The Role of Irrigation in Endodontics

  • Chapter
Lasers in Endodontics

Abstract

During root canal irrigation, we aim for the chemical dissolution or disruption and the mechanical detachment and removal of pulp tissue, dentin debris and smear layer (instrumentation products), microorganisms (planktonic or biofilm), and their products out of the root canal system. The different endodontic irrigation systems have their own irrigant flow characteristics, which should fulfill these aims. Flow (convection) promotes the distribution of irrigants through the root canal system. However without flow, the irrigant has to be distributed through diffusion which is slow and depends on temperature and concentration gradients. During the flow of irrigants, frictional forces will occur between the irrigant and the root canal wall (wall shear stress). These frictional forces participate in the mechanical cleaning of the root canal walls. This chapter describes the typical flow of irrigants produced by different irrigation systems including their related wall shear stress. Furthermore, the influence of flow on the chemical effect of the irrigants, including the effect on the biofilm (disinfection), will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The second Damköhler number is defined as

    Da = irrigant transport time

    in which U is the velocity and Ω the vorticity (rotation) of the irrigant and D is the diffusion coefficient. The length scale L is a typical length over which the reaction takes place near the surface.

References

  1. Haapasalo M, Shen Y, Ricucci D. Reasons for persistent and emerging post-treatment endodontic disease. Endod Top. 2011;18:31–50.

    Article  Google Scholar 

  2. Sen BH, Wesselink PR, Türkün M. The smear layer: a phenomenon in root canal therapy. Int Endod J. 1995;28:141–8.

    Article  PubMed  Google Scholar 

  3. Paqué F, Laib A, Gautschi H, Zehnder M. Hard-tissue debris accumulation analysis by high-resolution computed tomography scans. J Endod. 2009;35:1044–7.

    Article  PubMed  Google Scholar 

  4. Gorni FG, Gagliani MM. The outcome of endodontic retreatment: a 2-yr follow-up. J Endod. 2004;30:1–4.

    Article  PubMed  Google Scholar 

  5. Wu MK, van der Sluis LW, Wesselink PR. Comparison of mandibular premolars and canines with respect to their resistance to vertical root fracture. J Dent. 2004;32:265–8.

    Article  PubMed  Google Scholar 

  6. Liu R, Kaiwar A, Shemesh H, Wesselink PR, Hou BX, Wu MK. Incidence of apical root cracks and apical dentinal detachments after canal preparation with hand and rotary files at different instrumentation lengths. J Endod. 2013;39:129–32.

    Article  PubMed  Google Scholar 

  7. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod. 2004;30:559–67.

    Article  PubMed  Google Scholar 

  8. Lussi A, Nussbächer U, Grosrey J. A novel noninstrumented technique for cleansing the root canal system. J Endod. 1993;19:549–53.

    Article  PubMed  Google Scholar 

  9. Attin T, Buchalla W, Zirkel C, Lussi A. Clinical evaluation of the cleansing properties of the noninstrumental technique for cleaning root canals. Int Endod J. 2002;35:929–33.

    Article  PubMed  Google Scholar 

  10. Mader C, Baumgartner J, Peters D. Scanning electron microscopic investigation of the smeared layer on root canal walls. J Endod. 1984;10:477–83.

    Article  PubMed  Google Scholar 

  11. Haapasalo M, Qian W, Portenier I, Waltimo T. Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endod. 2007;33:917–25.

    Article  PubMed  Google Scholar 

  12. Boutsioukis C, Verhaagen B, Versluis M, Kastrinakis E, Wesselink PR, Van der Sluis LWM. Evaluation of irrigant flow in the root canal using different needle types by an unsteady Computational Fluid Dynamics model. J Endod. 2010;36:875–9.

    Article  PubMed  Google Scholar 

  13. Zehnder M. Research that matters – irrigants and disinfectants. Int Endod J. 2012;45:961–2.

    Article  Google Scholar 

  14. Dutner J, Mines P, Anderson A. Irrigation trends among American association of endodontists members: a web-based survey. J Endod. 2012;38:37–40.

    Article  PubMed  Google Scholar 

  15. Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR. Review of contemporary irrigant agitation techniques and devices. J Endod. 2009;35:791–804.

    Article  PubMed  Google Scholar 

  16. Jiang L-M, Lak B, Eijsvogel E, Wesselink PR, van der Sluis LWM. Comparison of the cleaning efficacy of different final irrigation techniques. J Endod. 2012;38:838–41.

    Article  PubMed  Google Scholar 

  17. Van der Sluis LWM, Vogels MPJM, Verhaagen B, Macedo R, Wesselink PR. Study on the influence of refreshment/activations cycles and irrigants on mechanical cleaning efficiency during ultrasonic activation of the irrigant. J Endod. 2010;36:737–40.

    Article  PubMed  Google Scholar 

  18. Moser JB, Heuer MA. Forces and efficacy in endodontic irrigation systems. Oral Surg Oral Med Oral Pathol. 1982;53:425–8.

    Article  PubMed  Google Scholar 

  19. Boutsioukis C, Lambrianidis T, Kastrinakis E, Bekiaroglou P. Measurement of pressure and flow rates during irrigation of a root canal ex vivo with three endodontic needles. Int Endod J. 2007;40:504–13.

    Article  PubMed  Google Scholar 

  20. Mitchell RP, Yang SE, Baumgartner JC. Comparison of apical extrusion of NaOCl using the EndoVac or needle irrigation of root canals. J Endod. 2010;36:338–41.

    Article  PubMed  Google Scholar 

  21. Mitchell RP, Baumgartner JC, Sedgley CM. Apical extrusion of sodium hypochlorite using different root canal irrigation systems. J Endod. 2011;37:1677–81.

    Article  PubMed  Google Scholar 

  22. Desai P, Himel V. Comparative safety of various intracanal irrigation systems. J Endod. 2009;35:545–9.

    Article  PubMed  Google Scholar 

  23. Meire MA, Poelman D, De Moor RJ. Optical properties of root canal irrigants in the 300–3,000-nm wavelength region. Lasers Med Sci. 2014;29(5):1557–62.

    Article  PubMed  Google Scholar 

  24. Peeters HH, Suardita K. Efficacy of smear layer removal at the root tip by using ethylenediaminetetraacetic acid and erbium, chromium: yttrium, scandium, gallium garnet laser. J Endod. 2011;37:1585–9.

    Article  PubMed  Google Scholar 

  25. Peters OA, Bardsley S, Fong J, Pandher G, Divito E. Disinfection of root canals with photon-initiated photoacoustic streaming. J Endod. 2011;37:1008–12.

    Article  PubMed  Google Scholar 

  26. Peeters HH, Mooduto L. Measurement of temperature changes during cavitation generated by an erbium, chromium: Yttrium, scandium, gallium garnet laser. Open J Stomatol. 2012;2:286–91.

    Article  Google Scholar 

  27. DiVito E, Colonna M, Olivi G. Effectiveness of the Erbium:YAG laser and new design radial and stripped tips in removing the smear layer after root canal instrumentation. Lasers Med Sci. 2012;27:273–80.

    Article  PubMed  Google Scholar 

  28. Song WD, Hong MH, Lukyanchuk B, Chong TC. Laser-induced cavitation bubbles for cleaning of solid surfaces. J Appl Phys. 2004;95:2952–6.

    Article  Google Scholar 

  29. Jiang L-M, Verhaagen B, Versluis M, Van der Sluis LWM. Evaluation of a sonic device designed to activate irrigant in the root canal. J Endod. 2010;36:143–6.

    Article  PubMed  Google Scholar 

  30. Lumley PJ, Walmsley AD, Laird WRE. Streaming patterns produced around endosonic files. Int Endod J. 1991;24:290–7.

    Article  PubMed  Google Scholar 

  31. Lea SC, Walmsley AD, Lumley PJ, Landini G. A new insight into the oscillation characteristics of endosonic files used in dentistry. Phys Med Biol. 2004;49:2095–102.

    Article  PubMed  Google Scholar 

  32. Lea SC, Walmsley D, Lumley PJ. Analyzing endosonic root canal file oscillations: an in vitro evaluation. J Endod. 2010;36:880–3.

    Article  PubMed  Google Scholar 

  33. Verhaagen B, Lea SC, Van der Sluis LWM, Walmsley AD, Versluis M. Oscillation characteristics of endodontic files: numerical model and its validation. IEEE Trans Ultrason Ferroelect Freq Control. 2012;59:2448–59.

    Google Scholar 

  34. Weller RN, Brady JM, Bernier WE. Efficacy of ultrasonic cleaning. J Endod. 1980;6:740–3.

    Article  PubMed  Google Scholar 

  35. Van der Sluis LWM, Versluis M, Wu M-K, Wesselink PR. Passive ultrasonic irrigation of the root canal: a review of the literature. Int Endod J. 2007;40:415–26.

    Article  PubMed  Google Scholar 

  36. Boutsioukis C, Verhaagen B, Walmsley AD, Versluis M, Van der Sluis LWM. Measurement and visualization of file-wall contact during Passive Ultrasonic Irrigation in vitro. Int Endod J. 2013;46(11):1046–55.

    PubMed  Google Scholar 

  37. Macedo RG, Verhaagen B, Fernandez Rivas D, Gardeniers JGE, Van der Sluis LWM, Wesselink PR, Versluis M. Sonochemical and high-speed optical characterization of cavitation generated by an ultrasonically oscillating dental file in root canal models. Ultrason Sonochem. 2014;21(1):324–35.

    Article  PubMed  Google Scholar 

  38. Verhaagen B, Boutsioukis C, Heijnen GL, Van der Sluis LWM, Versluis M. Role of the confinement of a root canal on jet im**ement during endodontic irrigation. Exp Fluids. 2012;53:1841–53.

    Article  Google Scholar 

  39. Chen JE, Nurbakhsh B, Layton G, Bussmann M, Kishen A. Irrigation dynamics associated with positive pressure, apical negative pressure and passive ultrasonic irrigations: a computational fluid dynamics analysis. Aust Endod J. 2014;40(2):54–60.

    Article  PubMed  Google Scholar 

  40. Tay FR, Gu L-s, Schoeffel GJ, Wimmer C, Susin L, Zhang K, Arun SN, Kim J, Looney WS, Pashley DH. Effect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. J Endod. 2010;36:745–50.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Parente JM, Loushine RJ, Susin L, Gu L, Looney SW, Weller RN, Pashley DH, Tay FR. Root canal debridement using manual dynamic agitation or the EndoVac for final irrigation in a closed system and an open system. Int Endod J. 2010;43:1001–12.

    Article  PubMed  Google Scholar 

  42. Psimma Z, Boutsioukis C, Vasiliadis L, Kastrinakis E. A new method for real-time quantification of irrigant extrusion during root canal irrigation ex vivo. Int Endod J. 2013;46(7):619–31.

    Article  PubMed  Google Scholar 

  43. Psimma Z, Boutsioukis C, Kastrinakis E, Vasiliadis L. Effect of needle insertion depth and root canal curvature on irrigant extrusion ex vivo. J Endod. 2013;39:521–4.

    Article  PubMed  Google Scholar 

  44. Boutsioukis C, Lambrianidis T, Kastrinakis E. Irrigant flow within a prepared root canal using different flow rates: a Computational Fluid Dynamics study. Int Endod J. 2009;42:144–55.

    Article  PubMed  Google Scholar 

  45. Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LWM. The effect of apical preparation size on the irrigant flow in root canals using an unsteady Computational Fluid Dynamics model. Int Endod J. 2010;43:874–81.

    Article  PubMed  Google Scholar 

  46. Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LWM. The effect of root canal taper on the irrigant flow: evaluation by an unsteady Computational Fluid Dynamics model. Int Endod J. 2010;43:909–16.

    Article  PubMed  Google Scholar 

  47. Boutsioukis C, Lambrianidis T, Verhaagen B, Versluis M, Kastrinakis E, Wesselink PR, Van der Sluis LWM. The effect of needle insertion depth on the irrigant flow in the root canal: evaluation by an unsteady Computational Fluid Dynamics model. J Endod. 2010;36:1664–8.

    Article  PubMed  Google Scholar 

  48. Amato M, Vanoni-Heineken I, Hecker H, Weiger R. Curved versus straight root canals: the benefit of activated irrigation techniques on dentin debris removal. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;111:529–34.

    Article  PubMed  Google Scholar 

  49. Gao Y, Haapasalo M, Shen Y, Wu H, Li B, Ruse ND, Zhou X. Development and validation of a three-dimensional computational fluid dynamics model of root canal irrigation. J Endod. 2009;35:1282–7.

    Article  PubMed  Google Scholar 

  50. Shen Y, Gao Y, Qian W, Ruse ND, Zhou X, Wu H, Haapasalo M. Three-dimensional numerical simulation of root canal irrigant flow with different irrigation needles. J Endod. 2010;36:884–9.

    Article  PubMed  Google Scholar 

  51. De Gregorio C, Estevez R, Cisneros R, Heilborn C, Cohenca N. Effect of EDTA, sonic, and ultrasonic activation on the penetration of sodium hypochlorite into simulated lateral canals: an in vitro study. J Endod. 2009;35:891–5.

    Article  PubMed  Google Scholar 

  52. Vera J, Arias A, Romero M. Dynamic movement of intracanal gas bubbles during cleaning and sha** procedures: the effect of maintaining apical patency on their presence in the middle and cervical thirds of human root canals-an in vivo study. J Endod. 2012;38:200–3.

    Article  PubMed  Google Scholar 

  53. Boutsioukis C, Kastrinakis E, Lambriandinis T, Verhaagen B, Versluis M, van der Sluis LWM. Formation and removal of apical vapor lock during syringe irrigation: a combined experimental and Computational Fluid Dynamics approach. Int Endod J. 2014;47(2):191–201.

    Article  PubMed  Google Scholar 

  54. Chow TW. Mechanical effectiveness of root canal irrigation. J Endod. 1983;9:475–9.

    Article  PubMed  Google Scholar 

  55. Falk KW, Sedgley CM. The influence of preparation size on the mechanical efficacy of root canal irrigation in vitro. J Endod. 2005;31:742–5.

    Article  PubMed  Google Scholar 

  56. Hsieh YD, Gau CH, Kung Wu SF, Shen EC, Hsu PW, Fu E. Dynamic recording of irrigating fluid distribution in root canals using thermal image analysis. Int Endod J. 2007;40:11–7.

    Article  PubMed  Google Scholar 

  57. Huang TY, Gulabivala K, Ng YL. A bio-molecular film ex-vivo model to evaluate the influence of canal dimensions and irrigation variables on the efficacy of irrigation. Int Endod J. 2008;41:60–71.

    PubMed  Google Scholar 

  58. Bronnec F, Bouillaguet S, Machtou P. Ex vivo assessment of irrigant penetration and renewal during the cleaning and sha** of root canals: a digital subtraction radiographic study. Int Endod J. 2010;43:275–82.

    Article  PubMed  Google Scholar 

  59. Baker NA, Eleazer PD, Averbach RE, Seltzer S. Scanning electron microscopic study of the efficacy of various irrigating solutions. J Endod. 1975;1:127–35.

    Article  PubMed  Google Scholar 

  60. Sedgley C, Applegate B, Nagel A, Hall D. Real-time imaging and quantification of bioluminescent bacteria in root canals in vitro. J Endod. 2004;30:893–8.

    Article  PubMed  Google Scholar 

  61. Sedgley CM, Nagel AC, Hall D, Applegate B. Influence of irrigant needle depth in removing bacteria inoculated into instrumented root canals using realtime imaging in vitro. Int Endod J. 2005;38:97–104.

    Article  PubMed  Google Scholar 

  62. Bronnec F, Bouillaguet S, Machtou P. Ex vivo assessment of irrigant penetration and renewal during the final irrigation regimen. Int Endod J. 2010;43:663–72.

    Article  PubMed  Google Scholar 

  63. Spoorthy E, Velmurugan N, Ballal S, Nandini S. Comparison of irrigant penetration up to working length and into simulated lateral canals using various irrigating techniques. Int Endod J. 2013;46(9):815–22.

    Article  PubMed  Google Scholar 

  64. Brunson M, Heilborn C, Johnson JD, Cohenca N. Effect of apical preparation size and preparation taper on irrigant volume delivered by using negative pressure irrigation system. J Endod. 2010;36:721–4.

    Article  PubMed  Google Scholar 

  65. Rothfus RR, Monrad CC, Senecal VE. Velocity distribution and fluid friction in smooth concentric annuli. Ind Eng Chem. 1950;42:2511–20.

    Article  Google Scholar 

  66. Goode N, Khan S, Eid AA, Niu L-n, Gosier J, Susin LF, Pashley DH, Tay FR. Wall shear stress effects of different endodontic irrigation techniques and systems. J Dent. 2013;41(7):636–41.

    Article  PubMed  Google Scholar 

  67. De Gregorio C, Estevez R, Cisneros R, Paranjpe A, Cohenca N. Efficacy of different irrigation and activation systems on penetration of sodium hypochlorite into simulated lateral canals and up to working length: an in vitro study. J Endod. 2010;36:1216–21.

    Article  PubMed  Google Scholar 

  68. Khan S, Niu L-n, Eid AA, Looney SW, Didato A, Roberts S, Pashley DH, Tay FR. Periapical pressures developed by non-binding irrigation needles at various irrigation delivery rates. J Endod. 2013;39:529–33.

    Article  PubMed  Google Scholar 

  69. Ricucci D, Loghin S, Sigueira Jr JF. Exuberant biofilm infection in a lateral canal as the cause of short-term endodontic treatment failure: report of a case. J Endod. 2013;39:712–8.

    Article  PubMed  Google Scholar 

  70. Arnold M, Ricucci D, Sigueira Jr JF. Infection in a complex network of apical ramifications as the cause of persistent apical periodontitis: a case report. J Endod. 2013;39(9):1179–84.

    Article  PubMed  Google Scholar 

  71. Vieira AR, Siqueira Jr JF, Ricucci D, Lopes WSP. Dentinal tubule infection as the cause of recurrent disease and late endodontic treatment failure: a case report. J Endod. 2012;38:250–4.

    Article  PubMed  Google Scholar 

  72. Verhaagen B, Boutsioukis C, Sleutel CP, Kastrinakis E, Van der Sluis LWM, Versluis M. Irrigant transport into dental microchannels. Microfluid Nanofluid. 2014;16(6):1165–77.

    Google Scholar 

  73. Shankar PN, Deshpande MD. Fluid mechanics in the driven cavity. Annu Rev Fluid Mech. 2000;32:93–136.

    Article  Google Scholar 

  74. Zou L, Shen Y, Li W, Haapasalo M. Penetration of sodium hypochlorite into dentin. J Endod. 2010;36:793–6.

    Article  PubMed  Google Scholar 

  75. Verhaagen B, Boutsioukis C, Van der Sluis LWM, Versluis M. Acoustic streaming induced by an ultrasonically oscillating endodontic file. J Acoust Soc Am. 2014;135(4):1717.

    Article  PubMed  Google Scholar 

  76. Jiang L-M, Verhaagen B, Versluis M, Van der Sluis LWM. The influence of the oscillation direction of an ultrasonic file on the cleaning efficacy of passive ultrasonic irrigation. J Endod. 2010;36:1372–6.

    Article  PubMed  Google Scholar 

  77. Al-Jadaa A, Paque F, Attin T, Zehnder M. Necrotic pulp tissue dissolution by passive ultrasonic irrigation in simulated accessory canals: impact of canal location and angulation. Int Endod J. 2009;42:59–65.

    Article  PubMed  Google Scholar 

  78. Jiang L-M, Verhaagen B, Versluis M, Langedijk J, Wesselink PR, Van der Sluis LWM. The influence of the ultrasonic intensity on the cleaning efficacy of passive ultrasonic irrigation. J Endod. 2011;37:688–92.

    Article  PubMed  Google Scholar 

  79. Nanzer J, Langlois S, Coeuret F. Electrochemical engineering approach to the irrigation of tooth canals under the influence of a vibrating file. J Biomed Eng. 1989;11:157–63.

    Article  PubMed  Google Scholar 

  80. Malki M, Verhaagen B, Jiang L-M, Nehme W, Naaman A, Versluis M, Wesselink PR, Van der Sluis LWM. Irrigant flow beyond the insertion depth of an ultrasonically oscillating file in straight and curved root canals: visualization and cleaning efficacy. J Endod. 2012;38:657–61.

    Article  PubMed  Google Scholar 

  81. Walmsley AD, Williams AR. Effects of constraints on the oscillatory pattern of endosonic files. J Endod. 1999;15:189–94.

    Article  Google Scholar 

  82. Rayleigh L. On the circulation of air observed in Kundt’s tubes and on some allied acoustical problems. Phil Trans R Soc Lond. 1884;175:1–21.

    Article  Google Scholar 

  83. Stuart JT. Double boundary layers in oscillatory viscous flow. J Fluid Mech. 1966;24:673–87.

    Article  Google Scholar 

  84. Duck PW, Smith FT. Steady streaming induced between oscillating cylinders. J Fluid Mech. 1979;91:93–110.

    Article  Google Scholar 

  85. Haddon EW, Riley N. The steady streaming induced between oscillating circular cylinders. Q J Mech Appl Math. 1979;32:265–82.

    Article  Google Scholar 

  86. Williams AR, Nyborg WL. Microsonation using a transversely oscillating capillary. Ultrasonics. 1970;8:36–8.

    Article  Google Scholar 

  87. Williams AR, Slade JS. Ultrasonic dispersal of aggregates of sarcina lutea. Ultrasonics. 1971;8:85–7.

    Google Scholar 

  88. Ahmad M, Pitt Ford TR, Crum LA. Ultrasonic debridement of root canals: acoustic streaming and its possible role. J Endod. 1987;13:490–9.

    Article  PubMed  Google Scholar 

  89. Flemming H-C, Wingender J, Szewzyk U. Biofilm highlights. Springer series on biofilms. 1st ed. Berlin/Heidelberg: Springer; 2011.

    Google Scholar 

  90. Deshpande MD, Vaishnav RN. Submerged laminar jet im**ement on a plane. J Fluid Mech. 1982;114:213–36.

    Article  Google Scholar 

  91. Phares DJ, Smedley GT, Flagan RC. The wall shear stress produced by the normal im**ement of a jet on a flat surface. J Fluid Mech. 2000;418:351–75.

    Article  Google Scholar 

  92. Kim SK, Troesch AW. Streaming flows generated by high-frequency small-amplitude oscillations of arbitrary cylinders. Phys Fluid A. 1989;6:975–85.

    Article  Google Scholar 

  93. Brennen CE. Cavitation and bubble dynamics. New York: Oxford University Press; 1995.

    Google Scholar 

  94. Prosperetti A. Bubbles. Phys Fluid. 2004;16:1852–65.

    Article  Google Scholar 

  95. Fernandez Rivas D, Verhaagen B, Seddon RT, Zijlstra AG, Jiang L-M, Van der Sluis LWM, Versluis M, Lohse D, Gardeniers JGE. Localized removal of layers of metal, polymer, or biomaterial by ultrasound cavitation bubbles. Biomicrofluidics. 2012;6:034114.

    Article  PubMed Central  Google Scholar 

  96. Mason TJ, Peters D. Practical sonochemistry: power ultrasound uses and applications, Chemical science series. Chichester: Horwood; 2002.

    Book  Google Scholar 

  97. Junge L, Ohl C-D, Wolfrum B, Arora M, Ikink R. Cell detachment method using shockwave-induced cavitation. Ultrason Med Biol. 2003;29:1769–76.

    Article  Google Scholar 

  98. Fernandez Rivas D, Betjes J, Verhaagen B, Bouwhuis W, Bor TC, Lohse D, Gardeniers JGE. Erosion evolution in mono-crystalline silicon surfaces caused by acoustic cavitation bubbles. Appl Phys Lett. 2013;113:064902.

    Google Scholar 

  99. Terwisga WJC, Fitzsimmons PA, Ziru L, Foeth EJ. Cavitation erosion – a review of physical mechanisms and erosion risk models. In: Proceedings of the 7th international symposium on cavitation CAV2009. Ann Arbor; 2009.

    Google Scholar 

  100. Macedo RG, Verhaagen B, Fernandez Rivas D, Versluis M, Wesselink PR, Van der Sluis LWM. Cavitation measurement during sonic and ultrasonic activated irrigation. J Endod. 2014;40(4):580–3.

    Article  PubMed  Google Scholar 

  101. Brujan E-A, Nahen K, Schmidt P, Vogel A. Dynamics of laser-induced cavitation bubbles near an elastic boundary. J Fluid Mech. 2001;433:251–81.

    Article  Google Scholar 

  102. Versluis M, Schmitz B, Von der Heydt A, Lohse D. How snap** shrimp snap: through cavitating bubbles. Science. 2000;289:2114–7.

    Article  PubMed  Google Scholar 

  103. Ahmad M, Pitt Ford TR, Crum LA, Walton AJ. Ultrasonic debridement of root canals: acoustic cavitation and its relevance. J Endod. 1988;14:486–93.

    Article  PubMed  Google Scholar 

  104. Lumley PJ, Walmsley AD, Laird WRE. An investigation into cavitational activity occurring in endosonic instrumentation. J Dent. 1988;16:120–2.

    Article  PubMed  Google Scholar 

  105. Felver B, King DV, Lea SC, Price GJ, Walmsley AD. Cavitation occurrence around ultrasonic dental scalers. Ultrason Sonochem. 2009;16:692–7.

    Article  PubMed  Google Scholar 

  106. Jackson FJ, Nyborg WL. Small scale acoustic streaming near a locally excited membrane. J Acoust Soc Am. 1958;30:614–9.

    Article  Google Scholar 

  107. Tiong J, Price GJ. Ultrasound promoted reaction of rhodamine B with sodium hypochlorite using sonochemical and dental ultrasonic instruments. Ultrason Sonochem. 2012;19:358–64.

    Article  PubMed  Google Scholar 

  108. Marmottant P, Versluis M, De Jong N, Hilgenfeldt S, Lohse D. High-speed imaging of an ultrasound-driven bubble in contact with a wall: “Narcissus” effect and resolved acoustic streaming. Exp Fluid. 2006;41:147–53.

    Article  Google Scholar 

  109. Verhaagen B. Root canal cleaning through cavitation and microstreaming. PhD thesis, University of Twente, Enschede; 2012.

    Google Scholar 

  110. Haldford A, Ohl C-D, Azarpazhooh A, Basrani B, Friedman S, Kishen A. Synergistic effect of microbubble emulsion and sonic or ultrasonic agitation on endodontic biofilm in vitro. J Endod. 2012;38:1530–4.

    Article  Google Scholar 

  111. Crum LA. Measurements of the growth of air bubbles by rectified diffusion. J Acoust Soc Am. 1980;68:203–11.

    Article  Google Scholar 

  112. Gmelin L. Handbuch der anorganische chemie, chapter Chlor. 8th ed. Leipzig: German Chemical Society, Verlag Chemie Gmbh; 1969.

    Google Scholar 

  113. Jiang L-M, Verhaagen B, Versluis M, Zangrillo C, Cuckovic D, Van der Sluis LWM. An evaluation of the effect of pulsed ultrasound on the cleaning efficacy of passive ultrasonic irrigation. J Endod. 2010;36:1887–91.

    Article  PubMed  Google Scholar 

  114. Blanken JW, Verdaasdonk RM. Cavitation as a working mechanism of the Er, Cr:YSGG laser in endodontics: a visualization study. J Oral Laser App. 2007;7:97–106.

    Google Scholar 

  115. De Groot SD, Verhaagen B, Versluis M, Wu M-K, Wesselink PR, Van der Sluis LWM. Laser activated irrigation within root canals: cleaning efficacy and flow visualization. Int Endod J. 2009;42:1077–83.

    Article  PubMed  Google Scholar 

  116. Matsumoto H, Yoshimine Y, Akamine A. Visualization of irrigant flow and cavitation induced by Er:YAG laser within a root canal model. J Endod. 2011;37:839–43.

    Article  PubMed  Google Scholar 

  117. Jiang C, Chen M-T, Gorur A, Schaudinn C, Jaramillo DE, Costerton JW, Sedghizadeh PP, Vernier PT, Gundersen MA. Nanosecond pulsed plasma dental probe. Plasma Process Polym. 2009;6:479–83.

    Article  Google Scholar 

  118. George R, Walsh LJ. Apical extrusion of root canal irrigants when using Er:YAG and Er, Cr:YSGG lasers with optical fibers: an in vitro dye study. J Endod. 2008;34:706–8.

    Article  PubMed  Google Scholar 

  119. George R, Meyers IA, Walsh LJ. Laser activation of endodontic irrigants with improved conical laser fiber tips for removing smear layer in the apical third of the root canal. J Endod. 2008;34:1524–7.

    Article  PubMed  Google Scholar 

  120. Hmud R, Kahler WA, George R, Walsh LJ. Cavitation effects in aqueous endodontic irrigants generated by near-infrared lasers. J Endod. 2010;36:275–8.

    Article  PubMed  Google Scholar 

  121. de Moor RJ, Meire M, Goharkhay K, Moritz A, Vanobbergen J. Efficacy of ultrasonic versus laser-activated irrigation to remove artificially placed dentin debris plugs. J Endod. 2010;36:1580–3.

    Article  PubMed  Google Scholar 

  122. Moorer WR, Wesselink PR. Factors promoting the tissue dissolving capability of sodium hypochlorite. Int Endod J. 1982;15:187–96.

    Article  PubMed  Google Scholar 

  123. Haapasalo M, Endal U, Zandi H, Coil JM. Eradication of endodontic infection by instrumentation and irrigation solutions. Endod Top. 2005;10:77–102.

    Article  Google Scholar 

  124. Rossi-Fedele G, Doğramaci EJ, Guastalli AR, Steier L, Poli de Figueiredo JA. Antagonistic interactions between sodium hypochlorite, chlorhexidine, EDTA, and citric acid. J Endod. 2012;38:426–31.

    Article  PubMed  Google Scholar 

  125. Incropera FP, de Witt DP. Fundamentals of heat and mass transfer. 3rd ed. New York: Wiley; 1990.

    Google Scholar 

  126. Macedo RG, Wesselink PR, Zaccheo F, Fanali D, Van Der Sluis LW. Reaction rate of NaOCl in contact with bovine dentine: effect of activation, exposure time, concentration and pH. Int Endod J. 2010;43:1108–15.

    Article  PubMed  Google Scholar 

  127. Jungbluth H, Marending M, De-Deus G, Sener B, Zehnder M. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin. J Endod. 2011;37:693–6.

    Article  PubMed  Google Scholar 

  128. Carrasco LD, Pécora JD, Fröner IC. In vitro assessment of dentinal permeability after the use of ultrasonic-activated irrigants in the pulp chamber before internal dental bleaching. Dent Traumatol. 2004;20:164–8.

    Article  PubMed  Google Scholar 

  129. Wang J, Wang X, Li G, Guo P, Luo Z. Degradation of EDTA in aqueous solution by using ozonolysis and ozonolysis combined with sonolysis. J Hazard Mater. 2010;176:333–8.

    Article  PubMed  Google Scholar 

  130. Cunningham WT, Balekjian AY. Effect of temperature on collagen-dissolving ability of sodium hypochlorite endodontic irrigant. Oral Surg Oral Med Oral Path. 1980;49:175–7.

    Article  PubMed  Google Scholar 

  131. Sirtes G, Waltimo T, Schaetzle M, Zehnder M. The effects of temperature on sodium hypochlorite short-term stability, pulp dissolution capacity, and antimicrobial efficacy. J Endod. 2005;31:669–71.

    Article  PubMed  Google Scholar 

  132. Zeltner M, Peters OA, Paqué F. Temperature changes during ultrasonic irrigation with different inserts and modes of activation. J Endod. 2009;35:573–7.

    Article  PubMed  Google Scholar 

  133. Flemming H-C, Neu TR, Wozniak DJ. The EPS matrix: the “house of biofilm cells”. J Bacteriol. 2007;189:7945–7.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Wilking JN, Angelini TE, Seminara A, Brenner MP, Weitz DA. Biofilms as complex fluids. Mater Res Soc Bull. 2011;36:385–91.

    Article  Google Scholar 

  135. Körstgens V, Flemming H-C, Wingender J, Borchard W. Uniaxial compression measurement device for investigation of the mechanical stability of biofilms. J Microbiol Methods. 2001;46:9–17.

    Article  PubMed  Google Scholar 

  136. Ozok AR, Persoon IF, Huse SM, Keijser BJ, Wesselink PR, Crielaard W, Zaura E. Ecology of the microbiome of the infected root canal system: a comparison between apical and coronal root segments. Int Endod J. 2012;45:530–41.

    Article  PubMed  Google Scholar 

  137. Marty N, Dournes JL, Chabanon G, Montrozier H. Influence of nutrient media on the chemical composition of the exopolysaccharide from mucoid and non-mucoid Pseudomonas aeruginosa. FEMS Microbiol Lett. 1992;98:35–44.

    Article  Google Scholar 

  138. van der Waal SV, van der Sluis LWM. Potential of calcium to scaffold an endodontic biofilm, thus protecting the micro-organisms from disinfection. Med Hypotheses. 2012;79:1–4.

    Article  PubMed  Google Scholar 

  139. Busscher HJ, Rustema-Abbink M, Bruinsma GM, de Jager M, Gottenbos B, van der Mei HC. Non-contact removal of coadhering and non-coadhering bacterial pairs from pellicle surfaces by sonic brushing and de novo adhesion. Eur J Oral Sci. 2003;111:459–64.

    Article  PubMed  Google Scholar 

  140. He Y, Peterson BW, Ren Y, van der Mei HC, Busscher HJ. Visco-elasticity of oral biofilm and the penetration of chlorhexidine-an in vitro study. PLoS One. 2013;8, e63750.

    Article  PubMed  PubMed Central  Google Scholar 

  141. Böl M, Ehret AE, Albero AB, Hellriegel J, Krull R. Recent advances in mechanical characterization of biofilm and their significance for material modeling. Crit Rev Biotechnol. 2013;33(2):145–71.

    Article  PubMed  Google Scholar 

  142. Picioreanu C, Van Loosdrecht M, Heijnen J. Two-dimensional model of biofilm detachment caused by internal stress from liquid flow. Biotechnol Bioeng. 2001;72:205–18.

    Article  PubMed  Google Scholar 

  143. Böl M, Möhle RB, Haesner M, Neu TR, Horn H, Krull R. 3D finite element model of biofilm detachment using real biofilm structures from CLSM data. Biotechnol Bioeng. 2009;103:177–86.

    Article  PubMed  Google Scholar 

  144. Möhle RB, Langemann T, Haesner M, Augustin W, Scholl S, Neu TR, Hempel DC, Horn H. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor. Biotechnol Bioeng. 2007;98:747–55.

    Article  PubMed  Google Scholar 

  145. Derlon N, Massė A, Escudié R, Bernet N, Paul E. Stratification in the cohesion of biofilms grown under various environmental conditions. Water Res. 2008;42:2102–10.

    Article  PubMed  Google Scholar 

  146. Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P. Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol Bioeng. 2002;80:289–96.

    Article  PubMed  Google Scholar 

  147. Stoodley P, Lewandowski Z, Boyle JD, Lappin-Scott HM. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol Bioeng. 1999;65:83–92.

    Article  PubMed  Google Scholar 

  148. Stoodley P, Wilson S, Cargo R, Piscitteli C, Rupp CJ. Detachment and other dynamic processes in bacterial biofilms. In: Surfaces in biomaterials 2001 symposium proceedings. Surfaces in Biomaterials Foundation, Minneapolis; 2001. p. 189–92.

    Google Scholar 

  149. Liang Y-H, Jiang L-M, Jiang L, Chen X-B, Liu Y-Y, Tian F-C, Bao X-D, Gao X-J, Versluis M, Wu M-K, van der Sluis LWM. Radiographic healing following root canal treatments performed in single-rooted teeth with and without ultrasonic activation of the irrigant: a randomized controlled trial. J Endod. 2013;39(10):1218–25.

    Article  PubMed  Google Scholar 

  150. Cameron JA. The effect of ultrasonic endodontics on the temperature of the root canal wall. J Endod. 1988;14:554–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc W. M. van der Sluis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van der Sluis, L.W.M., Verhaagen, B., Macedo, R., Versluis, M. (2016). The Role of Irrigation in Endodontics. In: Olivi, G., De Moor, R., DiVito, E. (eds) Lasers in Endodontics. Springer, Cham. https://doi.org/10.1007/978-3-319-19327-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19327-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19326-7

  • Online ISBN: 978-3-319-19327-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation