The Minimum Feasible Tileset Problem

  • Conference paper
  • First Online:
Approximation and Online Algorithms (WAOA 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8952))

Included in the following conference series:

  • 686 Accesses

Abstract

We consider the Minimum Feasible Tileset problem: Given a set of symbols and subsets of these symbols (scenarios), find a smallest possible number of pairs of symbols (tiles) such that each scenario can be formed by selecting at most one symbol from each tile. We show that this problem is \(\mathsf {NP}\)-complete even if each scenario contains at most three symbols. Our main result is a 4/3-approximation algorithm for the general case. In addition, we show that the Minimum Feasible Tileset problem is fixed-parameter tractable both when parameterized with the number of scenarios and with the number of symbols.

Y. Disser—Supported by the Alexander von Humboldt-Foundation.

S. Kratsch—Supported by the German Research Foundation (DFG), KR 4286/1.

M. Sorge—Supported by the German Research Foundation (DFG), NI 369/12.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A compression to \(\mathcal {O}(|F|^d)\) size can be achieved by specifying one bit for each possible scenario in \(\mathcal {S} \) and setting it to one if the scenario is present and zero otherwise.

  2. 2.

    Dell and Marx called this problem Perfect \(d\) -Set Matching.

References

  1. Bansal, N., Caprara, A., Sviridenko, M.: A new approximation method for set covering problems, with applications to multidimensional bin packing. SIAM J. Comput. 39(4), 1256–1278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biedl, T., Chan, T., Ganjali, Y., Hajiaghayi, M., Wood, D.: Balanced vertex-orderings of graphs. Discrete Appl. Math. 148(1), 27–48 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buchin, K., van Kreveld, M.J., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, J., Komusiewicz, C., Niedermeier, R., Sorge, M., Suchý, O., Weller, M.: Effective and efficient data reduction for the subset interconnection design problem. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 361–371. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Cygan, M.: Improved approximation for 3-dimensional matching via bounded pathwidth local search. In: Proceedings of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 509–518 (2013)

    Google Scholar 

  6. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 68–81 (2012)

    Google Scholar 

  7. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pp. 251–260 (2010)

    Google Scholar 

  8. Disser, Y., Matuschke, J.: Degree-constrained orientations of embedded graphs. In: Chao, K.-M., Hsu, T., Lee, D.-T. (eds.) ISAAC 2012. LNCS, vol. 7676, pp. 506–516. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Du, D.-Z., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete Math. 1(4), 416–424 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Frank, A., Gyárfás, A.: How to orient the edges of a graph. Colloquia mathematica societatis Janos Bolyai 18, 353–364 (1976)

    Google Scholar 

  11. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial optimization. Combinatorica 7(1), 49–65 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W.H.Freeman and Company, New York (1979)

    MATH  Google Scholar 

  13. Gottlob, G., Greco, G.: On the complexity of combinatorial auctions: structured item graphs and hypertree decomposition. In: Proceedings of the 8th ACM Conference on Electronic Commerce (EC), pp. 152–161 (2007)

    Google Scholar 

  14. Hakimi, S.: On the degrees of the vertices of a directed graph. J. Frankl. Inst. 279(4), 290–308 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  15. Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12, 415–440 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  17. Koutis, I.: Faster algebraic algorithms for path and packing problems. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 575–586. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sviridenko, M., Ward, J.: Large neighborhood local search for the maximum set packing problem. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013, Part I. LNCS, vol. 7965, pp. 792–803. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Sorge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Disser, Y., Kratsch, S., Sorge, M. (2015). The Minimum Feasible Tileset Problem. In: Bampis, E., Svensson, O. (eds) Approximation and Online Algorithms. WAOA 2014. Lecture Notes in Computer Science(), vol 8952. Springer, Cham. https://doi.org/10.1007/978-3-319-18263-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18263-6_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18262-9

  • Online ISBN: 978-3-319-18263-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation