Elements of Informed Consent for Preimplantation Genetic Diagnosis

  • Chapter
Screening the Single Euploid Embryo
  • 658 Accesses

Abstract

Informed consent for preimplantation genetic diagnosis (PGD) is especially complex because it includes several procedures, all of which have risks that must be discussed: PGD involves the creation of embryos by in vitro fertilization (IVF), the biopsy of one or more cells from the early embryo, and the genetic testing of the biopsied cell(s) to determine which embryo(s) to implant into the uterus. This review focuses on the elements of informed consent for the embryo biopsy and genetic testing components of PGD, assuming that informed consent for IVF itself is better understood due to its longer history. To be fully informed about the risks associated with the embryo biopsy, prospective parents should be made aware of the results from mouse and human safety studies. While some of these studies have found the procedure to be safe based on specific outcomes at certain time points, different studies have detected neurological and other abnormalities in embryo-biopsied offspring compared to controls. No long-term studies assessing the safety of the embryo biopsy procedure in humans past the age of 4 have been published. For the genetic testing component of PGD, prospective parents should be aware of the chance of misdiagnosis and the need for additional prenatal testing if they wish to confirm the results of the embryo testing prior to birth. In addition, results of comprehensive genetic testing may reveal unanticipated information about long-term health risks of implanted embryos, potentially compromising the resulting child’s right to an open future. Furthermore, in selecting for a particular trait, prospective parents may inadvertently also be selecting for embryos with an increased risk of an unanticipated disease as a result of linked genes or heterozygote advantage. Finally, prospective parents should be aware of the social implications associated with selecting the characteristics of their offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Munson R. Intervention and reflection: basic issues in bioethics. Boston, MA: Wadsworth Cengage Learning; 2012. p. 915.

    Google Scholar 

  2. Blacksher E, Moreno JD. A history of informed consent in clinical research. In: Emanuel EJ, Grady CC, Crouch RA, Lie RK, Miller FG, Wendler DD, editors. The Oxford textbook of clinical research ethics. New York, NY: Oxford University Press; 2008. p. 591–605.

    Google Scholar 

  3. Capron AM. Legal and regulatory standards of informed consent in research. In: Emanuel EJ, Grady CC, Crouch RA, Lie RK, Miller FG, Wendler DD, editors. The Oxford textbook of clinical research ethics. Oxford: Oxford University Press; 2008. p. 613–32.

    Google Scholar 

  4. McGowan ML, Burant CJ, Moran R, Farrell R. Patient education and informed consent for preimplantation genetic diagnosis: health literacy for genetics and assisted reproductive technology. Genet Med. 2009;11(9):640–5.

    Article  PubMed Central  PubMed  Google Scholar 

  5. LaBonte ML. An analysis of US fertility centre educational materials suggests that informed consent for preimplantation genetic diagnosis may be inadequate. J Med Ethics. 2012;38(8):479–84.

    Article  PubMed  Google Scholar 

  6. Klitzman R, Zolovska B, Folberth W, Sauer MV, Chung W, Appelbaum P. Preimplantation genetic diagnosis on in vitro fertilization clinic websites: presentations of risks, benefits and other information. Fertil Steril. 2009;92(4):1276–83.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Jones KP. Informed consent in advanced reproductive technology. In: Carrell DT, Peterson CM, editors. Reproductive endocrinology and infertility: integrating modern clinical and laboratory practice. New York, NY: Springer; 2010. p. 43–54.

    Chapter  Google Scholar 

  8. Elias S, Annas GJ. Generic consent for genetic screening. N Engl J Med. 1994;330(22):1611–3.

    Article  CAS  PubMed  Google Scholar 

  9. Wilson RF. The death of Jesse Gelsinger: new evidence of the influence of money and prestige in human research. Am J Law Med. 2010;36(2–3):295–325.

    PubMed  Google Scholar 

  10. Wilson JM. Lessons learned from the gene therapy trial for ornithine transcarbamylase deficiency. Mol Genet Metab. 2009;96(4):151–7.

    Article  CAS  PubMed  Google Scholar 

  11. Sugawara A, Ward MA. Biopsy of embryos produced by in vitro fertilization affects development in C57BL/6 mouse strain. Theriogenology. 2013;79(2):234–41.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Verlinsky Y, Ginsberg N, Lifchez A, Valle J, Moise J, Strom CM. Analysis of the first polar body: preconception genetic diagnosis. Hum Reprod. 1990;5(7):826–9.

    CAS  PubMed  Google Scholar 

  13. Collins SC. Preimplantation genetic diagnosis: technical advances and expanding applications. Curr Opin Obstet Gynecol. 2013;25(3):201–6.

    Article  PubMed  Google Scholar 

  14. Moutou C, Goossens V, Coonen E, De Rycke M, Kokkali G, Renwick P, et al. ESHRE PGD consortium data collection XII: cycles from January to December 2009 with pregnancy follow-up to October 2010. Hum Reprod. 2014;29(5):880–903.

    Article  CAS  PubMed  Google Scholar 

  15. Duncan FE, Stein P, Williams CJ, Schultz RM. The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression. Fertil Steril. 2009;91(4 Suppl):1462–5.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Sugawara A, Sato B, Bal E, Collier AC, Ward MA. Blastomere removal from cleavage-stage mouse embryos alters steroid metabolism during pregnancy. Biol Reprod. 2012;87(1):4. 1–9.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Cui KH, Barua R, Matthews CD. Histopathological analysis of mice born following single cell embryo biopsy. Hum Reprod. 1994;9(6):1146–52.

    CAS  PubMed  Google Scholar 

  18. Cui KH, Pannall P, Cates G, Matthews CD. Blood analysis of mice born following single-cell embryo biopsy. Hum Reprod. 1993;8(11):1906–9.

    CAS  PubMed  Google Scholar 

  19. Yu Y, Wu J, Fan Y, Lv Z, Guo X, Zhao C, et al. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol Cell Proteomics. 2009;8(7):1490–500.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Zeng Y, Lv Z, Gu L, Wang L, Zhou Z, Zhu H, et al. Preimplantation genetic diagnosis (PGD) influences adrenal development and response to cold stress in resulting mice. Cell Tissue Res. 2013;354(3):729–41.

    Article  CAS  PubMed  Google Scholar 

  21. Strom CM, Levin R, Strom S, Masciangelo C, Kuliev A, Verlinsky Y. Neonatal outcome of preimplantation genetic diagnosis by polar body removal: the first 109 infants. Pediatrics. 2000;106(4):650–3.

    Article  CAS  PubMed  Google Scholar 

  22. Keymolen K, Goossens V, De Rycke M, Sermon K, Boelaert K, Bonduelle M, et al. Clinical outcome of preimplantation genetic diagnosis for cystic fibrosis: the Brussels’ experience. Eur J Hum Genet. 2007;15(7):752–8.

    Article  CAS  PubMed  Google Scholar 

  23. Thomaidis L, Kitsiou-Tzeli S, Critselis E, Drandakis H, Touliatou V, Mantoudis S, et al. Psychomotor development of children born after preimplantation genetic diagnosis and parental stress evaluation. World J Pediatr. 2012;8(4):309–16.

    Article  PubMed  Google Scholar 

  24. Nekkebroeck J, Bonduelle M, Desmyttere S, Van den Broeck W, Ponjaert-Kristoffersen I. Mental and psychomotor development of 2-year-old children born after preimplantation genetic diagnosis/screening. Hum Reprod. 2008;23(7):1560–6.

    Article  PubMed  Google Scholar 

  25. Nekkebroeck J, Bonduelle M, Desmyttere S, Van den Broeck W, Ponjaert-Kristoffersen I. Socio-emotional and language development of 2-year-old children born after PGD/PGS, and parental well-being. Hum Reprod. 2008;23(8):1849–57.

    Article  PubMed  Google Scholar 

  26. Nekkebroeck J, Van den Broeck W, Desmyttere S, Ponjaert-Kristoffersen I, Bonduelle M. The mental, motor, socio-emotional and language development of 2-year-old twins born after PGD/PGS and parental well-being. Hum Reprod. 2012;27(1):299–301.

    Article  PubMed  Google Scholar 

  27. Desmyttere S, Bonduelle M, Nekkebroeck J, Roelants M, Liebaers I, De Schepper J. Growth and health outcome of 102 2-year-old children conceived after preimplantation genetic diagnosis or screening. Early Hum Dev. 2009;85(12):755–9.

    Article  PubMed  Google Scholar 

  28. Desmyttere S, De Schepper J, Nekkebroeck J, De Vos A, De Rycke M, Staessen C, et al. Two-year auxological and medical outcome of singletons born after embryo biopsy applied in preimplantation genetic diagnosis or preimplantation genetic screening. Hum Reprod. 2009;24(2):470–6.

    Article  PubMed  Google Scholar 

  29. Banerjee I, Shevlin M, Taranissi M, Thornhill A, Abdalla H, Ozturk O, et al. Health of children conceived after preimplantation genetic diagnosis: a preliminary outcome study. Reprod Biomed Online. 2008;16(3):376–81.

    Article  CAS  PubMed  Google Scholar 

  30. Middelburg KJ, Heineman MJ, Haadsma ML, Bos AF, Kok JH, Hadders-Algra M. Neurological condition of infants born after in vitro fertilization with preimplantation genetic screening. Pediatr Res. 2010;67(4):430–4.

    Article  PubMed  Google Scholar 

  31. Beukers F, van der Heide M, Middelburg KJ, Cobben JM, Mastenbroek S, Breur R, et al. Morphologic abnormalities in 2-year-old children born after in vitro fertilization/intracytoplasmic sperm injection with preimplantation genetic screening: follow-up of a randomized controlled trial. Fertil Steril. 2013;99(2):408–13.

    Article  PubMed  Google Scholar 

  32. Middelburg KJ, van der Heide M, Houtzager B, Jongbloed-Pereboom M, Fidler V, Bos AF, et al. Mental, psychomotor, neurologic, and behavioral outcomes of 2-year-old children born after preimplantation genetic screening: follow-up of a randomized controlled trial. Fertil Steril. 2011;96(1):165–9.

    Article  PubMed  Google Scholar 

  33. Seggers J, Haadsma ML, Bastide-van Gemert S, Heineman MJ, Kok JH, Middelburg KJ, et al. Blood pressure and anthropometrics of 4-y-old children born after preimplantation genetic screening: follow-up of a unique, moderately sized, randomized controlled trial. Pediatr Res. 2013;74(5):606–14.

    Article  PubMed  Google Scholar 

  34. Schendelaar P, Middelburg KJ, Bos AF, Heineman MJ, Kok JH, La Bastide-Van GS, et al. The effect of preimplantation genetic screening on neurological, cognitive and behavioural development in 4-year-old children: follow-up of a RCT. Hum Reprod. 2013;28(6):1508–18.

    Article  CAS  PubMed  Google Scholar 

  35. King JS. Duty to the unborn: a response to Smolensky. Hastings Law J. 2008;60:377–96.

    Google Scholar 

  36. Mastenbroek S, Twisk M, van der Veen F, Rep** S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17(4):454–66.

    Article  CAS  PubMed  Google Scholar 

  37. Haapaniemi Kouru K, Malmgren H, Nordenskjold M, Fridstrom M, Csemiczky G, Blennow E. One-cell biopsy significantly improves the outcome of preimplantation genetic diagnosis (PGD) treatment: retrospective analysis of 569 PGD cycles at the Stockholm PGD centre. Hum Reprod. 2012;27(9):2843–9.

    Article  CAS  PubMed  Google Scholar 

  38. Wilton L, Thornhill A, Traeger-Synodinos J, Sermon KD, Harper JC. The causes of misdiagnosis and adverse outcomes in PGD. Hum Reprod. 2009;24(5):1221–8.

    Article  CAS  PubMed  Google Scholar 

  39. Dreesen J, Destouni A, Kourlaba G, Degn B, Mette WC, Carvalho F, et al. Evaluation of PCR-based preimplantation genetic diagnosis applied to monogenic diseases: a collaborative ESHRE PGD consortium study. Eur J Hum Genet. 2014;22(8):1012–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Amagwula T, Chang PL, Hossain A, Tyner J, Rivers AL, Phelps JY. Preimplantation genetic diagnosis: a systematic review of litigation in the face of new technology. Fertil Steril. 2012;98(5):1277–82.

    Article  PubMed  Google Scholar 

  41. Practice Committee of Society for Assisted Reproductive T, Practice Committee of American Society for Reproductive M. Preimplantation genetic testing: a practice committee opinion. Fertil Steril. 2008;90(5 Suppl):S136–43.

    Google Scholar 

  42. Hens K, Dondorp W, Handyside AH, Harper J, Newson AJ, Pennings G, et al. Dynamics and ethics of comprehensive preimplantation genetic testing: a review of the challenges. Hum Reprod Update. 2013;19(4):366–75.

    Article  PubMed  Google Scholar 

  43. Manson NaONO. Rethinking informed consent in bioethics. Cambridge: Cambridge University Press; 2007.

    Book  Google Scholar 

  44. de Jong A, Dondorp WJ, Frints SG, de Die-Smulders CE, de Wert GM. Advances in prenatal screening: the ethical dimension. Nat Rev Genet. 2011;12(9):657–63.

    Article  PubMed  Google Scholar 

  45. Dondorp W, Sikkema-Raddatz B, de Die-Smulders C, de Wert G. Arrays in postnatal and prenatal diagnosis: an exploration of the ethics of consent. Hum Mutat. 2012;33(6):916–22.

    Article  PubMed  Google Scholar 

  46. Riggs ER, Church DM, Hanson K, Horner VL, Kaminsky EB, Kuhn RM, et al. Towards an evidence-based process for the clinical interpretation of copy number variation. Clin Genet. 2012;81(5):403–12.

    Article  CAS  PubMed  Google Scholar 

  47. Winand R, Hens K, Dondorp W, de Wert G, Moreau Y, Vermeesch JR, et al. In vitro screening of embryos by whole-genome sequencing: now, in the future or never? Hum Reprod. 2014;29(4):842–51.

    Article  PubMed  Google Scholar 

  48. Cooper DN, Krawczak M, Polychronakos C, Tyler-Smith C, Kehrer-Sawatzki H. Where genotype is not predictive of phenotype: towards an understanding of the molecular basis of reduced penetrance in human inherited disease. Hum Genet. 2013;132(10):1077–130.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Bunnik EM, Janssens AC, Schermer MH. Informed consent in direct-to-consumer personal genome testing: the outline of a model between specific and generic consent. Bioethics. 2014;28(7):343–51.

    Article  PubMed  Google Scholar 

  50. Netzer C, Klein C, Kohlhase J, Kubisch C. New challenges for informed consent through whole genome array testing. J Med Genet. 2009;46(7):495–6.

    Article  CAS  PubMed  Google Scholar 

  51. Mand C, Gillam L, Delatycki MB, Duncan RE. Predictive genetic testing in minors for late-onset conditions: a chronological and analytical review of the ethical arguments. J Med Ethics. 2012;38(9):519–24.

    Article  PubMed  Google Scholar 

  52. Dean M, Carrington M, O’Brien SJ. Balanced polymorphism selected by genetic versus infectious human disease. Annu Rev Genomics Hum Genet. 2002;3:263–92.

    Article  CAS  PubMed  Google Scholar 

  53. Frenette PS, Atweh GF. Sickle cell disease: old discoveries, new concepts, and future promise. J Clin Invest. 2007;117(4):850–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Bunn HF. The triumph of good over evil: protection by the sickle gene against malaria. Blood. 2013;121(1):20–5.

    Article  CAS  PubMed  Google Scholar 

  55. Allison AC. Protection afforded by sickle-cell trait against subtertian malarial infection. Br Med J. 1954;1(4857):290–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Miller PS, Levine RL. Avoiding genetic genocide: understanding good intentions and eugenics in the complex dialogue between the medical and disability communities. Genet Med. 2013;15(2):95–102.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Sandel MJ. The case against perfection: ethics in the age of genetic engineering. Cambridge, MA: The Belknap Press of Harvard University Press; 2009. p. 176.

    Google Scholar 

  58. Reilly PR. Commentary: the federal ‘Prenatally and postnatally diagnosed conditions awareness act’. Prenat Diagn. 2009;29(9):829–32.

    Article  PubMed  Google Scholar 

  59. Hvistendahl M. Unnatural selection: choosing boys over girls, and the consequences of a world full of men. New York, NY: Public Affairs; 2011. p. 336.

    Google Scholar 

  60. King JS. Predicting probability: regulating the future of preimplantation genetic screening. Yale J Health Policy Law Ethics. 2008;8(2):283–358.

    PubMed  Google Scholar 

  61. Milachich T. New advances of preimplantation and prenatal genetic screening and noninvasive testing as a potential predictor of health status of babies. Biomed Research Int. 2014;2014:306505.

    Article  Google Scholar 

  62. Palini S, Galluzzi L, De Stefani S, Bianchi M, Wells D, Magnani M, et al. Genomic DNA in human blastocoele fluid. Reprod Biomed Online. 2013;26(6):603–10.

    Article  CAS  PubMed  Google Scholar 

  63. Cohen J, Grudzinskas G, Johnson MH. Embryonic DNA sampling without biopsy: the beginnings of non-invasive PGD? Reprod Biomed Online. 2013;26(6):520–1.

    Article  CAS  PubMed  Google Scholar 

  64. Winter C, Van Acker F, Bonduelle M, Desmyttere S, De Schrijver F, Nekkebroeck J. Cognitive and psychomotor development of 5- to 6-year-old singletons born after PGD: a prospective case-controlled matched study. Hum Reprod. 2014;29(9):1968–77.

    Google Scholar 

  65. Sacks GC, Altarescu G, Guedalia J, Varshaver R, Gilboa T, Levy-Lahad E, Eldar-Geva T. Developmental neuropsychological assessment of 4- to 5-year-old children born following Preimplantation Genetic Diagnosis (PGD): A pilot study. Child Neuropsychology. 2015;1–14.

    Google Scholar 

Download references

Note Added in Proof

While this chapter was in production, Winter and colleagues reported no significant differences in measured cognitive and psychomotor outcomes in 5 and 6 year old Caucasian PGD singletons. In addition, Sacks and colleagues reported on neuropsychological findings of a pilot study of 4 and 5 year old PGD children [64, 65]

Acknowledgment I would like to thank Jason LaBonte for helpful suggestions on an earlier draft of this manuscript.

Conflict of Interest The author declares no confl ict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Lynne LaBonte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

LaBonte, M.L. (2015). Elements of Informed Consent for Preimplantation Genetic Diagnosis. In: Sills, E. (eds) Screening the Single Euploid Embryo. Springer, Cham. https://doi.org/10.1007/978-3-319-16892-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16892-0_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16891-3

  • Online ISBN: 978-3-319-16892-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation