Lunar Rocks

  • Reference work entry
  • First Online:
Encyclopedia of Lunar Science
  • 43 Accesses

Synonyms

Breccias; Crustal rocks; Mantle rocks; Pristine rocks

Definition

Lunar rocks: Aggregates of minerals and glasses that are naturally formed, relatively hard, and constitute part of the lunar crust and mantle.

Theory and Application

Lunar rocks provide important lines of evidence for lunar evolution and magmatism and have important implications for disclosing the roles of lunar volcanism and impact cratering. Lunar rocks found so far primarily involve crustal rocks and mantle rocks (Wieczorek et al. 2006a). According to the major mineral components, trace-element signatures and isotopic characteristics, there are primarily five crustal rock types: ferroan anorthosite (or ferroan anorthositic suite), magnesian intrusive suite, alkali intrusive suite, KREEP basalt, and polymict breccia (Warren 1993; Wieczorek et al. 2006a). The four rock suites, ferroan anorthositic suite, magnesian suite, alkali suite, and KREEP basalts, are pristine igneous rocks, and polymict breccias are the...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 641.99
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 675.99
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonenko I, Head JW, Mustard JF et al (1995) Criteria for the detection of lunar cryptomaria. Earth Moon Planet 69:141–172

    Article  ADS  Google Scholar 

  • Borg LE, Connelly JN, Boyet M et al (2011) Evidence that the moon is either young or did not have a global magma ocean. Nature 477:70–72

    Article  ADS  Google Scholar 

  • Braden SE, Stopar JD, Robinson MS et al (2014) Evidence for basaltic volcanism on the moon within the past 100 million years. Nat Geosci 7:787–791

    Article  ADS  Google Scholar 

  • Cahill JTS, Lucey PG, Wieczorek MA (2009) Compositional variations of the lunar crust: results from radiative transfer modeling of central peak spectra. J Geophys Res 114:E09001

    Article  ADS  Google Scholar 

  • Collareta A, D’Orazio M, Gemelli M et al (2016) High crustal diversity preserved in the lunar meteorite Mount DeWitt 12007 (Victoria Land, Antarctica). Meteorit Planet Sci 51(2):351–371

    Article  ADS  Google Scholar 

  • Dasch EJ, Shih C-Y, Bansal BM et al (1987) Isotopic analysis of basaltic fragments from lunar breccia 14321—chronology and petrogenesis of pre-imbrium mare volcanism. Geochim Cosmochim Acta 51:3241–3254

    Article  ADS  Google Scholar 

  • Dhingra D, Pieters CM, Boardman JW et al (2011) Compositional diversity at Theophilus crater: understanding the geological context of Mg-spinel bearing central peaks. Geophys Res Lett 38:L11201

    Article  ADS  Google Scholar 

  • Difrancesco NJ, Nekvasil H, Lindsley DH et al (2015) Low pressure crystallization of a volatile-rich lunar basalt: a means for producing local anorthosite? Am Mineral 100:983–990

    Article  ADS  Google Scholar 

  • Fa W, Zhu M-H, Liu T et al (2015) Regolith stratigraphy at the Chang’E-3 landing site as seen by lunar penetrating radar. Geophys Res Lett 42:10179–10187

    Article  ADS  Google Scholar 

  • Fagan AL (2016) Volcanic processes on the moon. In: Cudnik B (ed) Encyclopedia of lunar science. Springer International Publishing. https://doi.org/10.1007/978-3-319-05546-6_1-2

  • Gladman B, Burns J (1996) The delivery of Martian and lunar meteorites to earth. Bull Am Astron Soc 28:1054

    Google Scholar 

  • Gross J, Treiman AH, Mercer CN (2014) Lunar feldspathic meteorites: constraints on the geology of the lunar highlands, and the origin of the lunar crust. Earth Planet Sci Lett 388:318–328

    Article  ADS  Google Scholar 

  • Hallis LJ, Anand M, Strekoptov S (2014) Trace-element modelling of mare basalt parental melts: implications for a heterogeneous lunar mantle. Geochim Cosmochim Acta 134:289–316

    Article  ADS  Google Scholar 

  • Head JW, Wilson L (1992) Lunar mare volcanism: stratigraphy, eruption conditions, and the evolution of secondary crusts. Geochim Cosmochim Acta 56:2155–2175

    Google Scholar 

  • Hiesinger H (2014) Lunar mare basalts, stratigraphy of. In: Cudnik B (ed) Encyclopedia of lunar science. Springer International Publishing. https://doi.org/10.1007/978-3-319-05546-6_9-1

  • Hiesinger H, Head JW, Wolf U et al (2003) Ages and stratigraphy of mare basalts in Oceanus Procellarum, Mare Numbium, Mare Cognitum, and Mare Insularum. J Geophys Res 108:5065

    Article  Google Scholar 

  • James OB, Lindstrom MM, Flohr MK (1987) Petrology and geochemistry of alkali gabbronorites from lunar breccia 67975. Proc 17th Lunar Planet Sci Conf J Geophys Res 92:E314–E330

    Article  Google Scholar 

  • Jolliff BL, Gillis JJ, Haskin LA et al (2000) Major lunar crustal terranes: surface expression and crust-mantle origins. J Geophys Res 105(E2):4,197–4,216

    Article  ADS  Google Scholar 

  • Klima RL, Pieters CM, Boardman JW et al (2011) New insights into lunar petrology: distribution and composition of prominent low-Ca pyroxene exposures as observed by the moon mineralogy mapper (M3). J Geophys Res 116:E00G06

    Article  Google Scholar 

  • Korotev RL (2005) Lunar geochemistry as told by lunar meteorites. Chem Erde 65:297–346

    Article  Google Scholar 

  • Korotev RL (2015a) Lunar meteorites. Washington University in St. Louis. Available via: http://meteorites.wustl.edu/lunar/moon_meteorites.htm. Accessed Apr 2015

  • Korotev RL (2015b) List of lunar meteorites. Washington University in St. Louis. Available via: http://meteorites.wustl.edu/lunar/moon_meteorites_list_alumina.htm. Accessed July 2015

  • Lindstrom MM, Knapp SA, Shervais JW et al (1984) Magnesian anorthosites and associated troctolites and dunite in Apollo 14 breccias. J Geophys Res 89(Suppl 1(B)):C41–C49

    Article  Google Scholar 

  • Ling Z, Jolliff BL, Wang A et al (2015) Correlated compositional and mineralogical investigations at the Chang’e-3 landing site. Nat Commun 6:8880

    Article  ADS  Google Scholar 

  • Liu D, Jollif BL, Zeigler RA (2012) Comparative zircon U-Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact. Earth Planet Sc Lett 319–320:277–286

    Article  ADS  Google Scholar 

  • Lucey P, Korotev RL, Gillis JJ et al (2006) Understanding the lunar surface and space-moon interactions. Rev Mineral Geochem 60:83–219

    Article  Google Scholar 

  • McCallum IS, Schwartz JM (2001) Lunar Mg-suite: thermobarometry and petrogenesis of parental magmas. J Geophys Res 106(E11):27,969–27,983

    Article  ADS  Google Scholar 

  • Meyer C (2003) Lunar breccia. In: NASA lunar petrographic educational thin section set. pp 38–40. https://curator.jsc.nasa.gov/lunar/letss/75081.pdf

  • Meyer C Jr, Williams IS, Compston W (1989) Uranium-lead ages for lunar zircons: evidence for prolonged period of granophyre formation from 4.32 to 3.88 Ga. Meteorit Planet Sci 31:379–387

    Google Scholar 

  • Neal CR, Taylor LA (1992) Petrogenesis of mare basalts: a record of lunar volcanism. Geochim Cosmochim Acta 56:2,177–2,211

    Article  Google Scholar 

  • Nemchin AA, Pidgeon RT, Whitehouse MJ et al (2008) SIMS U-Pb study of zircon from Apollo 14 and 17 breccias: implications for the evolution of lunar KREEP. Geochim Cosmochim Acta 72:668–689

    Article  ADS  Google Scholar 

  • Norman MD, Borg LE, Nyquist LE, Bogard DD (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteorit Planet Sci 38:645–661

    Article  ADS  Google Scholar 

  • Nyquist LE, Shih C-Y (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56:2,213–2,234

    Article  Google Scholar 

  • Pieters CM, Besse S, Boardman J et al (2011) Mg-spinel lithology: a new rock type on the lunar farside. J Geophys Res 116:E00G08

    Article  Google Scholar 

  • Pieters CM, Hanna KD, Cheek L et al (2014) The distribution of Mg-spinel acorss the Moon and constraints on crustal origin. Am Mineral 99:1893–1910

    Google Scholar 

  • Prissel TC, Parman SW, Jackson CRM et al (2014) Pink moon: the petrogenesis of pink spinel anorthosites and implications concerning Mg-suite magmatism. Earth Planet Sci Lett 403:144–156

    Article  ADS  Google Scholar 

  • Shearer CK, Hess PC, Wiezorek MA et al (2006) Thermal and magmatic evolution of the moon. Rev Mineral Geochem 60:365–518

    Article  Google Scholar 

  • Shearer CK, Burger PV, Guan Y et al (2012) Origin of sulfide replacement textures in lunar breccias. Implications for vapor element transport in the lunar crust. Geochim Cosmochim Acta 83:138–158

    Article  ADS  Google Scholar 

  • Shearer CK, Elardo SM, Petro NE et al (2015) Origin of the lunar highlands Mg-suite: an integrated petrology, geochemistry, chronology, and remote sensing perspective. Am Mineral 100:294–325

    Article  ADS  Google Scholar 

  • Snape JF, Joy KH, Crawford IA (2011) Characterization of multiple lithologies within the lunar feldspathic regolith breccia meteorite Northeast Africa 001. Meteorit Planet Sci 46(9):1288–1312

    Article  ADS  Google Scholar 

  • Snyder GA, Neal CR, Taylor LA et al (1995) Processes involved in the formation of magnesian-suite plutonic rocks from the highlands of the Earth’s moon. J Geophys Res: Planets 100(E5):9,365–9,388

    Article  Google Scholar 

  • Sokol AK, Fernandes VA, Schulz T et al (2008) Geochemistry, petrology and ages of the lunar meteorites Kalahari 008 and 009: new constraints on early lunar evolution. Geochim Cosmochim Ac 72:4845–4873

    Article  ADS  Google Scholar 

  • Stöffler D, Knoll HD, Marvin UB et al (1980) Recommended classification and nomenclature of lunar highland rock—committee report. In: Papike JJ, Merrill RB (eds) Proc Conf Lunar Highland Crust. Houston, Tex, USA, Pergamon Press, pp 51–70

    Google Scholar 

  • Stöffler D, Ryder G, Ivanov BA et al (2006) Cratering history and lunar chronology. Rev Mineral Geochem 60:519–596

    Article  Google Scholar 

  • Sun Y (2016) Lunar primitive crust, evolution of. In: Cudnik B (ed) Encyclopedia of lunar science. Springer International Publishing. https://doi.org/10.1007/978-3-319-05546-6_41-1

  • Taylor GJ (2009) Ancient lunar crust: origin, composition, and implications. Elements 5:17–22

    Article  Google Scholar 

  • Taylor LA, Shervais JW, Hunter RH et al (1983) Pre-4.2 AE mare-basalt volcanism in the lunar highlands. Earth Planet Sci Lett 66:33–47

    Article  ADS  Google Scholar 

  • Taylor GJ, Warren P, Ryder G et al (1991) Lunar rocks. In: Heiken GH, Vaniman DT, French BM (eds) Lunar sourcebook: a user’s guide to the moon. Cambridge University Press, New York, pp 183–284

