17:265–273

    CAS  PubMed  Google Scholar 

  • Godbout R, Montplaisir J (1985) Comparison of sleep parameters in narcoleptics with and without periodic movements of sleep, in Sleep ‘84. In: WP Koella, E Ruther, H Schulz (eds) Fischer, Gustav, p 380–382

    Google Scholar 

  • Goode B (1962) Sleep paralysis. Arch Neurol 6(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • Guilleminault C, Wilson RA, Dement WC (1974) A study on cataplexy. Arch Neurol 31:255–261

    Article  CAS  PubMed  Google Scholar 

  • Guilleminault C (1987) Narcolepsy and its differential diagnosis, in Sleep and it disorders in children. In: C Guilleminault (ed) Raven Press, New York, p 181–194

    Google Scholar 

  • Guilleminault C, Mignot E, Grumet FC (1989) Familial patterns of narcolepsy. Lancet 2(8676):1376–1379

    Article  CAS  PubMed  Google Scholar 

  • Hallmayer J et al (2009) Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 41(6):708–711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Han F et al (2011) Narcolepsy onset is seasonal and increased following the 2009 H1N1 pandemic in China. Ann Neurol 70(3):410–417

    Article  PubMed  Google Scholar 

  • Hara J et al (2001) Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 30(2):345–354

    Article  CAS  PubMed  Google Scholar 

  • Henneberg R (1916) Uber genuine narkolepsie. Neurol. Zbl. 30:282–290

    Google Scholar 

  • Hirai N, Nishino S (2011) Recent advances in the treatment of narcolepsy. Curr Treat Options Neurol 13(5):437–457

    Article  PubMed  Google Scholar 

  • Hishikawa Y (1976) Sleep paralysis. In: C Guilleminault, WC Dement, Passpouant P (eds). Spectrum, New York, pp 97–124

    Google Scholar 

  • Hishikawa Y, Shimizu T (1995) Physiology of REM sleep, cataplexy, and sleep paralysis, in Negative Motor Phenomena. In: S Fahn et al. (ed). Lippincot-Raven Publishers, Philadelphia, p 245–271

    Google Scholar 

  • Hishikawa Y et al (1976) Sleep satiation in narcoleptic patients. Electroencephalogr Clin Neurophysiol 41:1–18

    Article  CAS  PubMed  Google Scholar 

  • Honda Y (1979) Census of narcolepsy, cataplexy and sleep life among teen-agers in Fujisawa city. Sleep Res 8:191

    Google Scholar 

  • Honda Y (1988) Clinical features of narcolepsy. In: Y Honda, T Juji (eds) HLA in narcolepsy. Springer, Berlin. p 24–57

    Google Scholar 

  • Honda Y et al. (1983) A genetic study of narcolepsy and excessive daytime sleepiness in 308 families with a narcolepsy or hypersomnia proband. In: C Guilleminault, E Lugaresi (eds) Sleep/wake disorders: natural history, epidemiology and long term evolution. Raven Press, New York

    Google Scholar 

  • Honda Y et al (1986) Increased frequency of non-insulin-dependent diabetes mellitus among narcoleptic patients. Sleep 9(1):254–259

    CAS  PubMed  Google Scholar 

  • Honda M et al (2009) IGFBP3 colocalizes with and regulates hypocretin (orexin). PLoS ONE 4(1):e4254

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hor H et al (2011) A missense mutation in myelin oligodendrocyte glycoprotein as a cause of familial narcolepsy with cataplexy. Am J Hum Genet 89(3):474–479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hublin C et al (1994a) The prevalence of narcolepsy: an epidemiological study of the Finnish twin cohort. Ann Neurol 35:709–716

    Article  CAS  PubMed  Google Scholar 

  • Hublin C et al (1994b) Epidemiology of narcolepsy. Sleep 17:S7–S12

    CAS  PubMed  Google Scholar 

  • ICSD-2 (ed) (2005) ICSD-2-International classification of sleep disorders, 2nd ed: diagnostic and coding manual. A.A.o.S. Medicine. American Academy of Sleep Medicine Westchester, Illinois

    Google Scholar 

  • ICSD-3 (ed) (2014) international classification of sleep disorders, 3rd edn. A.A.o.S. Medicine. American Sleep Disorders Association: Rochester, MN

    Google Scholar 

  • John J et al (2013) Greatly increased numbers of histamine cells in human narcolepsy with cataplexy. Ann Neurol 74(6):786–793

    Article  CAS  PubMed  Google Scholar 

  • Jones BE et al (1973) The effect of lesions of catecholamine-containing neurons upon monoamine content of the brain and EEG and behavioral waking in the cat. Brain Res 58:157–177

    Article  CAS  PubMed  Google Scholar 

  • Jones BE (2005) Basic mechanism of sleep-wake states. In: MH Kryger, T Roth, WC Dement (eds) Principles and practice of sleep medicine, 4th edn. Elsvier Saunders, Philadelphia, pp 136–153

    Google Scholar 

  • Jouvet M (1972) The role of monoamines and acethylcholine-containing neurons in the regulation of the sleep-waking cycle. Ergebn Physiol 64:166–307

    CAS  PubMed  Google Scholar 

  • Kales A, Soldates CR, Bixler EO (1982) Narcolepsy-cataplexy II Psychosocial consequences and associated psychopathology. Arch Neurol 39:169–171

    Article  CAS  PubMed  Google Scholar 

  • Kanbayashi T et al (2009) CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep 32(2):181–187

    PubMed Central  PubMed  Google Scholar 

  • Kessler S, Guilleminault C, Dement WC (1979) A family study of 50 REM narcoleptics. Acta Neurol Scandinav 50:503–512

    Article  Google Scholar 

  • Kok SW et al (2003) Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res 11(9):1147–1154

    Article  CAS  PubMed  Google Scholar 

  • Kornum BR et al (2011) Common variants in P2RY11 are associated with narcolepsy. Nat Genet 43(1):66–71

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Krabbe E, Magnussen G (1942) Familial narcolepsy. Acta Psychiatr Scand 17:149–173

    Article  Google Scholar 

  • Lammers GJ et al (1996) Spontaneous food choice in narcolepsy. Sleep 19(1):75–76

    CAS  PubMed  Google Scholar 

  • Lankford DA, Wellman JJ, O’Hara C (1994) Posttraumatic narcolepsy in mild to moderate closed head injury. Sleep 17:S25–S28

    CAS  PubMed  Google Scholar 

  • Lavie P, Peled R (1987) Narcolepsy is a rare disease in Isreal. Sleep 10(6):608–609

    CAS  PubMed  Google Scholar 

  • Lee MG, Hassani OK, Jones BE (2005) Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle. J Neurosci 25(28):6716–6720

    Article  CAS  PubMed  Google Scholar 

  • Lim AS, Scammell TE (2010) The trouble with Tribbles: do antibodies against TRIB2 cause narcolepsy? Sleep 33(7):857–858

    PubMed Central  PubMed  Google Scholar 

  • Lin L et al (1999) The sleep disorder canine narcolepsy is caused by a mutation in the hypocretin (orexin) receptor 2 gene. Cell 98(3):365–376

    Article  CAS  PubMed  Google Scholar 

  • Ljungberg T, Apicella P, Schultz W (1992) Responses of monkey dopamine neurons during learning of behavioral reactions. J Neurophysiol 67(1):145–163

    CAS  PubMed  Google Scholar 

  • Löwenfeld L (1902) Uber Narkolepsie. Munch Med Wochenschr 49:1041–1045

    Google Scholar 

  • Lu J, Jhou TC, Saper CB (2006) Identification of wake-active dopaminergic neurons in the ventral periaqueductal gray matter. J Neurosci 26(1):193–202

    Article  CAS  PubMed  Google Scholar 

  • Marcus JN et al (2001) Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 435(1):6–25

    Article  CAS  PubMed  Google Scholar 

  • Mayer G et al (1993) Zur Einschätzung des Behinderungsgrades bei Narkolepsie. Gesundh-Wes 55:337–342

    CAS  Google Scholar 

  • Mayer G et al (1997) Circadian temperature and activity rhythms in unmedicated narcoleptic patients. Pharmacol Biochem Behav 58(2):395–402

    Article  CAS  PubMed  Google Scholar 

  • Mignot E (1998) Genetic and familial aspects of narcolepsy. Neurology 50(suppl 1):S16–S22

    Google Scholar 

  • Mignot E et al (1997) HLA DQB1*0602 is associated with cataplexy in 509 narcoleptic patients. Sleep 20(11):1012–1020

    CAS  PubMed  Google Scholar 

  • Mignot E et al (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59(10):1553–1562

    Article  PubMed  Google Scholar 

  • Miyagawa T et al (2008) Variant between CPT1B and CHKB associated with susceptibility to narcolepsy. Nat Genet 40(11):1324–1328

    Article  CAS  PubMed  Google Scholar 

  • Montplaisir J et al (1978) Twenty-four-hour recording in REM-narcoleptics with special reference to nocturnal sleep disruption. Biol Psych 13(1):78–89

    Google Scholar 

  • Mosko SS, Shampain DS, Sassin JF (1984) Nocturnal REM latency and sleep disturbance in narcolepsy. Sleep 7:115–125

    CAS  PubMed  Google Scholar 

  • Moller JC et al (2000) “Sleep attacks” in Parkinson patients. A side effect of nonergoline dopamine agonists or a class effect of dopamine agonists? Nervenarzt 71(8):670–676

    Article  CAS  PubMed  Google Scholar 

  • Nevsimalova-Bruhova S, Roth B (1972) Heredofamilial aspects of narcolepsy and hypersomnia. Schweiz Arch Neurol Neurochir Psychiat 110:45–54

    CAS  Google Scholar 

  • Nishino S. Modes of action of drugs related to narcolepsy: pharmacology of wake-promoting compounds and anticataplectics. In: M Goswami, SR Pandi-Perumal, MJ Thorpy (eds) (2009) Narcolepsy Humana, Totowa. p (in press)

    Google Scholar 

  • Nishino S, Mignot E (1997) Pharmacological aspects of human and canine narcolepsy. Prog Neurobiol 52(1):27–78

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, Kanbayashi T (2005) Symptomatic narcolepsy, cataplexy and hypersomnia, and their implications in the hypothalamic hypocretin/orexin system. Sleep Med Rev 9(4):269–310

    Article  PubMed  Google Scholar 

  • Nishino S, Kotorii N (2009) Overview of management of narcolepsy. In: M Goswami, SR Pandi-Perumal, MJ Thorpy (eds) Narcolepsy. Humana: Totowa. p (in press)

    Google Scholar 

  • Nishino S, Mignot E (2011) Narcolepsy and cataplexy. Handb Clin Neurol 99:783–814

    Article  PubMed  Google Scholar 

  • Nishino S et al (2001) Low CSF hypocretin (orexin) and altered energy homeostasis in human narcolepsy. Ann Neurol 50:381–388

    Article  CAS  PubMed  Google Scholar 

  • Nishino S, E Mignot, WC Dement (2004a) Sedative-hypnotics, in textbook of psychopharmacology. In: AF Schatzberg, CB Nemeroff (eds). American Psychiatric Press, Washington DC, p 651–684

    Google Scholar 

  • Nishino S et al. (2004b) The neurobiology of sleep in relation to mental illness. In: NE Charney DS (ed) Neurobiology of mental illness. Oxford University Press, New York. pp 1160–1179

    Google Scholar 

  • Nishino S et al (2000) Hypocretin (orexin) deficiency in human narcolepsy. Lancet 355(9197):39–40

    Article  CAS  PubMed  Google Scholar 

  • Nishino S et al (2009) Decreased CSF histamine in narcolepsy with and without low CSF hypocretin-1 in comparison to healthy controls. Sleep 32(2):175–180

    PubMed Central  PubMed  Google Scholar 

  • Ohayon MM et al (1996) Hypnagogic and hypnopompic hallucinations: pathological phenomena? Br J Psychiatry 169(4):459–467

    Article  CAS  PubMed  Google Scholar 

  • Ohayon MM et al (2002) Prevalence of narcolepsy symptomatology and diagnosis in the European general population. Neurology 58(12):1826–1833

    Article  CAS  PubMed  Google Scholar 

  • Ondzé B et al (1999) Frequency of narcolepsy in the population of a French departement. Sleep 22(Supplement):S121

    Google Scholar 

  • Orellana C et al (1994) Life events in the year preceding the onset of narcolepsy. Sleep 17:S50–S53

    CAS  PubMed  Google Scholar 

  • Parkes JD et al (1974) Narcolepsy and Cataplexy. Clinical features, treatment and cerebrospinal fluid findings. Q J Med 172:525–536

    Google Scholar 

  • Parkes JD et al (1975) Natural history, symptoms and treatment of the narcoleptic syndrome. Acta Neurol Scand 52:337–353

    Article  CAS  PubMed  Google Scholar 

  • Passouant P, Baldy-Moulinier M, Assilloux C (1970) Eata de mal cataplectique au cours d’ume maladie de Gelineau, influence de la clomipramine. Rev Neurol 123:56–50

    Google Scholar 

  • Peyron C et al (1998) Neurons containing hypocretin (orexin) project to multiple neuronal systems. J Neurosci 18(23):9996–10015

    CAS  PubMed  Google Scholar 

  • Peyron C et al (2000) A mutation in a case of early onset narcolepsy and a generalized absence of hypocretin peptides in human narcoleptic brains. Nat Med 6(9):991–997

    Article  CAS  PubMed  Google Scholar 

  • Ribstein M (1976) Hypnagogic hallucinations. In: C Guilleminault, WC Dement, P Passouant (eds) Narcolepsy. Spectrum, New York. pp 145–160

    Google Scholar 

  • Ripley B et al (2001) Hypocretin levels in sporadic and familial cases of canine narcolepsy. Neurobiol of Dis 8(3):525–534

    Article  CAS  Google Scholar 

  • Rogers AE, Rosenberg RS (1990) Test of memory in narcoleptics. Sleep 13:42–52

    CAS  PubMed  Google Scholar 

  • Rosenthal C (1939) Uber das aufreten von halluzinatorisch-kataplektischem angstsyndrom, wachanfallen und ahnlichen storungen bei schizophrenen. Mschr Psychiat 102:11

    Google Scholar 

  • Rosenthal L et al (1990) Subjective and polysomnographic characteristics of patients diagnosed with narcolepsy. Gen Hosp Psychiatry 12:191–197

    Article  CAS  PubMed  Google Scholar 

  • Roth B (1962) Narkolepsie und hypersomnie. Berlin, VEB Verlag Volk und Gesundheit. p 428

    Google Scholar 

  • Roth B (1980) Narcolepsy and Hypersomnia. In: B Roth, W Broughton. Basel, Karger. p 310

    Google Scholar 

  • Roth B, Nevsimalova S (1975) Depression in narcolepsy and hypersomnia. Schweitz Arch Neurol Neurochir Psychiat 116:291–300

    CAS  Google Scholar 

  • Rye DB et al (2012) Modulation of vigilance in the primary hypersomnias by endogenous enhancement of GABAA receptors. Sci Transl Med 4(161):161ra151

    Google Scholar 

  • Ryer EJ et al (2012) Revascularization for acute mesenteric ischemia. J Vasc Surg 55(6):1682–1689

    Article  PubMed  Google Scholar 

  • Sachs C, Kaisjer L (1980) Autonomic control of cardiovascular reflexes in Narcolepsy. J Neurol Neurosurg Psychiatry 43:535–539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schenck CH, Mahowald MW (1992) Motor Dyscontrol in narcolepsy: Rapid-Eye-Movement (REM) sleep without atonia and REM Sleep Behavior Disorder. Annals of Neurology 32(1):3–10

    Article  CAS  PubMed  Google Scholar 

  • Schuld A et al (2000) Increased body-mass index in patients with narcolepsy. Lancet 355(9211):1274–1275

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T (2002) Roles of orexins in regulation of feeding and wakefulness. NeuroReport 13(8):987–995

    Article  CAS  PubMed  Google Scholar 

  • Sakurai T et al (1998) Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 92:573–585

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Chou TC, Scammell TE (2001) The sleep switch: hypothalamic control of sleep and wakefulness. Trends Neurosci 24(12):726–731

    Article  CAS  PubMed  Google Scholar 

  • Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263

    Article  CAS  PubMed  Google Scholar 

  • Serra L et al (2008) Cataplexy features in childhood narcolepsy. Mov Disord 23(6):858–865

    Article  PubMed  Google Scholar 

  • Silber MH et al (2002) The epidemiology of narcolepsy in Olmsted County, Minnesota: a population-based study. Sleep 25(2):197–202

    PubMed  Google Scholar 

  • Solomon P (1945) Narcolepsy in Negroes. Dis Nerv Sys 6:179–183

    Google Scholar 

  • Soya A et al (2008) CSF histamine levels in rats reflect the central histamine neurotransmission. Neurosci Lett 430(3):224–229

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Steinfels GF et al (1983) Behavioral correlates of dopaminergic activity in freely moving cats. Brain Res 258:217–228

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T et al (1992) Isolated sleep paralysis elicited by sleep interruption. Sleep 15(3):217–225

    CAS  PubMed  Google Scholar 

  • Tashiro T, Kanbayashi T, Hishikawa Y (1994) An epidemiological study of narcolepsy in Japanese. In: The 4th international symposium on narcolepsy. Tokyo, Japan

    Google Scholar 

  • Thannickal TC, Nienhuis R, Siegel JM (2009) Localized loss of hypocretin (orexin) cells in narcolepsy without cataplexy. Sleep 32(8):993–998

    PubMed Central  PubMed  Google Scholar 

  • Trotti LM, Staab BA, Rye DB (2013) Test-retest reliability of the multiple sleep latency test in narcolepsy without cataplexy and idiopathic hypersomnia. J Clin Sleep Med 9(8):789–795

    PubMed Central  PubMed  Google Scholar 

  • Trulson ME (1985) Simultaneous recording of substantia nigra neurons and voltametric release of dopamine in the caudate of behaving cats. Brain Res Bull 15:221–223

    Article  CAS  PubMed  Google Scholar 

  • Valko PO et al (2013) Increase of histaminergic tuberomammillary neurons in narcolepsy. Ann Neurol 74(6):794–804

    Article  CAS  PubMed  Google Scholar 

  • Verma A, Anand V, Verma NP (2007) Sleep disorders in chronic traumatic brain injury. J Clin Sleep Med 3(4):357–362

    PubMed Central  PubMed  Google Scholar 

  • Westphal C (1877) Eigenthümliche mit Einschläfen verbundene Anfälle. Arch Psychiat 7:631–635

    Google Scholar 

  • Willie JT et al (2001) To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu Rev Neurosci 24:429–458

    Article  CAS  PubMed  Google Scholar 

  • Wilson SAK (1927) The narcolepsies. Ann Congress Assoc Phys June 3 p 63–109

    Google Scholar 

  • Yoss RE, Daly DD (1957) Criteria for the diagnosis of the narcoleptic syndrome. Proc Staff Meet Mayo 32:320–328

    CAS  Google Scholar 

  • Yoshida Y et al (2001) Fluctuation of extracellular hypocretin-1 (orexin A) levels in the rat in relation to the light-dark cycle and sleep-wake activities. Eur J Neurosci 14(7):1075–1081

    Article  CAS  PubMed  Google Scholar 

  • Yoss RE, Daly DD (1960) Narcolepsy. Med Clin North Am 44(4):953–967

    CAS  PubMed  Google Scholar 

  • Zarocostas J (2011) WHO backs further probes into possible link between H1N1 vaccine and narcolepsy in children. BMJ 342:d909

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Nishino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nishino, S. (2015). Narcolepsy and Idiopathic Hypersomnia. In: Sakurai, T., Pandi-Perumal, S., Monti, J. (eds) Orexin and Sleep. Springer, Cham. https://doi.org/10.1007/978-3-319-23078-8_14

Download citation

Publish with us

Policies and ethics

Navigation