Cytotoxicity, Drug Delivery, and Photothermal Therapy of Functionalized Carbon Nanomaterials

  • Chapter
  • First Online:
Carbon Nanomaterials for Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 5))

Abstract

Carbon nanomaterials, including fullerene, carbon nanotubes, graphene and graphene oxide have raised tremendous attentions for their biomedical applications. Their high surface area, low toxicity and unique optical property make them ideal candidates for drug delivery and photo-thermal therapeutics. Carbon nanomaterials can be engineered into multifunctional drug delivery platforms through sophisticated chemistry approaches. The advanced design of carbon nanomaterials make them feasible to target diseased tissues, to deliver high doses of drugs and enable real time imaging in vivo. Numerous preclinical studies of carbon nanomaterials (e.g. carbon nanotube) have showed improved therapeutics such as cancer therapy as compare to traditional therapy. In addition, with the growing concerns of nanotoxicity to environment and human health, systematic toxicological studies of carbon nanomaterials have been conducted in the last decades. These studies not only elucidated paradigms and mechanisms of carbon nanomaterials-associated nanotoxicity, but also provided benchmarks to produce non-toxic carbon nanomaterials. In this chapter, we reviewed recent research progress of the toxicological and pharmacological studies of carbon nanomaterials aiming to highlight their potential biomedical applications in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Langer, Drugs on target. Science 293, 58–59 (2001)

    Article  Google Scholar 

  2. P. Van Hoogevest, X. LIU, A. Fahr, Drug delivery strategies for poorly water-soluble drugs: the industrial perspective. Exp. Opin. Drug Deliv. 8, 1481–1500 (2011)

    Article  Google Scholar 

  3. R.M. Mainarades, L.P. Silva, Drug delivery systems: past, present, and future. Curr. Drug Targets. 5, 449–455 (2004)

    Article  Google Scholar 

  4. DA Lavan, T. McGuire, R. Langer, Small-scale systems for in vivo drug delivery. Nat. biotechnol. 21, 1184–1191 (2003)

    Article  Google Scholar 

  5. R. Misra, S. Acharya, S.K. Sahoo, Cancer nanotechnology: application of nanotechnology in cancer therapy. Drug Discov. Today 15, 842–850 (2010)

    Article  Google Scholar 

  6. A. Santos, Aw. Sinn, M. Bariana, M. Kumeria, T. Wang, Y. Losic D., Drug-releasing implants: current progress, challenges and perspectives. J. Mater. Chem. B 2 (37), 6157–6182 (2014)

    Article  Google Scholar 

  7. J.L. Perry, C.R. Martin, J.D. Stewart, Drug-delivery strategies by using template-synthesized nanotubes. Chem. Eur. J. 17, 6296–6302 (2011)

    Article  Google Scholar 

  8. R.K. Jain, T. Stylianopoulos, Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010)

    Article  Google Scholar 

  9. Y. Wang, A. Santos, A. Evdokiou, et al., An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. J. Mater. Chem. B, DOI: 10.1039/C5TB00956A (2015)

    Article  Google Scholar 

  10. A. Bianco, K. Kostarelos, M. Prato, Application carbon nanotubes for drug delivery. Curr. Opin. Chem. Biol. 9, 674–679 (2005)

    Article  Google Scholar 

  11. K.S. Novoselov, A.K. Geim, S.V. Morozov, et.al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)

    Article  Google Scholar 

  12. A.K. Geim, K.S. Novoselov, The rise of graphene. Nat Mater. 6, 183–191 (2007)

    Article  Google Scholar 

  13. A.K. Geim, Graphene: status and prospects. Science 324, 1530–1534 (2009)

    Article  Google Scholar 

  14. M. Kakran, L. LI, Carbon nanomaterials for drug delivery. Key Eng. Mater. 508, 76–80 (2012)

    Article  Google Scholar 

  15. K.S. Kim, Y. Zhao, H. Jang, et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2009)

    Article  Google Scholar 

  16. S. Stankovich, D.A. Dikin, R.D. Piner, R.S. Ruoff, et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  17. S. Iijima, Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)

    Article  Google Scholar 

  18. H. Dai, Carbon nanotubes: synthesis, integration, and properties. Acc. Chem. Res. 35, 1035–1044 (2002)

    Article  Google Scholar 

  19. M. Prato, K. Kostarelos, A. Bianco, Functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 41, 60–68 (2007)

    Article  Google Scholar 

  20. A. Bianco, K. Kostarelos, M. Prato, Opportunities and challenges of carbon-based nanomaterials for cancer therapy. Exp. Opin. Drug Deliv. 5, 331–342 (2008)

    Article  Google Scholar 

  21. M.F.L. De Volder, S.H. Tawfick, R.H. Baughman, A.J. Hart, Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)

    Article  Google Scholar 

  22. L.M. Viculis, J.J. Mack, R.B. Kaner, A chemical route to carbon nanoscrolls. Science 299, 1361 (2003)

    Article  Google Scholar 

  23. Y. Liu, Y. Zhao, B. Sun, C. Chen, Understanding the toxicity of carbon nanotubes. Acc. Chem. Res. 46, 702–713 (2012b)

    Article  Google Scholar 

  24. S.K. Singh, M.K. Singh, P.P. Kulkarni, et.al., Amine-modified graphene. Thrombo-protective safer alternative to graphene oxide for biomedical applications. Acs Nano 6, 2731–2740 (2012)

    Article  Google Scholar 

  25. Y. Wang, Z. Li, J. Wang, J. LI, Y. Lin, Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol. 29, 205–212 (2011)

    Article  Google Scholar 

  26. C. Wang, J. Li, C. Amatore, Y. Chen, H. Jiang, X.M. Wang, Gold nanoclusters and graphene nanocomposites for drug delivery and imaging of cancer cells. Angew. Chem. Int. Ed. Engl. 50, 11644–11648 (2011)

    Article  Google Scholar 

  27. L. Feng, L. Wu, X. Qu, New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. Adv. Mater. 25, 168–86 (2013)

    Article  Google Scholar 

  28. Z. Liu, S. Tabakman, K. Welsher, H. Dai, Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res. 2, 85–120 (2009b)

    Article  Google Scholar 

  29. Z. Spitalsky, D. Tasis, K. Papagelis, C. Galiotis, Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog. Polym. Sci. 35, 357–401 (2010)

    Article  Google Scholar 

  30. R.G. Mendes, A. Bachmatiuk, B. Buchner, et al., Carbon nanostructures as multi-functional drug delivery platforms, J. Mater. Chem. B. 1, 401–428 (2013)

    Article  Google Scholar 

  31. Y. Yan, G.K. Such, F. Caruso, et al., Engineering particles for therapeutic delivery: prospects and challenges. ACS Nano. 6, 3663–3669 (2012)

    Article  Google Scholar 

  32. Y. Matsumura, H. Maeda, A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986)

    Google Scholar 

  33. L.E. Gerweck, K. Seetharaman, Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer. Cancer Res. 56, 1194–1198 (1996)

    Google Scholar 

  34. S.-R. Ji, C. Liu, B. Zhang, et al., Carbon nanotubes in cancer diagnosis and therapy. Biochim. Biophys. Acta Rev. Cancer 1806, 29–35 (2012)

    Article  Google Scholar 

  35. J. **e, K. Chen, H.-Y. Lee, C. Xu, et al., Ultrasmall c(RGDyK)-coated Fe3O4 nanoparticles and their specific targeting to integrin αvβ3-rich tumor cells. J. Am. Chem. Soc. 130, 7542–7543 (2008)

    Article  Google Scholar 

  36. Z. Liu, X. Sun, N. Nakayama-Ratchford, H. Dai, Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano 1, 50–56 (2007b)

    Article  Google Scholar 

  37. A. Hirsch, Functionalization of single-walled carbon nanotubes. Angew. Chem. Int. Ed. Engl. 41, 1853–1859 (2002)

    Article  Google Scholar 

  38. V. Georgakilas, K. Kordatos, M. Prato, et al., Organic functionalization of carbon nanotubes. J. Am. Chem. Soc. 124, 760–761 (2002a)

    Article  Google Scholar 

  39. Z. Liu, J.T. Robinson, X.M. Sun, H.J. Dai, PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 130, 10876–10877 (2008)

    Article  Google Scholar 

  40. X.M. Sun, Z. Liu, K. Welsher, J.T. Robinson, A. Goodwin, S. Zaric, H.J. Dai, Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1, 203–212 (2008)

    Article  Google Scholar 

  41. G. Gollavelli, Y.C. Ling, Multi-functional graphene as an in vitro and in vivo imaging probe. Biomaterials 33, 2532–2545 (2012)

    Article  Google Scholar 

  42. Y.J. Lu, H.W. Yang, S.C. Hung, et al., Improving thermal stability and efficacy of BCNU in treating glioma cells using PAA-functionalized graphene oxide. Int. J. Nanomed. 7, 1737–1747 (2012)

    Google Scholar 

  43. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Water-soluble graphene covalently functionalized by biocompatible poly-L-lysine. Langmuir 25, 12030–12033 (2009)

    Article  Google Scholar 

  44. N.G. Sahoo, H.Q. Bao, et al., Functionalized carbon nanomaterials as nanocarriers for loading and delivery of a poorly water-soluble anticancer drug: a comparative study. Chem. Commun. 47, 5235–5237 (2011)

    Article  Google Scholar 

  45. L.M. Zhang, Z.X. Lu, Q.H. Zhao, J. Huang, H. Shen, Z.J. Zhang, Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide. Small 7, 460–464 (2011a)

    Article  Google Scholar 

  46. B.A. Chen, M. Liu, L.M. Zhang, J. Huang, J.L. Yao, Z.J. Zhang, Polyethylenimine-functionalized graphene oxide as an efficient gene delivery vector. J. Mater. Chem. 21, 7736–7741 (2011)

    Google Scholar 

  47. Y. Liu, D.-C. Wu, W.-D. Zhang, et al., Polyethylenimine-grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. 117, 4860–4863 (2005)

    Article  Google Scholar 

  48. Y.Z. Pan, H.Q. Bao, N.G. Sahoo, T.F. Wu, L. Li, Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Adv. Funct. Mater. 21, 2754–2763 (2011)

    Article  Google Scholar 

  49. J. Gao, F. Bao, L.L. Feng, K.Y. Shen, et al., Functionalized graphene oxide modified polysebacic anhydride as drug carrier for levofloxacin controlled release. Rsc. Adv. 1, 1737–1744 (2011)

    Article  Google Scholar 

  50. V.K. Rana, M.C. Choi, J.Y. Kong, et al., Synthesis and drug-delivery behavior of chitosan-functionalized graphene oxide hybrid nanosheets. Macromol. Mater. Eng. 296, 131–140 (2011)

    Article  Google Scholar 

  51. H.Q. Bao, Y.Z. Pan, Y. **, N.G. Sahoo, T.F. Wu, L. Li, J. Li, L.H. Gan, Chitosan-functionalized graphene oxide as a nanocarrier for drug and gene delivery. Small 7, 1569–1578 (2011)

    Article  Google Scholar 

  52. D. Depan, J. Shah, R.D.K. Misra, Controlled release of drug from folate-decorated and graphene mediated drug delivery system: synthesis, loading efficiency, and drug release response. Mater. Sci. Eng. C-Mater. Biol. Appl. 31, 1305–1312 (2011)

    Article  Google Scholar 

  53. K.P. Liu, J.J. Zhang, F.F. Cheng, T.T. Zheng, C.M. Wang, J.J. Zhu, Green and facile synthesis of highly biocompatible graphene nanosheets and its application for cellular imaging and drug delivery. J. Mater. Chem. 21, 12034–12040 (2011)

    Article  Google Scholar 

  54. L.M. Zhang, J.G. **a, Q.H. Zhao, L.W. Liu, Z.J. Zhang, Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 6, 537–544 (2010)

    Article  Google Scholar 

  55. X.Y. Yang, Y.S. Wang, X. Huang, et al., Multi-functionalized graphene oxide based anticancer drug-carrier with dual-targeting function and pH-sensitivity. J. Mater. Chem. 21, 3448–3454 (2010b)

    Article  Google Scholar 

  56. J. Liu, L. Tao, W. Yang, D. Li, et al., Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 26, 10068–10075 (2010a)

    Article  Google Scholar 

  57. J. Liu, W. Yang, L. Tao, D. Li, C. Boyer, T.P. Davis, Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J. Polym. Sci. A. Polym. Chem. 48, 425–433 (2010b)

    Article  Google Scholar 

  58. J. Shen, M. Shi, N. Li, B. Yan, et al., Facile synthesis and application of Ag-chemically converted graphene nanocomposite. Nano. Res. 3, 339–349 (2010)

    Article  Google Scholar 

  59. M.C. Duch, G.R.S. Budinger, Y.T. Liang, et al., Minimizing oxidation and stable nanoscale dispersion improves the biocompatibility of graphene in the lung. Nano Lett. 11, 5201–5207 (2011)

    Article  Google Scholar 

  60. L. Feng, S. Zhang, Z. Liu, Graphene based gene transfection. Nanoscale 3, 1252–1257 (2011)

    Article  Google Scholar 

  61. W. Hu, C. Peng, M. Lv, X. Li, et al., Protein corona-mediated mitigation of cytotoxicity of graphene oxide. Acs. Nano. 5, 3693–3700 (2011)

    Article  Google Scholar 

  62. X.T. Zheng, C.M. Li, Restoring basal planes of graphene oxides for highly efficient loading and delivery of beta-lapachone. Mol. Pharmac. 9, 615–621 (2012)

    Article  Google Scholar 

  63. X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41, 666–686 (2012)

    Article  Google Scholar 

  64. W. Chen, P. Yi, Y. Zhang, L. Zhang, Z. Deng, Z. Zhang, Composites of aminodextran-coated Fe3O4 nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS. Appl. Mater. Interf. 3, 4085–4091 (2011)

    Article  Google Scholar 

  65. X.Y. Yang, X.Y. Zhang, Y.F. Ma, Y. Huang, Y.S. Wang, Y. S. Chen, Superparamagnetic graphene oxide-Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J. Mater. Chem. 19, 2710–2714 (2009)

    Article  Google Scholar 

  66. J. Liu, A.G. Rinzler, H. Dai, R.E. Smalley, et al., Fullerene pipes. Science 280, 1253–1256 (1998)

    Article  Google Scholar 

  67. A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabó, A. Szeri, I. Dékány, Graphite oxide: chemical reduction to graphite and surface modification with primary aliphatic amines and amino acids. Langmuir 19, 6050–6055 (2003)

    Article  Google Scholar 

  68. G. Wang, B. Wang, J. Park, J. Yang, X. Shen, J. Yao, Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47, 68–72 (2009)

    Article  Google Scholar 

  69. G. Wei, M. Yan, R. Dong, D. Wang, X. Zhou, J. Chen, J. Hao, Covalent modification of reduced graphene oxide by means of diazonium chemistry and use as a drug‐delivery system. Chem. Eur. J. 18, 14708–16 (2012)

    Article  Google Scholar 

  70. E. Bekyarova, M.E. Itkis, R.C. Haddon, et al., Chemical modification of epitaxial graphene: spontaneous grafting of Aryl Groups. J. Am. Chem. Soc. 131, 1336–1337 (2009)

    Article  Google Scholar 

  71. V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.-P. Briand, M. Prato, Amino acid functionalisation of water soluble carbon nanotubes. Chem. Commun. 24, 3050–3051 (2002b)

    Article  Google Scholar 

  72. K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, et al., Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nano. 2, 108–113 (2007)

    Article  Google Scholar 

  73. K. Kostarelos, A. Bianco, M. Prato, Promises, facts and challenges for carbon nanotubes in imaging and therapeutics. Nat. Nano. 4, 627–633 (2009)

    Article  Google Scholar 

  74. D. Pantarotto, C.D. Partidos, A. Bianco, et al., Synthesis, structural characterization, and immunological properties of carbon nanotubes functionalized with peptides. J. Am. Chem. Soc. 125, 6160–6164 (2003)

    Article  Google Scholar 

  75. Z. Liu, W. Cai, L. He, N. Nakayama, K. Chen, X. Sun, X. Chen, H. Dai, In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nano. 2, 47–52 (2007a)

    Article  Google Scholar 

  76. Z. Liu, S.M. Tabakman, Z. Chen, H. Dai, Preparation of carbon nanotube bioconjugates for biomedical applications. Nat. Proto. 4, 1372–1381 (2009c)

    Article  Google Scholar 

  77. S. Stankovich, R.D. Piner, X. Chen, N. Wu, S.T. Nguyen, R.S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J. Mater. Chem. 16, 155–158 (2006)

    Article  Google Scholar 

  78. N.W.S. Kam, M. O’Connell, J.A. Wisdom, H. Dai, Carbon nanotubes as multifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proc. Natl. Acad. Sci. U. S. A. 102, 11600–11605 (2005)

    Article  Google Scholar 

  79. A.A. Shvedova, E.R. Kisin, R. Mercer, et al., Unusual inflammatory and fibrogenic pulmonary responses to single-walled carbon nanotubes in mice. Am. J. Physiol Lung. Cell. Mol. Physiol. 289, L698–L708 (2005)

    Article  Google Scholar 

  80. K. Kostarelos, The long and short of carbon nanotube toxicity. Nat. Biotech. 26, 774–776 (2008)

    Article  Google Scholar 

  81. N.M. Rodriguez, A review of catalytically grown carbon nanofibers. J. Mater. Res. 8, 3233–3250 (1993)

    Article  Google Scholar 

  82. C. Bussy, M. Pinault, J. Cambedouzou, et al., Critical role of surface chemical modifications induced by length shortening on multi-walled carbon nanotubes-induced toxicity. Part. Fibre Toxicol. 9, 1–15 (2012)

    Article  Google Scholar 

  83. A.A. Shvedova, V. Castranova, E.R. Kisin, et al., Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J. Toxicol. Environ. Health-Part A. 66, 1909–1926 (2003)

    Article  Google Scholar 

  84. N.W. Shi Kam, T.C. Jessop, P.A. Wender, H. Dai, Nanotube molecular transporters: internalization of carbon nanotube–protein conjugates into mammalian cells. J. Am. Chem. Soc. 126, 6850–6851 (2004)

    Article  Google Scholar 

  85. X. Zhang, L. Meng, Q. Lu, Z. Fei, P.J. Dyson, Targeted delivery and controlled release of doxorubicin to cancer cells using modified single wall carbon nanotubes. Biomaterials. 30, 6041–6047 (2009)

    Article  Google Scholar 

  86. N.W.S. Kam, H. Dai, Carbon nanotubes as intracellular protein transporters: generality and biological functionality. J. Am. Chem. Soc. 127, 6021–6026 (2005)

    Article  Google Scholar 

  87. N.W.S. Kam, Z. Liu, H. Dai, Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew. Chem. Int. Ed. Engl. 45, 577–581 (2006)

    Article  Google Scholar 

  88. V.C. Sanchez, A. Jachak, R.H. Hurt, A.B. Kane, Biological interactions of graphene-family nanomaterials: an interdisciplinary review. Chem. Res. Toxicol. 25, 15–34 (2011)

    Article  Google Scholar 

  89. Y.L. Chang, S.T. Yang, J.H. Liu, et al., In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol. Lett. 200, 201–210 (2011)

    Article  Google Scholar 

  90. S.R. Ryoo, Y.K. Kim, M.H. Kim, D.H. Min, Behaviors of NIH-3T3 fibroblasts on graphene/carbon nanotubes: proliferation, focal adhesion, and gene transfection studies. Acs. Nano. 4, 6587–6598 (2010)

    Article  Google Scholar 

  91. X.Y. Li, X.L. Huang, D.P. Liu, et al., Synthesis of 3D hierarchical Fe3O4/graphene composites with high lithium storage capacity and for controlled drug delivery. J. Phys. Chem. C. 115, 21567–21573 (2011)

    Article  Google Scholar 

  92. H.W. Liu, S.H. Hu, Y.W. Chen, S.Y. Chen, Characterization and drug release behavior of highly responsive chip-like electrically modulated reduced graphene oxide-poly(vinyl alcohol) membranes. J. Mater. Chem. 22, 17311–17320 (2012a)

    Article  Google Scholar 

  93. S.K. Misra, P. Kondaiah, S. Bhattacharya, C.N.R. Rao, Graphene as a nanocarrier for Tamoxifen induces apoptosis in transformed cancer cell lines of different origins. Small. 8, 131–143 (2012)

    Article  Google Scholar 

  94. K.-H. Liao, Y.-S. Lin, C.W. Macosko, C.L. Haynes, Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS. Appl. Mater. Interfaces, 3, 2607–2615 (2011)

    Article  Google Scholar 

  95. S.A. Zhang, K. Yang, L.Z. Feng, Z. Liu, In vitro and in vivo behaviors of dextran functionalized graphene. Carbon. 49, 4040–4049 (2011b)

    Article  Google Scholar 

  96. H. Ali-Boucetta, K.T. Al-Jamal, D. McCarthy, M. Prato, A. Bianco, K. Kostarelos, Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics. Chem. Commun. 4, 459–461 (2008)

    Article  Google Scholar 

  97. Z. Liu, A.C. Fan, K. Rakhra, H. Dai, et al., Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. Engl. 48, 7668–7672 (2009a)

    Article  Google Scholar 

  98. H. Huang, Q. Yuan, J.S. Shah, R.D.K. Misra, A new family of folate-decorated and carbon nanotube-mediated drug delivery system: synthesis and drug delivery response. Adv. Drug Deliv. Rev. 63, 1332–1339 (2011a)

    Article  Google Scholar 

  99. G. Pastorin, W. Wu, S. Wieckowski, J.-P. Briand, K. Kostarelos, M. Prato, A. Bianco, Double functionalisation of carbon nanotubes for multimodal drug delivery. Chem. Commun. 11, 1182–1184 (2006)

    Article  Google Scholar 

  100. W. Wu, R. Li, X. Bian, Z. Zhu, D. Ding, X. Li, Z. Jia, X. Jiang, Y. Hu, Covalently combining carbon nanotubes with anticancer agent: preparation and antitumor activity. ACS. Nano. 3, 2740–2750 (2009)

    Article  Google Scholar 

  101. A.A. Bhirde, V. Patel, J. Gavard, et al., Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS. Nano. 3, 307–116 (2009)

    Article  Google Scholar 

  102. R. Li, R.A. Wu, L. Zhao, M. Wu, L. Yang, H. Zou, P-Glycoprotein antibody functionalized carbon nanotube overcomes the multidrug resistance of human leukemia cells. ACS. Nano. 4, 1399–1408 (2010)

    Article  Google Scholar 

  103. X.Y. Yang, X.Y. Zhang, Z.F. Liu, Y.F. Ma, Y. Huang, Y. Chen, High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide. J. Phys. Chem. C. 112, 17554–17558 (2008b)

    Article  Google Scholar 

  104. S. Pei, H.-M. Cheng, The reduction of graphene oxide. Carbon. 50, 3210–3228 (2012)

    Article  Google Scholar 

  105. H.Q. Hu, J.H. Yu, Y.Y. Li, J. Zhao, H.Q. Dong, Engineering of a novel pluronic F127/graphene nanohybrid for pH responsive drug delivery. J. Biomed. Mater. Res. Part. A. 100A, 141–148 (2012)

    Article  Google Scholar 

  106. P. Huang, C. Xu, J. Lin, C. Wang, et al., Folic acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics. 1, 240–250 (2011b)

    Article  Google Scholar 

  107. Y. Pan, N.G. Sahoo, L. Li, The application of graphene oxide in drug delivery. Exp. Opin. Drug Deliv. 9(11), 1365–1376 (2012)

    Google Scholar 

  108. K. Yang, J.M. Wan, S. Zhang, et al., The influence of surface chemistry and size of nanoscale graphene oxide on photothermal therapy of cancer using ultra-low laser power. Biomaterials. 33, 2206–2214 (2012)

    Article  Google Scholar 

  109. M.J. O’Connell, S.M. Bachilo, et al., Band gap fluorescence from individual single-walled carbon nanotubes. Science. 297, 593–596 (2002)

    Article  Google Scholar 

  110. P. Chakravarty, R. Marches, N.S. Zimmerman, et al., Thermal ablation of tumor cells with antibody-functionalized single-walled carbon nanotubes. Proc. Natl. Acad. Sci. U. S. A. 105, 8697–8702 (2008)

    Article  Google Scholar 

  111. S.V. Torti, F. Byrne, O. Whelan, P.M. Ajayan, et al., Thermal ablation therapeutics based on CNx multi-walled nanotubes. Int. J. Nanomed. 2, 707 (2007)

    Google Scholar 

  112. A. Burke, X. Ding, R. Singh, et al., Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation. Proc. Natl. Acad. Sci. U. S. A. 106, 12897–12902 (2009)

    Article  Google Scholar 

  113. K. Yang, S.A. Zhang, G.X. Zhang, X.M. Sun, S.T. Lee, Z.A. Liu, Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano. Lett. 10, 3318–3323 (2010a)

    Article  Google Scholar 

  114. J.T. Robinson, S.M. Tabakman, Y. Liang, et al., Ultrasmall reduced graphene oxide with high near-infrared absorbance for photothermal therapy. J. Am. Chem. Soc. 133, 6825–6831 (2011)

    Article  Google Scholar 

  115. Z.M. Markovic, L.M. Harhaji-Trajkovic, et al., In vitro comparison of the photothermal anticancer activity of graphene nanoparticles and carbon nanotubes. Biomaterials. 32, 1121–1129 (2011)

    Article  Google Scholar 

  116. K.P. Loh, Q. Bao, G. Eda, M. Chhowalla, Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2, 1015–1024 (2010)

    Article  Google Scholar 

  117. W. Zhang, Z.Y. Guo, D.Q. Huang, et al., Synergistic effect of chemo-photothermal therapy using PEGylated graphene oxide. Biomaterials. 32, 8555–8561 (2011c)

    Article  Google Scholar 

  118. B. Tian, C. Wang, S. Zhang, L.Z. Feng, Z. Liu, Photothermally enhanced photodynamic therapy delivered by nano-graphene oxide. ACS. Nano. 5, 7000–7009 (2011)

    Article  Google Scholar 

  119. A. Montellano, T. Da Ros, A. Bianco, M. Prato, Fullerene C60 as a multifunctional system for drug and gene delivery. Nanoscale. 3, 4035–4041 (2011)

    Article  Google Scholar 

  120. X.-J. Liang, H. Meng, Y. Wang, et al., Metallofullerene nanoparticles circumvent tumor resistance to cisplatin by reactivating endocytosis. Proc. Natl. Acad. Sci. U. S. A. 107, 7449–7454 (2010)

    Article  Google Scholar 

  121. T.Y. Zakharian, A. Seryshev, B. Sitharaman, et al., A fullerene-paclitaxel chemotherapeutic: synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc. 127, 12508–12509 (2005)

    Article  Google Scholar 

  122. K.A. Gonzalez, L.J. Wilson, W. Wu, G.H. Nancollas, Synthesis and In vitro characterization of a tissue-Selective fullerene: vectoring C60(OH)16 AMBP to mineralized bone. Bioorg. Med. Chem. 10, 1991–1997 (2002)

    Article  Google Scholar 

  123. S. Foley, C. Crowley, M. Smaihi, et al., Cellular localisation of a water-soluble fullerene derivative. Biochem. Biophys. Res. Commun. 294, 116–119 (2002)

    Article  Google Scholar 

  124. J. Ashcroft, D. Tsyboulski, Fullerene (C60) immunoconjugates: interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody. Chem. Commun. 28, 3004–3006 (2006)

    Article  Google Scholar 

  125. J. Shi, H. Zhang, L. Wang, L. Li, et al., PEI-derivatized fullerene drug delivery using folate as a homing device targeting to tumor. Biomaterials. 34(1), 251–261 (2013)

    Google Scholar 

  126. S. Ray, A. Saha, N.R. Jana, R. Sarkar, Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. J. Phys. Chem. C. 113, 18546–18551 (2009)

    Article  Google Scholar 

  127. L. Cao, X. Wang, M.J. Meziani, F. LU, et al., Carbon dots for multiphoton bioimaging. Angew. Chem. Int. Ed. Engl. 129, 11318–11319 (2007)

    Google Scholar 

  128. S.N. Baker, G.A. Baker, Luminescent carbon nanodots: emergent nanolights. Angew. Chem. Int. Ed. Engl. 49, 6726–6744 (2012)

    Article  Google Scholar 

  129. W. Choi, I. Lahiri, R. Seelaboyina, Y.S. Kang, Synthesis of graphene and its applications. Crit. Rev. Solid State Mater. Sci. 35, 52–71 (2010)

    Article  Google Scholar 

  130. C.H. Lu, H.H. Yang, C.L. Zhu, X. Chen, G.N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879–4881 (2009)

    Article  Google Scholar 

  131. C.H. Lu, C.L. Zhu, J. Li, J.J. Liu, X. Chen, H.H. Yang, Using graphene to protect DNA from cleavage during cellular delivery. Chem. Commun. 46, 3116–3118 (2010)

    Article  Google Scholar 

  132. S.-T. Yang, X. Wang, G. Jia, Y. Gu, et al., Long-term accumulation and low toxicity of single-walled carbon nanotubes in intravenously exposed mice. Toxicol. Lett. 181, 182–189 (2008a)

    Article  Google Scholar 

  133. M. Zheng, A. Jagota, E.D. Semke, et al., Nat. Mater. 2, 338–342 (2003)

    Google Scholar 

  134. J. Liu, L. Cui, D. Losic, Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater. 9(12), 9243–9257 (2013)

    Google Scholar 

  135. W. Liang, J. K. W. Lam, Endosomal escape pathways for non-viral nucleic acid delivery systems. INTECH Open Access Publisher, 421–467 (2012)

    Google Scholar 

  136. D. B. Mawhinney, V. Naumenko, V. Kuznetsova, et al., Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J. Am. Chem. Soc. 122(10), 2383–2384 (2000)

    Google Scholar 

  137. M. Zheng, A. Jagota, E. D. Semke, et al., DNA-assisted dispersion and separation of carbon nanotubes. Nat Mater 2(5), 338–342 (2003)

    Google Scholar 

  138. R. J. Chen, Y. Zhang, D. Wang, et al., Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J. Am. Chem. Soc. 123(16), 3838–3839 (2001)

    Google Scholar 

  139. A. Schinwald, K. Donaldson, Use of back-scatter electron signals to visualise cell/nanowires interactions in vitro and in vivo; frustrated phagocytosis of long fibres in macrophages and compartmentalisation in mesothelial cells in vivo. Part. Fibre Toxicol. 9, (2012)

    Google Scholar 

  140. R. Maeda-Mamiya, E. Noiri, H. Isobe, W. Nakanishi, K. Okamoto, K. Doi, T. Sugaya, T. Izumi, T. Homma, E. Nakamura, In vivo gene delivery by cationic tetraamino fullerene. Proc. Natl. Acad. Sci. 107, 5339–5344 (2010)

    Google Scholar 

Download references

Acknowledgment

JL acknowledges the Natural Science Foundation of China (NSFC) (51173087), National Science Foundation (NSF) of Shandong (ZR2011EMM001), NSF of Qingdao (12-1-4-2-2-jc), and the Taishan Scholar fund from Shandong Province for financial support. DL acknowledges the support for Australian Future Fellowship (FT 110100711) from the Australian Research Council (ARC) and ARC Discovery grant (DP 120101680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dusan Losic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wang, Y., Liu, J., Cui, L., Losic, D. (2016). Cytotoxicity, Drug Delivery, and Photothermal Therapy of Functionalized Carbon Nanomaterials. In: Zhang, M., Naik, R., Dai, L. (eds) Carbon Nanomaterials for Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-22861-7_3

Download citation

Publish with us

Policies and ethics

Navigation