    Google Scholar 

  • Taylor GJ, Martel LMV, Spudis PD (2012) The Hadley-Apennine KREEP basalt igneous province. Meteorit Planet Sci 47(5):861–879

    Article  ADS  Google Scholar 

  • Terada K, Anand M, Sokol AK et al (2007) Cryptomare magmatism 4.35 Gyr ago recoreded in lunar meteorite Kalahari 009. Nature 450:849–853

    Article  ADS  Google Scholar 

  • Trang D, Gillis-Davis JJ, Lemelin M et al (2017) The compositional and physical properties of localized lunar pyroclastic deposits. Icarus 283:232–253

    Article  ADS  Google Scholar 

  • Treiman AH, Maloy AK, Shearer CK et al (2010) Magnesian anorthositic granulites in lunar meteorites Allan Hills A81005 and Dhofar 309: geochemistry and global significance. Meteorit Planet Sci 45:163–180

    Article  ADS  Google Scholar 

  • Varatharajan I, Srivastava N, Murty SVS (2014) Mineralogy of young lunar mare basalts: assessment of temporal and spatial heterogeneity using M3 data from Chandrayaan-1. Icarus 236:56–71

    Article  ADS  Google Scholar 

  • Wang X, Pedrycz W (2015) Petrologic characteristics of the lunar surface. Sci Rep 5:17075

    Article  ADS  Google Scholar 

  • Wang X, Zhang X, Wu K (2016) Thorium distribution on the lunar surface observed by Chang’E-2 gamma-ray spectrometer. Astrophys Space Sci 361(7):1–11

    Article  Google Scholar 

  • Warren PH (1985) The magma ocean concept and lunar evolution. Ann Rev Earth Planet Sci 13:201–240

    Article  ADS  Google Scholar 

  • Warren PH (1993) A concise compilation of petrologic information on possibly pristine nonmare moon rocks. Am Mineral 78:360–376

    ADS  Google Scholar 

  • Warren PH, Wasson JT (1979) The origin of KREEP. Rev Geophys Space Phys 17(1):73–88

    Article  ADS  Google Scholar 

  • Whitten JL, Head JW (2015) Lunar cryptomaria: physical characteristics distribution, and implications for ancient volcanism. Icarus 247:150–171

    Article  ADS  Google Scholar 

  • Wieczorek MA, Phillips RJ (2000) The “Procellarum KREEP Terrane”: Implications for mare volcanism and lunar evolution. J Geophys Res 105(E8): 20417–20430.

    Google Scholar 

  • Wieczorek MA, Jolliff BL, Khan A et al (2006a) The constitution and structure of the lunar interior. Rev Mineral Geochem 60:221–364

    Article  Google Scholar 

  • Wieczorek MA, Jolliff BL, Khan A et al (2006b) Supplemental data for new views of the moon. In: New views of the moon, vol 60. Mineralogical Society of America. Available via: http://www.minsocam.org/msa/rim/Rim60.html. Accessed June 2006

  • **ao L, Zhu PM, Fang GY et al (2015) A young multilayered terrane of the northern Mare Imbrium revealed by Chang’E-3 mission. Science 347(6227):1226–1229

    Article  ADS  Google Scholar 

  • **ao L, Qiao L, **ao ZY (2016) Major Scientific objectives and candidate landing sites suggested for future lunar explorations (in Chinese). Sci Sin-Phys Mech Astron, 46:029602

    Google Scholar 

  • Yamamoto S, Nakamura R, Matsunaga T et al (2012) Massive layer of pure anorthosite on the moon. Geophys Res Lett 39:L13201

    Article  ADS  Google Scholar 

  • Zhang J, Yang W, Hu S et al (2015) Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu. Proc Nat Acad Sci USA 112(17):5342–5347

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **anmin Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Wang, X., Wu, K. (2023). Lunar Rocks. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-14541-9_56

Download citation

Publish with us

Policies and ethics

Navigation