Uranium Bioremediation: Approaches and Challenges

  • Chapter
Environmental Microbial Biotechnology

Part of the book series: Soil Biology ((SOILBIOL,volume 45))

Abstract

Accidental release of uranium into the environment has the potential of inducing chemical and radiological toxicity. In situ bioremediation of uranium by microbial processes has been shown to be effective for immobilizing uranium in contaminated sites. Such microbial processes are important components of biogeochemical cycles and regulate the mobility and fate of uranium in the environment. This chapter focuses on the fundamental microbial mechanisms underlying uranium immobilization with brief discussion on general considerations, approaches and challenges for uranium bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 158.24
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 158.24
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya C, Apte SK (2013a) Insights into the interactions of cyanobacteria with uranium. Photosynth Res 118:83–94

    Article  CAS  PubMed  Google Scholar 

  • Acharya C, Apte SK (2013b) Novel surface associated polyphosphate bodies sequester uranium in the filamentous, marine cyanobacterium, Anabaena torulosa. Metallomics 5:1595–1598

    Article  CAS  PubMed  Google Scholar 

  • Acharya C, Joseph D, Apte SK (2009) Uranium sequestration by a marine cyanobacterium, Synechococcus elongatus strain BDU/75042. Bioresour Technol 100:2176–2181

    Article  CAS  PubMed  Google Scholar 

  • Acharya C, Chandwadkar P, Apte SK (2012) Interaction of uranium with a filamentous, heterocystous, nitrogen-fixing cyanobacterium, Anabaena torulosa. Bioresour Technol 116:290–294

    Article  CAS  PubMed  Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bargar JR, Williams KH, Campbell KM, Long PE, Stubbs JE, Suvorova EI, Lezama-Pacheco JS, Alessi DS, Stylo M, Webb SM, Davis JA, Giammar DE, Blue LY, Bernier-Latmani R (2013) Uranium redox transition pathways in acetate-amended sediments. Proc Natl Acad Sci U S A 110:4506–4511

    Article  CAS  PubMed Central  Google Scholar 

  • Beazley MJ, Martinez RJ, Sobecky PA, Webb SM, Taillefert M (2007) Uranium biomineralization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environ Sci Technol 41:5701–5707

    Article  CAS  PubMed  Google Scholar 

  • Beazley MJ, Martinez RJ, Webb SM, Sobecky PA, Taillefert M (2011) The effect of pH and natural microbial phosphatase activity on the speciation of uranium in subsurface soils. Geochim Cosmochim Acta 75:5648–5663

    Article  CAS  Google Scholar 

  • Bernier-Latmani R, Veeramani H, Vecchia ED, Junier P, Lezama-Pacheco JS, Suvorova EI, Sharp JO, Wigginton NS, Bargar JR (2010) Non-uraninite products of microbial U(VI) reduction. Environ Sci Technol 44:9456–9462

    Article  CAS  PubMed  Google Scholar 

  • Beveridge TJ, Fyfe WS (1985) Metal fixation by bacterial cell walls. Can J Earth Sci 22:1892–1898

    Article  Google Scholar 

  • Bonhoure I, Meca S, Marti V, De Pablo J, Cortina JL (2007) A new time-resolved laser-induced fluorescence spectrometry (TRLFS) data acquisition procedure applied to the uranyl-phosphate system. Radiochim Acta 95:165–172

    Article  CAS  Google Scholar 

  • Boonchayaanant B, Nayak D, Du X, Criddle CS (2009) Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions. Water Res 43:4652–4664

    Article  CAS  PubMed  Google Scholar 

  • Brendler V, Geipel G, Bernhard G, Nitsche H (1996) Complexation in the system UO2 2+/PO4 3-/OH-(aq): potentiometric and spectroscopic investigations at very low ionic strengths. Radiochim Acta 74:75–80

    CAS  Google Scholar 

  • Brodie EL, DeSantis TZ, Joyner DC, Baek SM, Larsen JT, Andersen GL (2006) Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl Environ Microbiol 72:6288–6298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks SC, Fredrickson JK, Carroll SL, Kennedy DW, Zachara JM, Plymale AE, Kelly SD, Kemner KM, Fendorf S (2003) Inhibition of bacterial U (VI) reduction by calcium. Environ Sci Technol 37:1850–1858

    Article  CAS  PubMed  Google Scholar 

  • Cardenas E, Wu WM, Leigh MB, Carley J, Carroll S, Gentry T, Luo J, Watson D, Gu B, Ginder-Vogel M, Kitanidis PK, Jardine PM, Zhou J, Criddle CS, Marsh TL, Tiedje JA (2008) Microbial communities in contaminated sediments, associated with bioremediation of uranium to submicromolar levels. Appl Environ Microbiol 74:3718–3729

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choppin GR, Du M (1992) f-Element complexation in brine solutions. Radiochim Acta 58–9:101

    Google Scholar 

  • Choppin T, Buschmann AH, Troell M, Kautsky N, Neori A, Yarish C (2011) Integrating seaweeds into marine aquaculture systems: a key toward sustainability. J Phycol 37:975–986

    Article  Google Scholar 

  • Cologgi DL, Lampa-Pastirk S, Speers AM, Kelly SD, Reguera G (2011) Extracellular reduction of uranium via Geobacter conductive pili as a protective cellular mechanism. Proc Natl Acad Sci U S A 108:15248–15252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cotton S (2006) Coordination chemistry of the actinides. In: Cotton S (ed) Lanthanide and actinide chemistry. Wiley, Chichester, pp 173–199

    Chapter  Google Scholar 

  • DiChristina TJ (1992) Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol 174:1891–1896

    CAS  PubMed Central  PubMed  Google Scholar 

  • Driver CJ (1994) Ecotoxicity literature review of selected Hanford Site contaminants. US Department of Energy, Pacific Northwest Laboratory, PNL-9394, Richland, p 141

    Google Scholar 

  • Fortin C, Denison FH, Garnier-Laplace J (2007) Metal phytoplankton interactions: modelling the effect of competing ions (H+, Ca2+, and Mg 2+) on uranium uptake. Environ Toxicol Chem 26:242–248

    Article  CAS  PubMed  Google Scholar 

  • Fowle DA, Fein JB, Martin AM (2000) Experimental study of uranyl adsorption onto Bacillus subtilis. Environ Sci Technol 34:3737–3741

    Article  CAS  Google Scholar 

  • Frengstad B, Kjersti A, Skrede M, Banks D, Krog JR, Siewers U (2000) The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques. Sci Total Environ 246:21–40

    Article  CAS  PubMed  Google Scholar 

  • Gavrilescu M, Vasile L, Cretescu I (2009) Characterization and remediation of soils contaminated with uranium. J Hazard Mater 163:475–510

    Article  CAS  PubMed  Google Scholar 

  • Geipel G, Brachmann A, Brendler V, Bernhard G, Nitsche H (1996) Uranium (VI) sulfate complexation studied by time resolved laser-induced fluorescence spectroscopy. Radiochim Acta 75:199–204

    CAS  Google Scholar 

  • Gihring TM, Zhang GX, Brandt CC, Brooks SC, Campbell JH, Carroll S, Criddle CS, Green SJ, Jardine P, Kostka JE, Lowe K, Mehlhorn TL, Overholt W, Watson DB, Yang ZM, Wu WM, Schadt CW (2011) A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer. Appl Environ Microbiol 77:5955–5965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Green SJ, Prakash O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D, Tiedje JM, Watson DB, Schadt CW, Brooks SC, Kostka JE (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guillaumont R, Fanghaenel T, Neck V, Fuger J, Palmer DA, Grenthe I, Rand MH (2003) Chemical thermodynamics 5, Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. Elsevier, Amsterdam

    Google Scholar 

  • He Z, Gentry TJ, Schadt CW, Wu L, Liebich J, Chong SC et al (2007) GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J 1:67–77

    Article  CAS  PubMed  Google Scholar 

  • Hennig C, Tutschku J, Rossberg A, Bernhard G, Scheinost AC (2005) Comparative EXAFS investigation of uranium(VI) and -(IV) aquo chloro complexes in solution using a newly developed spectroelectrochemical cell. Inorg Chem 44:6655–6661

    Article  CAS  PubMed  Google Scholar 

  • Hsi CD, Langmuir D (1985) Adsorption of uranyl onto ferric oxyhydroxides. Application of the surface complexation site-binding model. Geochim Cosmochim Acta 49:1931–1941

    Article  CAS  Google Scholar 

  • Hu P, Brodie EL, Suzuki Y, McAdams HH, Andersen GL (2005) Whole-genome transcriptional analysis of heavy metal stresses in Caulobacter crescentus. J Bacteriol 187:8437–8844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Istok JD, Senko JM, Krumholz LR, Watson D, Bogle MA, Peacock A, Chang YJ, White DC (2004) In situ bioreduction of technetium and uranium in a nitrate contaminated aquifer. Environ Sci Technol 38:468–475

    Article  CAS  PubMed  Google Scholar 

  • Karpas Z, Paz-Tal O, Lorber A, Salonen L, Komulainen H, Auvinen A, Saha H, Kurttio P (2005) Urine, hair, and nails as indicators for ingestion of uranium in drinking water. Health Phys 88:229–242

    Article  CAS  PubMed  Google Scholar 

  • Kelly SD, Kemner KM, Fein JB, Fowle DA, Boyanov MI, Bunker BA, Yee N (2002) X-ray absorption fine structure determination of pH-dependent U-bacterial cell wall interactions. Geochim Cosmochim Acta 66:3855–3871

    Article  CAS  Google Scholar 

  • Koban A, Geipel G, Rossberg A, Bernhard G (2004) Uranium(VI) complexes with sugar phosphates in aqueous solution. Radiochim Acta 92:903–908

    Article  CAS  Google Scholar 

  • Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013a) Uranium (U)-tolerant bacterial diversity from U ore deposit of Domiasiat in North-East India and its prospective utilisation in bioremediation. Microbes Environ 28:33–41

    Article  PubMed Central  PubMed  Google Scholar 

  • Kumar R, Nongkhlaw M, Acharya C, Joshi SR (2013b) Soil bacterial metagenomic analysis from uranium ore deposit of Domiasiat in Northeast India. Curr Sci 105:495–498

    CAS  Google Scholar 

  • Kurttio P, Komulainen H, Leino A, Salonen L, Auvinen A, Saha H (2005) Bone as a possible target of chemical toxicity of natural uranium in drinking water. Environ Health Perspect 113:68–72

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Langmuir D (1997) Aqueous geochemistry of uranium. In: McConnin R (ed) Aqueous environmental chemistry. Prentice-Hall, Upper Saddle River, NJ, pp 494–512

    Google Scholar 

  • Lovley DR, Phillips EJP (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54:1472–1480

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lovley DR, Phillips EJP (1992) Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26:2228–2234

    Article  CAS  Google Scholar 

  • Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    Article  CAS  Google Scholar 

  • Lovley DR, Widman PK, Woodward JC, Phillips EJP (1993) Reduction of uranium by cytochrome-c3 of Desulfovibrio vulgaris. Appl Environ Microbiol 59:3572–3576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macaskie LE (1990) An immobilized cell bioprocess for the removal of heavy metals from aqueous flows. J Chem Technol Biotechnol 49:357–379

    Article  CAS  PubMed  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CP, Skarnulis AJ (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  CAS  PubMed  Google Scholar 

  • Madden AS, Swindle AL, Beazley MJ, Moon JW, Ravel B, Phelps TJ (2012) Long term solid-phase fate of co-precipitated U(VI)–Fe(III) following biological iron reduction by Thermoanaerobacter. Am Miner 97:1641–1652

    Article  CAS  Google Scholar 

  • NCRP (National Council on Radiation Protection and Measurements) (1999) Biological effects and exposure limits for “hot particles”. NCRP report no. 130, Bethesda, MD

    Google Scholar 

  • Merroun ML, Selenska-Pobell S (2001) Interactions of three eco-types of Acidithiobacillus ferrooxidans strains with (VI). Biometals 14:171–179

    Article  CAS  PubMed  Google Scholar 

  • Merroun ML, Raff J, Rossberg A, Hennig C, Hennig C, Reich T, Selenska-Pobell S (2005) Complexation of uranium by cells and S-layer sheets of Bacillus sphaericus JG-A12. Appl Environ Microbiol 71:5532–5543

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moll H, Reich T, Hennig C, Rossberg A, Szabo Z, Grenthe I (2000) Solution coordination chemistry of uranium in the binary UO2+–SO4 2– and the ternary UO2 2+ –SO4 2––OH system. Radiochim Acta 88:559–565

    CAS  Google Scholar 

  • Myers CR, Nealson KH (1988) Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321

    Article  CAS  PubMed  Google Scholar 

  • Nyman JL, Wu HI, Gentile ME, Kitanidis PK, Criddle CS (2007) Inhibition of a U(VI)-and sulfate-reducing consortia by U(VI). Environ Sci Technol 41:6528–6533

    Article  CAS  PubMed  Google Scholar 

  • Palmer MR, Edmond JM (1993) Uranium in river water. Geochim Cosmochim Acta 57:4947–4955

    Article  CAS  Google Scholar 

  • Paterson-Beedle M, Jeong BC, Lee CH, Jee KY, Kim WH, Renshaw JC, Macaskie LE (2012) Radiotolerance of phosphatases of a Serratia sp.: potential for the use of this organism in the biomineralization of wastes containing radionuclides. Biotechnol Bioeng 109:1937–1946

    Article  CAS  PubMed  Google Scholar 

  • Priest ND (2001) Toxicity of depleted uranium. Lancet 357:244–246

    Article  CAS  PubMed  Google Scholar 

  • Reeder RJ, Nugent M, Tait CD, Morris DE, Heald SM, Beck KM, Hess WP, Lanzirotti A (2001) Coprecipitation of uranium(VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochim Cosmoschim Acta 65:3491–3503

    Article  CAS  Google Scholar 

  • Renninger N, Knopp R, Nitsche H, Clark D, Keasling J (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruggiero CE, Boukhalfa H, Forsythe JH, Lack JG, Hersman LE, Neu MP (2005) Actinide and metal toxicity to prospective bioremediation bacteria. Environ Microbiol 7:88–97

    Article  CAS  PubMed  Google Scholar 

  • Sandino A, Bruno J (1992) The solubility of (UO2)3(PO4)2⋅4H2O(S) and the formation of U (VI) phosphate complexes: their influence speciation in natural waters. Geochim Cosmochim Acta 56:4135–4145

    Article  CAS  Google Scholar 

  • Scapolan S, Ansoborlo E, Moulin C, Madic C (1998) Uranium (VI)–transferrin system studied by time resolved laser-induced fluorescence. Radiat Prot Dosim 79:505–508

    Article  CAS  Google Scholar 

  • Schiewer S, Volesky B (2000) Biosorption by marine algae. In: Valdes JJ (ed) Remediation. Kluwer, Dordrecht, pp 139–169

    Google Scholar 

  • Senko JM, Kelly SD, Dohnalkova AC, McDonough JT, Kemner KM, Burgos WD (2007) The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV). Geochim Cosmochim Acta 71:4644–4654

    Article  CAS  Google Scholar 

  • Suzuki Y, Banfield JF (1999) Geomicrobiology of uranium. In: Redfern SAT, Carpenter MA (eds) Transformation processes in minerals, Reviews in mineralogy and geochemistry. Mineralogical Society of America, Washington, DC, pp 393–432

    Google Scholar 

  • Suzuki Y, Banfield JF (2004) Resistance to, and accumulation of, uranium by bacteria from a uranium-contaminated site. J Geomicrobiol 21:113–121

    Article  CAS  Google Scholar 

  • Thomas RAP, Macaskie LE (1996) Biodegradation of tributyl phosphate by naturally occurring microbial isolates and coupling to the removal of uranium from aqueous solution. Environ Sci Technol 30:2371–2375

    Article  CAS  Google Scholar 

  • VanEngelen MR, Field EK, Gerlach R, Lee BD, Apel WA, Peyton BM (2010) UO2 2+ speciation determines uranium toxicity and bioaccumulation in an environmental Pseudomonas sp. isolate. Environ Toxicol Chem 29:763–769

    Article  CAS  PubMed  Google Scholar 

  • Van Groenestijn JW, Vlekke GJFM, Anink DME, Deinema MH, Zehnder AJB (1988) Role of cations in accumulation and release of phosphate by Acinetobacter strain 210A. Appl Environ Microbiol 54:2894–2901

    PubMed Central  PubMed  Google Scholar 

  • Van Roy S, Peys K, Dresselaers T, Diels L (1997) The use of an Alcaligenes eutrophus biofilm in a membrane bioreactor for heavy metals recovery. Res Microbiol 148:526–528

    Article  PubMed  Google Scholar 

  • Wade R, DiChristina TJ (2000) Isolation of U (VI) reduction-deficient mutants of Shewanella putrefaciens. FEMS Microbiol Lett 184:143–148

    Article  CAS  PubMed  Google Scholar 

  • Williams KH, Long PE, Davis JA, Wilkins MJ, N’Guessan AL, Steefel CI, Yang L, Newcomer D, Spane FA, Kerkhof LJ, McGuinness L, Dayvault R, Lovley DR (2011) Acetate availability and its influence on sustainable bioremediation of uranium-contaminated groundwater. Geomicrobiol J 28:519–539

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celin Acharya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Acharya, C. (2015). Uranium Bioremediation: Approaches and Challenges. In: Sukla, L., Pradhan, N., Panda, S., Mishra, B. (eds) Environmental Microbial Biotechnology. Soil Biology, vol 45. Springer, Cham. https://doi.org/10.1007/978-3-319-19018-1_7

Download citation

Publish with us

Policies and ethics

Navigation