Operational Modal Parameter Estimation from Short-Time Data Series

  • Conference paper
Topics in Modal Analysis, Volume 10

Abstract

The field of Operational Modal Analysis (OMA) has recently become an emerging research interest. OMA, also known as Response-Only Modal Analysis, extracts the modal parameters by processing only the system response data. In many experimental measurement situations, the system’s output data series is short in length and buried under potentially correlated noise. In such cases, the separation of the noise from true data is challenging, generally resulting in inconsistent modal parameter estimates. For many of these measurement situations, it is believed that the correlated noise is a function of the system’s operation and that a linear Auto-Regressive with eXogenous input (ARX) model exists that should describe the true system output. In this paper, a Nonlinear Auto-Regressive with eXogenous input (NARX) model based approach for estimating modal parameters from short output time series data is explored. In this approach, nonlinear terms are added to a linear ARX model to describe the noise and essentially filter out the system’s true output data from the noisy time data series.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Phillips AW, Allemang RJ, Zucker AT (1998) An overview of MIMO-FRF excitation/averaging techniques. In: Proceedings of ISMA international conference on noise and vibration engineering, Katholieke Universiteit Leuven

    Google Scholar 

  2. Chauhan S (2008) Parameter estimation and signal processing techniques for operational modal analysis. Ph.D. dissertation, Department of Mechanical Engineering, University of Cincinnati

    Google Scholar 

  3. Ibrahim SR (1977) The use of random decrement technique for identification of structural modes of vibration. AIAA paper number 77-368

    Google Scholar 

  4. James GH, Carne TG, Lauffer JP (1995) The natural excitation technique (NExT) for modal parameter extraction from operating structures. Modal Anal Int J Anal Exp Modal Anal 10:260–277

    Google Scholar 

  5. Ljung L (1999) System identification: theory for the user, 2nd edn. Prentice-Hall, Upper Saddle River

    Google Scholar 

  6. Peeters B, De Roeck G (2001) Stochastic system identification for operational modal analysis: a review. ASME J Dyn Syst Meas Control 123

    Google Scholar 

  7. Brown DL, Allemang RJ, Zimmerman RJ, Mergeay M (1979) Parameter estimation techniques for modal analysis. SAE paper 790221

    Google Scholar 

  8. Ibrahim SR, Mikulcik EC (1977) A method for direct identification of vibration parameters from the free response. Shock Vib Bull 47(4):183–198

    Google Scholar 

  9. Vold H, Rocklin T (1982) The numerical implementation of a multi-input modal estimation algorithm for mini-computers. In: Proceedings of the 1st IMAC, Orlando

    Google Scholar 

  10. Juang JN, Pappa RS (1985) An eigensystem realization algorithm for modal parameter identification and model reduction. AIAA J Guid Control Dyn 8(4):620–627

    Article  MATH  Google Scholar 

  11. Richardson M, Formenti D (1982) Parameter estimation from frequency response measurements using rational fraction polynomials. In: Proceedings of the 1st IMAC, Orlando

    Google Scholar 

  12. Allemang RJ, Brown DL (2006) A complete review of the complex mode indicator function (CMIF) with applications. In: Proceedings of ISMA international conference on noise and vibration engineering, Katholieke Universiteit Leuven

    Google Scholar 

  13. Phillips AW, Allemang RJ, Fladung WA (1998) The complex mode indicator function (CMIF) as a parameter estimation method. In: Proceedings of the 16th IMAC, Santa Barbara

    Google Scholar 

  14. Fladung WA (2001) A generalized residuals model for the unified matrix polynomial approach to frequency domain modal parameter estimation. Ph.D. dissertation, Department of Mechanical Engineering, University of Cincinnati

    Google Scholar 

  15. Brincker R, Zhang L, Andersen P (2000) Modal identification from ambient responses using frequency domain decomposition. In: Proceedings of the 18th IMAC, San Antonio

    Google Scholar 

  16. Brincker R, Ventura C, Andersen P (2000) Dam** estimation by frequency domain decomposition. In: Proceedings of the 18th IMAC, San Antonio

    Google Scholar 

  17. Allemang RJ, Brown DL (1998) A unified matrix polynomial approach to modal identification. J Sound Vib 211(3):301–322

    Article  MATH  Google Scholar 

  18. Allemang RJ, Phillips AW (2004) The unified matrix polynomial approach to understanding modal parameter estimation: an update. In: Proceedings of ISMA international conference on noise and vibration engineering, Katholieke Universiteit, Leuven

    Google Scholar 

  19. Chauhan S, Martell R, Allemang RJ, Brown DL (2006) Utilization of traditional modal analysis algorithms for ambient testing. In: Proceedings of the 23rd IMAC, Orlando

    Google Scholar 

  20. Martell R (2010) Investigation of operational modal analysis dam** estimates. M.S. thesis, Department of Mechanical Engineering, University of Cincinnati

    Google Scholar 

  21. Vecchio A, Peeters B, Van der Auweraer H (2002) Application of advanced parameter estimators to the analysis of in-flight measured data. In: Proceedings of the 20th IMAC, Los Angeles

    Google Scholar 

  22. Dimitridis G (2001) Investigation of nonlinear aeroelastic systems. Ph.D. thesis, Department of Aerospace Engineering, University of Manchester

    Google Scholar 

  23. Kukreja SL (2008) Non-linear system identification for aeroelastic systems with application to experimental data. AIAA 7392

    Google Scholar 

  24. Leontaritis IJ, Billings SA (1985) Input output parameter models for nonlinear systems. Part 1: deterministic non-linear systems, Part 2: stochastic non-linear systems. Int J Control 41:303–344

    Article  MATH  MathSciNet  Google Scholar 

  25. Billings SA, Chen S (1989) Extended model set, global data and threshold model identification of severely nonlinear systems. Int J Control 50:1897–1923

    Article  MATH  Google Scholar 

  26. Billings SA, Coca D (2002) Identification of NARMAX and related models. UNESCO encyclopedia of life support systems, Chapter 10.3, 1–11. http://www.eolss.net

  27. Chen S, Billings SA (1989) Representations of nonlinear systems: the NARMAX models. Int J Control 49:1013–1032

    Article  MATH  MathSciNet  Google Scholar 

  28. Haber R, Keviczky L (1976) Identification of nonlinear dynamic systems. In: Proceedings of the 4th IFAC symposium on identification and system parameter estimation, Tbilisi, USSR, pp 79–126

    Google Scholar 

  29. Billings SA, Leontaritis IJ (1982) Parameter estimation techniques for nonlinear systems. In: Proceedings of the 6th IFAC symposium on identification and system parameter estimation, Washington, DC, pp 427–432

    Google Scholar 

  30. Billings SA (1989) Identification of nonlinear systems – a survey. IEEE Proc Part D 127:272–285

    Article  MathSciNet  Google Scholar 

  31. Korenberg MJ (1985) Orthogonal identification of nonlinear difference equation models. In: Proceedings of Midwest symposium on circuit and systems, Louisville, KY, pp 90–95

    Google Scholar 

  32. Korenberg MJ (1987) Fast orthogonal identification of nonlinear difference equation and functional expansion models. In: Proceedings of Midwest symposium on circuit and systems, Syracuse, NY, pp 270–276

    Google Scholar 

  33. Korenberg MJ (1989) A robust orthogonal algorithm for system identification and time-series analysis. J Biol Cybern 60:267–276

    Article  MATH  MathSciNet  Google Scholar 

  34. Billings SA, Chen S, Korenberg MJ (1988) Identification of MIMO non-linear systems using a forward-regression orthogonal estimator. Int J Control 50:2157–2189

    MathSciNet  Google Scholar 

  35. Li K, Peng J, Irwin GW (2005) A fast nonlinear model identification method. IEEE Trans Autom Control 50(8):1211–1216

    Article  MathSciNet  Google Scholar 

  36. Li K, Peng J, Bai E (2006) A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 42:1189–1197

    Article  MATH  MathSciNet  Google Scholar 

  37. Akaike H (1974) A new look at the statistical model identification. J R Stat Soc Ser B 36:117–147

    Google Scholar 

  38. Kass R, Raftery A (1995) Bayes factors. J Am Stat Assoc 90:773–795

    Article  MATH  Google Scholar 

  39. Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6:461–464

    Article  MATH  Google Scholar 

  40. Burnham KP, Anderson DR (2004) Multimodel inference: understanding AIC and BIC in model selection. Sociol Methods Res 33:261–304

    Article  MathSciNet  Google Scholar 

  41. Cavanaugh JE (2009) 171:290 model selection, lecture VI: the Bayesian information criterion. Department of Biostatistics, Department of Statistics and Actuarial Science, University of Iowa

    Google Scholar 

  42. Haykin SS (2002) Adaptive filter theory (4th illustrated edn). Prentice Hall, Englewood Cliffs

    Google Scholar 

  43. Cavanaugh JE, Neath AA (2012) The Bayesian information criterion: background, derivation and applications. WIREs Comput Stat 4:199–203

    Article  Google Scholar 

  44. Hu S (2007) Akaike information criterion. Retrieved Oct 2013, from North Carolina State University: http://bit.ly/OEM2B9

  45. Phillips AW, Allemang RJ, Brown DL (2011) Autonomous modal parameter estimation: a. Methodology. b. Statistical considerations. c. Application examples. In: Modal analysis topics, vol 3. Springer, New York, pp 363–428

    Google Scholar 

  46. Allemang RJ (2008) Vibrations: experimental modal analysis. Lecture notes, UC-SDRL-CN-20-263-663/664, University of Cincinnati

    Google Scholar 

  47. Arora R (2014) Operational modal parameter estimation from short time-data series. M.S. thesis, Department of Mechanical and Material Engineering, University of Cincinnati

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of The Boeing Company for a portion of this work which has resulted in one Master’s Thesis [47].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Phillips .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Arora, R., Phillips, A., Allemang, R. (2015). Operational Modal Parameter Estimation from Short-Time Data Series. In: Mains, M. (eds) Topics in Modal Analysis, Volume 10. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-15251-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15251-6_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15250-9

  • Online ISBN: 978-3-319-15251-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation