Irritant and Toxic Respiratory Injuries

  • Living reference work entry
  • First Online:
Critical Care Toxicology

Abstract

Toxic and irritating gases have been known to produce fatalities since the Athenians used a combination of pitch and sulfur to produce toxic fumes in a war against the Spartans in 428 BC. More sophisticated irritant agents were introduced during World War I, when mustard gas, chlorine, and phosgene were the primary agents of chemical warfare. These gases produced many incapacitating casualties but relatively few fatalities compared with conventional weapons. The use of mustard gas was reported in the 1988 war between Iraq and Iran, and more recently gas warfare was reported between Iraq and the Kurds.

Much of the material in this chapter derives from the chapter by Dorsett D. Smith in the first edition of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Mehta PS, Mehta AS, Mehta SJ, Makhi**i AB. Bhopal tragedy’s health effects. JAMA. 1990;264(21):2781–7.

    Article  CAS  PubMed  Google Scholar 

  2. National Poison Data System 2014, queried 3 Jun 2015.

    Google Scholar 

  3. U.S. Department of Labor. Injury and illness data from the survey of occupational injuries and illness. Washington, DC: Bureau of Labor Statistics; 2001.

    Google Scholar 

  4. U.S. Department of Labor. Safety and health statistics. Census of fatal occupational injuries. Washington, DC: Bureau of Labor Statistics; 2001.

    Google Scholar 

  5. Air Quality Guidelines – global update 2005. World Health Organization. 2005.

    Google Scholar 

  6. Milby TH. Hydrogen sulfide intoxication: review of the literature and report of unusual accident resulting in two cases of nonfatal poisoning. J Occup Med. 1962;4:431–7.

    CAS  PubMed  Google Scholar 

  7. Baxter PJ. Gases. In: Baxter PJ, Adams PH, Aw TC, et al., editors. Hunter’s diseases of occupation. 9th ed. London: Arnold Press; 2000. p. 123–78.

    Google Scholar 

  8. Van Aalst JA, Isakov R, Polk JD, Van Antwerp AD, et al. Hydrogen sulfide inhalation injury. J Burn Care Rehabil. 2000;21(3):248–53.

    Article  PubMed  Google Scholar 

  9. Winternitz MC. Pathology of war gas poisoning. New Haven: Yale University Press; 1920.

    Google Scholar 

  10. Taplin GV, Chopa S, Yanda RL, Elam D. Radionuclidic lung-imaging procedures in the assessment of injury due to ammonia inhalation. Chest. 1976;69(5):582–6.

    Article  CAS  PubMed  Google Scholar 

  11. Miller FJ, Kimbell JS. Regional dosimetry of inhaled reactive gases. In: McClellan RO, Henderson RF, editors. Concepts in inhalation toxicology. 2nd ed. Washington, DC: Taylor & Francis; 1995. p. 257–88.

    Google Scholar 

  12. Buie SE, Pratt DS, May JJ. Diffuse pulmonary injury following paint remover exposure. Am J Med. 1986;81(4):702–4.

    Article  CAS  PubMed  Google Scholar 

  13. Bates DV. The respiratory bronchiole as a target organ for the effects of dusts and gases. J Occup Med. 1973;15(3):177–80.

    CAS  PubMed  Google Scholar 

  14. Traber DL. Effect of Sulfo Lewis C on smoke inhalation injury. Crit Care Med. 1998;26(7):1159.

    Article  CAS  PubMed  Google Scholar 

  15. Borak J, Diller WF. Phosgene exposure. Mechanisms of injury and treatment strategies. J Occup Environ Med. 2001;43(2):110–9.

    Article  CAS  PubMed  Google Scholar 

  16. Vandenbrouche E, Mahta D, Minshall R, Malik AB. Regulation of endothelial junctional permeability. Ann N Y Acad Sci. 2008;1123:134–45.

    Article  CAS  Google Scholar 

  17. Sciuto AM, Stotts RR. Posttreatment with eicosatetraenoic acid decreases lung edema in guinea pigs exposed to phosgene. The role of leukotrienes. Exp Lung Res. 1998;24(3):273–92.

    Article  CAS  PubMed  Google Scholar 

  18. Wagner PD, Mathieu-Costello O, Bebout DE, Gray AT, et al. Protection against pulmonary O2 toxicity by N-acetylcysteine. Eur Respir J. 1989;2(2):116–26.

    CAS  PubMed  Google Scholar 

  19. Jamieson DD, Kerr DR, Unsworth I. Interaction of N-acetylcysteine and bleomycin on hyperbaric oxygen-induced lung damage in mice. Lung. 1987;165(4):239–47.

    Article  CAS  PubMed  Google Scholar 

  20. Hagen TM, Brown LA, Jones DP. Protection against paraquat-induced injury by exogenous GSH in pulmonary alveolar type II cells. Biochem Pharmacol. 1986;35(24):4537–42.

    Article  CAS  PubMed  Google Scholar 

  21. Miller FJ, Menzel DB, Coffin DL. Similarity between man and laboratory animals in regional pulmonary deposition of ozone. Environ Res. 1978;17(1):84–101.

    Article  CAS  PubMed  Google Scholar 

  22. Alberts WM, do Pico G. Reactive airways dysfunction syndrome. Chest. 1996;109(6):1618–26.

    Article  CAS  PubMed  Google Scholar 

  23. Smith DD. Immunologic and clinical features of toxic inhalations. Immunol Allergy Clin North Am. 1992;12:267–78.

    Google Scholar 

  24. Caplin M. Ammonia-gas poisoning, 47 cases in a London shelter. Lancet. 1941;2:95–6.

    Article  Google Scholar 

  25. Levy DM, Divertie MB, Litzow TJ, Henderson JW. Ammonia burns of the face and respiratory tract. JAMA. 1964;190:873–6.

    CAS  PubMed  Google Scholar 

  26. Montague TJ, Macneil AR. Mass ammonia inhalation. Chest. 1980;77(4):496–8.

    Article  CAS  PubMed  Google Scholar 

  27. Traber DL, Linares HA, Herndon DN. The pathophysiology of inhalation injury – a review. Burns Incl Therm Inj. 1988;14(5):357–64.

    Article  CAS  PubMed  Google Scholar 

  28. Laffon M, Pittet JF, Modelska K, Matthay MA, et al. Interleukin-8 mediates injury from smoke inhalation to both the lung endothelial and the alveolar epithelial barriers in rabbits. Am J Respir Crit Care Med. 1999;160(5 Pt 1):1443–9.

    Article  CAS  PubMed  Google Scholar 

  29. Lin YS, Ho CY, Tang GJ, Kou YR. Alleviation of wood smoke–induced lung injury by tachykinin receptor antagonist and hydroxyl radical scavenger in guinea pigs. Eur J Pharmacol. 2001;425(2):141–8.

    Article  CAS  PubMed  Google Scholar 

  30. Diller WF. Pathogenesis of phosgene poisoning. Toxicol Ind Health. 1985;1(2):7–15.

    Article  CAS  PubMed  Google Scholar 

  31. Diller WF. Late sequelae poisoning: a literature review. Toxicol Ind Health. 1985;1(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  32. Diller WF, Zante R. A literature review: therapy for phosgene poisoning. Toxicol Ind Health. 1985;1(2):117–28.

    Article  CAS  PubMed  Google Scholar 

  33. Mautone AJ, Katx Z, Scarpelli EM. Acute responses to phosgene inhalation and selected corrective measures (including surfactant). Toxicol Ind Health. 1985;1(2):37–57.

    Article  CAS  PubMed  Google Scholar 

  34. Regan RA. Review of clinical experience in handling phosgene exposure cases. Toxicol Ind Health. 1985;1(2):69–72.

    Article  CAS  PubMed  Google Scholar 

  35. Pauluhn J, Carson A, Costa DL. Workshop summary: phosgene-induced pulmonary toxicity revisited: appraisal of early and late markers of pulmonary injury from animal models with emphasis on human significance. Inhal Toxicol. 2007;19(10):789–810.

    Article  CAS  PubMed  Google Scholar 

  36. Guo YL, Kennedy TP, Michael JR, Sciuto AM, et al. Mechanism of phosgene-induced lung toxicity: role of arachidonate mediators. J Appl Physiol. 1990;69(5):1615–22.

    CAS  PubMed  Google Scholar 

  37. Ainslie G. Inhalational injuries produced by smoke and nitrogen dioxide. Respir Med. 1993;87(3):169–74.

    Article  CAS  PubMed  Google Scholar 

  38. Persinger RL, Poynter ME, Ckless K, Janssen-Heininger YM. Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Mol Cell Biochem. 2002;234-235(1–2):71–80.

    Article  PubMed  Google Scholar 

  39. Suzuki K, Tachibana A, Hatakeyama S, Okano H. Five cases of acute pulmonary failure associated with nitrogen dioxide inhalation. Nihon Kyobu Shikkan Gakkai Zasshi. 1993;31(4):517–22.

    CAS  PubMed  Google Scholar 

  40. Blain PG. Tear gases and irritant incapacitants. 1-chloroacetophenone, 2-chlorobenzylidene malononitrile and dibenz[b, f]-1,4-oxazepine. Toxicol Rev. 2003;22(2):103–10.

    Article  CAS  PubMed  Google Scholar 

  41. Thomas RJ, Smith PA, Rascona DA, et al. Acute pulmonary effects from o-chlorobenzylidenemalonitrile “tear gas”: a unique exposure outcome unmasked by strenuous exercise after a military training event. Mil Med. 2002;167(2):136–9.

    PubMed  Google Scholar 

  42. Billmire DF, Vinocur C, Glinda M, Robinson NB, et al. Pepper-spray-induced respiratory failure treated with extracorporeal membrane oxygenation. Pediatrics. 1996;98(5):961–3.

    CAS  PubMed  Google Scholar 

  43. Steffee CH, Lantz PE, Flannagan LM, Thompson RL, et al. Oleoresin capsicum (pepper) spray in “in-custody deaths”. Am J Forensic Med Pathol. 1995;16(3):185–92.

    Article  CAS  PubMed  Google Scholar 

  44. Hsu HH, Tzao C, Chang WC, Wu CP, et al. Zinc chloride (smoke bomb) inhalation lung injury: clinical presentations, high-resolution CT findings, and pulmonary function test results. Chest. 2005;127(6):2064–71.

    Article  PubMed  Google Scholar 

  45. Close LG, Catlin FI, Cohn AM. Acute and chronic effects of ammonia burns of the respiratory tract. Arch Otolaryngol. 1980;106(3):151–8.

    Article  CAS  PubMed  Google Scholar 

  46. Crapo RO. Smoke-inhalation injuries. JAMA. 1981;246(15):1694–6.

    Article  CAS  PubMed  Google Scholar 

  47. Moylan JA. Inhalation injury. J Trauma. 1981;21 Suppl 8:720–1.

    Article  Google Scholar 

  48. Moylan JA. Smoke inhalation and burn injury. Surg Clin North Am. 1980;60:1533–40.

    Article  CAS  PubMed  Google Scholar 

  49. Baud FJ, Barriot P, Toffis V, Riou B, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med. 1991;325(25):1761–6.

    Article  CAS  PubMed  Google Scholar 

  50. Baud FJ, Borron SW, Megarbane B, Trout H, et al. Value of lactic acidosis in the assessment of the severity of acute cyanide poisoning. Crit Care Med. 2002;30(9):2044–50.

    Article  CAS  PubMed  Google Scholar 

  51. Cohen MA, Guzzardi LJ. Inhalation of products of combustion. Ann Emerg Med. 1983;12(10):628–32.

    Article  CAS  PubMed  Google Scholar 

  52. Charan NB, Lakshminarayan S, Meyers GC, Smith DD. Effects of accidental chlorine inhalation in pulmonary function. West J Med. 1985;143(3):333–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwartz DA, Smith DD, Lakshminarayan S. The pulmonary sequelae associated with accidental inhalation of chlorine. Chest. 1990;97(4):820–5.

    Article  CAS  PubMed  Google Scholar 

  54. Blanc PD, Galbo M, Hiatt P, Olson KR. Morbidity following acute irritant inhalation in a population-based study. JAMA. 1991;266(5):664–9.

    Article  CAS  PubMed  Google Scholar 

  55. Jarudi NI, Golden B. Ammonia eye injuries. J Iowa Med Soc. 1973;63(6):260–3.

    CAS  PubMed  Google Scholar 

  56. Moore DH, Wall HG. The effects of exercise following exposure to bis(trifluoromethyl) disulfide. Drug Chem Toxicol. 1991;14(4):343–52.

    Article  CAS  PubMed  Google Scholar 

  57. Lehnert BE, Archuleta D, Gurley LR, Session W, et al. Exercise potentiation of lung injury following inhalation of a pneumoedematogenic gas: perfluoroisobutylene. Exp Lung Res. 1995;21(2):331–50.

    Article  CAS  PubMed  Google Scholar 

  58. Levine BA, Petroff PA, Slade CL, Pruitt BA. Prospective trials of dexamethasone and aerosolized gentamicin in the treatment of inhalational injury in the burned patient. J Trauma. 1978;18(3):188–93.

    Article  CAS  PubMed  Google Scholar 

  59. Luce JM. Acute lung injury and adult respiratory distress syndrome. Crit Care Med. 1998;26(2):369–76.

    Article  CAS  PubMed  Google Scholar 

  60. Peter JV, John P, Graham PL, Moran JL, et al. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ. 2008;336(7651):1006–9.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Adhikari NK, Dellinger RP, Lundin S, Payen D, et al. Inhaled nitric oxide does not reduce mortality in patients with acute respiratory distress syndrome regardless of severity: systemic review and meta-analysis. Crit Care Med. 2014;42(2):404–12.

    Article  CAS  PubMed  Google Scholar 

  62. Jones GR, Proudfoot AT, Hall JI. Pulmonary effects of acute exposure to nitrous fumes. Thorax. 1973;28(1):61–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Demnati R, Fraser R, Martin JG, Plaa G, et al. Effects of dexamethasone on functional and pathological changes in rat bronchi caused by high acute exposure to chlorine. Toxicol Sci. 1998;45(2):242–6.

    CAS  PubMed  Google Scholar 

  64. Hales CA, Elsasser TH, Ocampo P, Efimova O. TNF-alpha in smoke inhalation lung injury. J Appl Physiol. 1997;82(5):1433–7.

    CAS  PubMed  Google Scholar 

  65. Ward A, Clissold SP. Drug evaluation: pentoxifylline: a review of its pharmacodynamic and pharmocokinetic properties, and its therapeutic efficacy. Drugs. 1987;34(1):50–97.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang XD, Hou JF, Qin XJ, Li WL, et al. Pentoxifylline inhibits intercellular adhesion molecule-1 (ICAM-1) and lung injury in experimental phosgene-exposure rats. Inhal Toxicol. 2010;22(11):889–95.

    Article  CAS  PubMed  Google Scholar 

  67. Zhang XD1, Hou JF, Qin XJ, Li WL, Chen HL, Liu R, Liang X, Hai CX. Pentoxifylline inhibits intercellular adhesion molecule-1 (ICAM-1) and lung injury in experimental phosgene-exposure rats. Inhal Toxicol. 2010 Sep;22(11):889–95.

    Google Scholar 

  68. Zhang XD, Hou JF, Qin XJ, Li WL, Chen HL, Liu R, Liang X, Hai CX, Sciuto AM, Stotts RR, Hurt HH. Efficacy of ibuprofen and pentoxifylline in the treatment of phosgene-induced acute lung injury. J Appl Toxicol. 1996;16(5):381–4.

    Article  CAS  Google Scholar 

  69. Thabut G, Brugiere O, Leseche G, Stern JB, et al. Preventive effect of inhaled nitric oxide and pentoxifylline on ischemic/reperfusion injury after lung transplantation. Transplantation. 2001;71(9):1295–300.

    Article  CAS  PubMed  Google Scholar 

  70. Scuito AM, Strickland PT, Kennedy TP, Gurtner GH. Postexposure treatment with aminophylline protects against phosgene-induced acute lung injury. Exp Lung Res. 1997;23(4):317–32.

    Article  Google Scholar 

  71. Post Mizus I, Summer W, Farrukh I, Michael JR, et al. Isoproterenol or aminophylline attenuate pulmonary edema after acid lung injury. Am Rev Respir Dis. 1985;131(2):256–9.

    PubMed  Google Scholar 

  72. Sciuto AM, Hurt HH. Therapeutic treatments of phosgene-induced lung injury. Inhal Toxicol. 2004;16(8):565–80.

    Article  CAS  PubMed  Google Scholar 

  73. Kennedy TP, Michael JR, Hoidal JR, Hasty D, et al. Dibutyryl cAMP, aminophylline, and beta-adrenergic agonists protect against pulmonary edema caused by phosgene. J Appl Physiol. 1989;67(6):2542–52.

    CAS  PubMed  Google Scholar 

  74. Wang J, Zhang L, Walther SM. Administration of aerosolized terbutaline and budesonide reduces chlorine gas-induced acute lung injury. J Trauma. 2004;56(4):850–62.

    Article  CAS  PubMed  Google Scholar 

  75. Prescott LF, Illingworth RN, Critchley JA, Stewart MJ, et al. Intravenous N-acetylcysteine: the treatment of choice for paracetamol poisoning. Br Med J. 1979;2(6198):1097–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Berend N. Inhibition of bleomycin lung toxicity by N-acetylcysteine in the rat. Pathology. 1985;17(1):108–10.

    Article  CAS  PubMed  Google Scholar 

  77. Hagiwara SI, Ischi Y, Kitamura S. Aerosolized administration of N-acetylcysteine attenuates lung fibrosis induced by bleomycin in mice. Am J Respir Crit Care Med. 2000;162(1):225–31.

    Article  CAS  PubMed  Google Scholar 

  78. Yadav AK, Bracher A, Doran SF, Leustik M, et al. Mechanisms and modification of chlorine-induced lung injury in animals. Proc Am Thorac Soc. 2010;7(4):278–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sciuto AM, Strickland PT, Kennedy TP, Gurtner GH. Protective effects of N-acetylcysteine treatment after phosgene exposure in rabbits. Am J Respir Crit Care Med. 1995;151(3 Pt 1):768–72.

    Article  CAS  PubMed  Google Scholar 

  80. Peeila V, Takkunen O, Tukiainen P. Zinc chloride smoke inhalation: a rare cause of severe acute respiratory distress syndrome. Intensive Care Med. 2000;26(2):215–7.

    Article  Google Scholar 

  81. Martinez FJ, de Andrade JA, Anstrom KJ. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N Engl J Med. 2014;370(22):2093–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Ortolani O, Conti A, De Gaudio AR, Masoni M, et al. Protective effects of N-acetylcysteine and rutin on the lipid peroxidation of the lung epithelium during the adult respiratory distress syndrome. Shock. 2000;13(1):14–8.

    Article  CAS  PubMed  Google Scholar 

  83. Utsunomiya T, Krausz MM, Dunham B, Valeri CR, et al. Modification of inflammatory response to aspiration with ibuprofen. Am J Physiol. 1982;243(6):H903–10.

    CAS  PubMed  Google Scholar 

  84. Farrukh IS, Michael JR, Peters SP, Sciuto AM, et al. The role of cyclooxygenase and lipoxygenase mediators in oxidant-induced lung injury. Am Rev Respir Dis. 1988;137(6):1343–9.

    Article  CAS  PubMed  Google Scholar 

  85. Kennedy TP, Rao NV, Noah W, Michael JR, et al. Ibuprofen prevents oxidant lung injury and in vitro lipid peroxidation by chelating iron. J Clin Invest. 1990;86(5):1565–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lindenschmidt RC, Patterson CE, Forney RB, Rhoades RA. Selective action of prostaglandin F2 alpha during paraquat-induced pulmonary edema in the perfused lung. Toxicol Appl Pharmacol. 1983;70(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  87. Stewart RJ, Yamajuchi KT, Knost PM. Effects of ibuprofen on pulmonary oedema in an animal smoke inhalation mode. Burns. 1990;16(6):409–13.

    Article  CAS  PubMed  Google Scholar 

  88. ** LJ, LaLonde C, Demling RH. Lung dysfunction after thermal injury in relation to prostanoid and oxygen radical release. J Appl Physiol. 1986;61(1):103–12.

    CAS  PubMed  Google Scholar 

  89. Kimura R, Traber L, Herndon D, Niehaus G, et al. Ibuprofen reduces the lung lymph flow changes associated with inhalation injury. Circ Shock. 1988;24(3):183–91.

    CAS  PubMed  Google Scholar 

  90. Kang J, Park W, Pack I, Lee HS, et al. Inhaled nitric oxide attenuates acute lung injury. J Appl Physiol. 2002;92(2):795–801.

    Article  CAS  PubMed  Google Scholar 

  91. Roberts JD, Chirche JD, Weiman J, Steudel W, et al. Nitric oxide inhalation decrease pulmonary artery remodeling in the injured lungs of rat pups. Circ Res. 2000;87(2):140–5.

    Article  CAS  PubMed  Google Scholar 

  92. Cuthbertson BH, Galley HF, Webster NR. Effect of inhaled nitric oxide on key mediators of inflammation. Crit Care Med. 2000;28(6):1736–41.

    Article  CAS  PubMed  Google Scholar 

  93. Koh Y, Kang JL, Park W, Pack IS, et al. Inhaled nitric oxide down-regulates intrapulmonary nitric oxide production in lipopolysaccharide-induced acute lung injury. Crit Care Med. 2001;29(6):1169–74.

    Article  CAS  PubMed  Google Scholar 

  94. Soejima K, Traber LD, Schmalstieg FC, Hawkins H, et al. Role of nitric oxide in vascular permeability after combined burns and smoke inhalation injury. Am J Respir Crit Care Med. 2001;163(3 Pt 1):745–52.

    Article  CAS  PubMed  Google Scholar 

  95. Lundin S, Mang H, Smithies M, et al. Inhalation of nitric oxide in acute lung injury: results of a European multicentre study. Intensive Care Med. 1999;25:911–9.

    Article  CAS  PubMed  Google Scholar 

  96. Dellinger RP. Inhaled nitric oxide in acute lung injury and acute respiratory distress syndrome. Intensive Care Med. 1999;25(9):881–3.

    Article  CAS  PubMed  Google Scholar 

  97. Musgrave MA, Fingland R, Gomez M, Fish J, et al. The use of inhaled nitric oxide as adjuvant therapy in patients with burn injuries and respiratory failure. J Burn Care Rehabil. 2000;21(6):551–7.

    Article  CAS  PubMed  Google Scholar 

  98. Nader ND, Knight PR, Bobela I, Davidson BA, et al. High dose nitric oxide inhalation increases lung injury after gastric aspiration. Anesthesiology. 1999;91(3):741–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kobayashi T, Gabazza EC, Shimizu S, Yasui H, et al. Long term inhalation of high dose nitric oxide increases intraalveolar activation of coagulation system in mice. Am J Respir Crit Care Med. 2001;163(7):1676–82.

    Article  CAS  PubMed  Google Scholar 

  100. Hesse AK, Dorger M, Kupatt C, Krombach F. Proinflammatory role of inducible nitric oxide synthase in acute hyperoxic lung injury. Respir Res. 2004;5:11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Taylor RW, Zimmerman JL, Dellinger RP, Straube RC, et al. Low-dose inhaled nitric oxide in patients with acute lung injury: a randomized controlled trial. JAMA. 2004;291(13):1603–9.

    Article  CAS  PubMed  Google Scholar 

  102. Babu PB, Chidekel A, Shaffer TH. Hypoxia-induced changes in human airway epithelial cells: the protective effect of perflubron. Pediatr Crit Care Med. 2005;6(2):188–94.

    Article  PubMed  Google Scholar 

  103. Dani C, Costantino ML, Martelli E, Corno C, et al. Perfluorocarbons attenuate oxidative lung damage. Pediatr Pulmonol. 2003;36(4):322–9.

    Article  CAS  PubMed  Google Scholar 

  104. Mikawa K, Nishina K, Takao Y, Obara H. Efficacy of partial liquid ventilation in improving acute lung injury induced by intratracheal acidified infant formula: determination of optimal dose and positive end-expiratory pressure level. Crit Care Med. 2004;32(1):209–16.

    Article  CAS  PubMed  Google Scholar 

  105. Kacmarek RM, Wiedemann HP, Lavin PT, Wedel MK, et al. Partial liquid ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2006;173(8):882–9.

    Article  PubMed  Google Scholar 

  106. Podgorski A, Sosnowski TR, Gradon L. Deactivation of pulmonary surfactant dynamics by toxic aerosols gases. J Aerosol Med. 2001;14(4):455–66.

    Article  CAS  PubMed  Google Scholar 

  107. Widner LR, Goodwin SR, Berman LS. Artificial surfactant for therapy in hydrocarbon-induced lung injury in sheep. Crit Care Med. 1996;24(9):1524–9.

    Article  CAS  PubMed  Google Scholar 

  108. Richards DB, Wang GS, Buchanan JA. Pediatric tea tree oil aspiration treated with surfactant in the emergency department. Pediatr Emerg Care. 2015;31(4):279–80.

    Article  PubMed  Google Scholar 

  109. Mastropietro CW, Valentine K. Early administration of intratracheal surfactant (calfactant) after hydrocarbon aspiration. J Res Pharm Pract. 2015;4(1):31–6.

    Article  CAS  Google Scholar 

  110. Horoz OO, Yildizdas D, Yilmaz HL. Surfactant therapy in acute respiratory distress syndrome due to hydrocarbon aspiration. Singapore Med J. 2009;50(4):e130–2.

    CAS  PubMed  Google Scholar 

  111. Spragg RG, Lewis JF, Walmrath HD, Johannigman J, et al. Effect of recombinant surfactant protein C-based surfactant on the acute respiratory distress syndrome. N Engl J Med. 2004;351(9):884–92.

    Article  CAS  PubMed  Google Scholar 

  112. Douidar SM. Nebulized sodium bicarbonate in acute chlorine inhalation. Pediatr Emerg Care. 1997;13(6):406–7.

    Article  CAS  PubMed  Google Scholar 

  113. Vinsel PJ. Treatment of acute chlorine gas inhalation with nebulized sodium bicarbonate. J Emerg Med. 1990;8(3):327–9.

    Article  CAS  PubMed  Google Scholar 

  114. Chisholm CD, Singeltary EM, Okerberg CV, et al. Inhaled sodium bicarbonate therapy for chlorine inhalation injuries. Ann Emerg Med. 1989;18:466.

    Article  Google Scholar 

  115. Aslan S, Kandis H, Akgun M, Cakir Z, et al. The effect of nebulized NaHCO3 treatment on “RADS” due to chlorine gas inhalation. Inhal Toxicol. 2006;18(11):895–900.

    Article  CAS  PubMed  Google Scholar 

  116. Caravati EM. Acute hydrofluoric acid exposure. Am J Emerg Med. 1988;6(2):143–50.

    Article  CAS  PubMed  Google Scholar 

  117. Blodgett DW, Suruda AJ, Crouch BI. Fatal unintentional occupation poisonings by hydrofluoric acid in the U.S. Am J Ind Med. 2001;40(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  118. Lee DC, Wiley JF, Snyder JW. Treatment of inhalational exposure to hydrofluoric acid with nebulized calcium gluconate. J Occup Med. 1993;35(5):470.

    CAS  PubMed  Google Scholar 

  119. Tsonis L, Hantsch-Bardsley C, Gamelli RL. Hydrofluoric acid inhalation injury. J Burn Care Res. 2008;29(5):852–5.

    Article  PubMed  Google Scholar 

  120. Taski O, Goodwin CW, Saitoh D, Mozingo DW, et al. Effects of burns on inhalation injury. J Trauma. 1997;43(4):603–7.

    Article  Google Scholar 

  121. Masanes MJ, Legendre C, Lioret N, Saizy R, et al. Using bronchoscopy and biopsy to diagnose early inhalation injury. Chest. 1995;107(5):1365–9.

    Article  CAS  PubMed  Google Scholar 

  122. Cahalane M, Demling RH. Early abnormalities from smoke inhalation. Chest. 1995;107(5):1365–9.

    Article  Google Scholar 

  123. Agee RN, Long JM, Hunt JL, Petroff PA, et al. Use of 133xenon in early diagnosis of inhalation injury. J Trauma. 1976;16(3):218–24.

    Article  CAS  PubMed  Google Scholar 

  124. Lee MJ, O’Connell DJ. The plain chest radiograph after acute smoke inhalation. Clin Radiol. 1988;39(1):33–7.

    Article  CAS  PubMed  Google Scholar 

  125. Chrysopoulo MT, Barrow RE, Muller M, Rubin S, et al. Chest radiographic appearances in severely burned adults: a comparison of early radiographic and extravascular lung thermal volume changes. J Burn Care Rehabil. 2001;22(2):104–10.

    Article  CAS  PubMed  Google Scholar 

  126. Zikria BA, Weston GC, Chodoff M, Ferrer JM. Smoke and carbon monoxide-related deaths in fire victims. J Trauma. 1972;12(8):641–5.

    Article  CAS  PubMed  Google Scholar 

  127. Cancio LC, Mozingo DW, Pruitt BA. Strategies for diagnosing and treating asphyxiation and inhalation injuries. J Crit Illn. 1997;12:217–29.

    Google Scholar 

  128. Ogura H, Cioffi WG, Okerberg CV, Johnson AA, et al. The effects of pentoxifylline on pulmonary function following smoke inhalation. J Surg Res. 1994;56(3):242–50.

    Article  CAS  PubMed  Google Scholar 

  129. Brown M, Desai M, Traber LD, Herndon DN, et al. Dimethylsulfoxide with heparin in the treatment of smoke inhalation injury. J Burn Care Rehabil. 1988;9(1):22–5.

    Article  CAS  PubMed  Google Scholar 

  130. Moritz AR, Henrigues FC, McClean R. The effects of inhaled heat on the air passages and lungs: an experimental investigation. Am J Pathol. 1945;21(2):311–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Saab M, Majid I. Acute pulmonary oedema following smoke inhalation. Int J Clin Pract. 2000;54(2):115–6.

    CAS  PubMed  Google Scholar 

  132. Ashley KD, Sthert Jr JCJ, Traber DL, et al. Airway blood flow following light and heavy smoke inhalation. Surg Forum. 1990;41:193–5.

    Google Scholar 

  133. Saliba MJ. Heparin in the treatment of burns: a review. Burns. 2001;27(4):349–58.

    Article  PubMed  Google Scholar 

  134. Saliba MJ. The effects and uses of heparin in the care of burns that improves treatment and enhances the quality of life. Acta Chirurg Plast. 1997;39:13–6.

    Google Scholar 

  135. Cox CS, Zwischenberger JB, Traber DL, Traber LD, et al. Heparin improves oxygenation and minimizes barotrauma after smoke inhalation in an ovine model. Surg Gynecol Obstet. 1993;176(4):339–49.

    CAS  PubMed  Google Scholar 

  136. Desi MH, Micak RRT, Richardson J, Nichols R, et al. Reduction in mortality in pediatric patients with inhalation injury with aerosolized heparin/N-acetylcysteine therapy. J Burn Care Rehabil. 1998;19(3):210–2.

    Article  Google Scholar 

  137. Matthay MA, Uchida T, Fang X. Clinical acute lung injury and acute respiratory distress syndrome. Curr Treat Opt Cardiovasc Med. 2002;4(2):139–49.

    Article  Google Scholar 

  138. Meade M, Herridge M. An evidence-based approach to acute respiratory distress syndrome. Respir Care. 2001;46(12):1368–76.

    CAS  PubMed  Google Scholar 

  139. Eaton S, Martin G. Clinical developments for treating ARDS. Expert Opin Investig Drugs. 2002;11(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  140. Ferguson ND, Frutos-Vivar F, Esteban A, Anzueto A, et al. Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit Care Med. 2005;33(1):21–30.

    Article  PubMed  Google Scholar 

  141. Tasaki O, Goodwin CW, Saitoh D, Mozingo DW, et al. Effects of burns on inhalation injury. J Trauma. 1997;43(4):603–7.

    Article  CAS  PubMed  Google Scholar 

  142. Brower RG, Ware LB, Rerthiaume Y, Matthay MA. Treatment of ARDS. Chest. 2001;120(4):1347–67.

    Article  CAS  PubMed  Google Scholar 

  143. Frank J, Gutierrez J, Jones K, Aleen L, et al. Low tidal volume reduces epithelial and endothelial injury in rats. Am J Respir Crit Care Med. 2002;165(2):242–9.

    Article  PubMed  Google Scholar 

  144. Hickling KG. Ventilatory management of ARDS: can it affect outcome? Intensive Care Med. 1990;16(4):219–26.

    Article  CAS  PubMed  Google Scholar 

  145. Fitzpatrick JC, Cioffi WG. Ventilatory support following burns and smoke-inhalation. Respir Care Clin N Am. 1997;3(1):21–49.

    CAS  PubMed  Google Scholar 

  146. Mangat HS, Stewart TL, Dibden L, Tredget EE. Complications of chlorine inhalation in a pediatric chemical burn patient: a case report. J Burn Care Res. 2012;33(4):e216–21.

    Google Scholar 

  147. Guidelines for intensive care unit admission, discharge, and triage. Task force of the America College of Critical Care Medicine, Society of Critical Care Medicine. Crit Care Med. 1999;27(3):633–8.

    Google Scholar 

  148. Rang HP, Dale MM, Ritter JM, Gardner P. Local hormones, inflammation and allergy. In: Pharmacology. 4th ed. New York: Churchill Livingstone; 2001.

    Google Scholar 

  149. Delclos G, Carson AI. Acute gaseous exposure. In: Harber P, Schenker M, Balmes J, editors. Occupational and Environmental Respiratory Disease. St. Louis: Mosby; 1996. p. 518.

    Google Scholar 

  150. Morgan WK, Seaton A. Occupational lung disease. Philadelphia: WB Saunders; 1984. p. 611–3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph K. Maddry .

Editor information

Editors and Affiliations

Grading System for Levels of Evidence Supporting Recommendations in Critical Care Toxicology, 2nd Edition

  1. I

    Evidence obtained from at least one properly randomized controlled trial

  2. II-1

    Evidence obtained from well-designed controlled trials without randomization

  3. II-2

    Evidence obtained from well-designed cohort or case–control analytic studies, preferably from more than one center or research group

  4. II-3

    Evidence obtained from multiple time series with or without the intervention. Dramatic results in uncontrolled experiments (such as the results of the introduction of penicillin treatment in the 1940s) could also be regarded as this type of evidence

  5. III

    Opinions of respected authorities, based on clinical experience, descriptive studies and case reports, or reports of expert committees

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing AG (outside the USA)

About this entry

Cite this entry

Maddry, J.K. (2015). Irritant and Toxic Respiratory Injuries. In: Brent, J., Burkhart, K., Dargan, P., Hatten, B., Megarbane, B., Palmer, R. (eds) Critical Care Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-20790-2_123-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20790-2_123-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-20790-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics

Navigation