Tiling \(\mathbb{Z}^{2}\) by a Set of Four Elements

  • Conference paper
Fractal Geometry and Stochastics V

Part of the book series: Progress in Probability ((PRPR,volume 70))

  • 1504 Accesses

Abstract

A finite subset \(\mathcal{D}\) of \(\mathbb{Z}^{2}\) is called a tile of \(\mathbb{Z}^{2}\), if \(\mathbb{Z}^{2}\) can be tiled by disjoint translates of \(\mathcal{D}\). In this note, we give a simple characterization of tiles of \(\mathbb{Z}^{2}\) with cardinality 4.

The first author is supported in part by RGC grants in CUHK (401112, 401013).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Bandt, Self-similar sets. V. Integer matrices and fractal tilings of \(\mathbb{R}^{n}\). Proc. Am. Math. Soc. 112(2), 549–562 (1991)

    Google Scholar 

  2. E. Coven, A. Meyerowitz, Tiling the integers with translates of one finite set. J. Algebra 212, 161–174 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic problem. J. Funct. Anal. 16, 101–121 (1974)

    Article  MathSciNet  Google Scholar 

  4. B. GrĂĽnbaum, G.C. Shephard, Tilings and Patterns. An Introduction. A Series of Books in the Mathematical Sciences (W. H. Freeman, New York, 1989)

    Google Scholar 

  5. R. Kenyon, Self-replicating tilings, in Symbolic Dynamics and Its Applications, ed. by P. Walters (American Mathematical Society, Providence, 1992), pp. 239–264

    Chapter  Google Scholar 

  6. M. Kolountzakis, The study of translation tiling with Fourier analysis, in Fourier Analysis and Convexity, ed. by L. Brandolini et al. Applied and Numerical Harmonic Analysis (Birkhäuser, Boston, 2004), pp. 131–187

    Google Scholar 

  7. M. Kolountzakis, Periodicity of the spectrum of a finite union of intervals. J. Fourier Anal. Appl. 18(1), 21–26 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Lagarias, Y. Wang, Tiling the line with translates of one tile. Invent. Math. 124, 341–365 (1996)

    Article  MathSciNet  Google Scholar 

  9. J. Lagarias, Y. Wang, Integral self-affine tiles in \(\mathbb{R}^{n}\). I. Standard and nonstandard digit sets. J. Lond. Math. Soc. 54(1), 161–179 (1996)

    MathSciNet  Google Scholar 

  10. J. Lagarias, Y. Wang, Self-affine tiles in \(\mathbb{R}^{n}\). Adv. Math. 121(1), 21–49 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Lagarias, Y. Wang, Integral self-affine tiles in \(\mathbb{R}^{n}\). II. Lattice tilings. J. Fourier Anal. Appl. 3(1), 83–102 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. C.K. Lai, K.S. Lau, H. Rao, Spectral structure of digit sets of self-similar tiles on \(\mathbb{R}^{1}\). Trans. Am. Math. Soc. 365(7), 3831–3850 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  13. K.S. Lau, H. Rao, On one-dimensional self-similar tilings and the pq-tilings. Trans. Am. Math. Soc. 355, 1401–1414 (2003)

    Article  MathSciNet  Google Scholar 

  14. D.J. Newman, Tesselation of integers. J. Number Theory 9, 107–111 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. H. Rao, Y.M. Xue, Tiling \(\mathbb{Z}^{2}\) with translations of one set. Discret. Math. Theor. Comput. Sci. 8, 129–140 (2006)

    MATH  MathSciNet  Google Scholar 

  16. A.D. Sands, On Keller’s conjecture for certain cyclic groups. Proc. Edinb. Math. Soc. 22, 17–21 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Szabó, A type of factorization of finite abelian groups. Discret. Math. 54, 121–124 (1985)

    Article  MATH  Google Scholar 

  18. M. Szegedy, Algorithms to tile the infinite grid with finite clusters, in Proceedings of the 39th Annual Symposium on the Foundations of Computer Science, Palo Alto, 1998, pp. 137–145

    Google Scholar 

  19. T. Tao, Fuglede’s conjecture is false in 5 or higher dimensions. Math. Res. Lett. 11, 251–258 (2004)

    Article  MathSciNet  Google Scholar 

  20. R. Tijdeman, Decomposition of the integers as a direct sum of two subsets, in Number Theory, Paris, 1992–1993. London Mathematical Society Lecture Note Series, vol. 215 (Cambridge University Press, Cambridge, 1995), pp. 261–276

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to De-Jun Feng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Feng, DJ., Wang, Y. (2015). Tiling \(\mathbb{Z}^{2}\) by a Set of Four Elements. In: Bandt, C., Falconer, K., Zähle, M. (eds) Fractal Geometry and Stochastics V. Progress in Probability, vol 70. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-18660-3_6

Download citation

Publish with us

Policies and ethics

Navigation