Scaling-Up Recombinant Enzyme Fermentation

  • Chapter
  • First Online:
Recombinant Enzymes - From Basic Science to Commercialization

Abstract

Bioreactor or fermenter is the heart of a process. Scaling up a bioreactor and maintaining the same optimized process in a recombinant enzyme production in a higher scale is an engineering challenge. Scale-up is about mixing and mass transfer, a combination of art and science. It is more to methodological approach with some combination of rules of thumb, experience and/or trial and error. This chapter presented several bioreactor or fermenter modes and types before encompasses four different scale-up strategies. The scale-up strategies related to mass transfer involving constants scale-up of; (i)volumetric transfer coefficient (KLa), (ii) power input per liquid volume (P/V), (iii) impeller tip speed (Vi), and (iv) mixing time (t m) are described and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Junker BH (2004) Scale-up methodologies for Escherichia coli and yeast fermentation processes. J Biosci Bioeng 97:347–364

    Article  CAS  PubMed  Google Scholar 

  2. Papagianni M (2011) Methodologies for scale-down of microbial bioprocess. Microb Biochem Technol 2011:1–7

    Google Scholar 

  3. Präve PFU, Sittig W, Sukatsch DA (1987) Fundamentals of biotechnology. VCH Publisher, New York

    Google Scholar 

  4. Smith R (2005) Chemical process design and integration. Wiley, England

    Google Scholar 

  5. Godoy A, Amorim HV, Lopes ML, Oliviera AJ (2008) Continuous and batch fermentation processes: advantages and disadvantages of these processes in the Brazilian ethanol production. Int Sugar J 110:175–181

    CAS  Google Scholar 

  6. Zhao Y, Lin YH (2003) Growth of Saccharomyces cerevisiae in a chemostat under high glucose conditions. Biotechnol Lett 25:1151–1154

    Article  CAS  PubMed  Google Scholar 

  7. Doran PM (2009) Bioprocess engineering principles. Academic, United Kingdom

    Google Scholar 

  8. Soni AS (2002) A multi-scale approach to fed-batch bioreactor control. University of Pittsburgh, United State of America: Master thesis

    Google Scholar 

  9. Bayrock DP, Michael Ingledew W (2001) Application of multistage continuous fermentation for production of fuel alcohol by very-high-gravity fermentation technology. J Ind Microbiol Biotechnol 27:87–93

    Article  CAS  PubMed  Google Scholar 

  10. Huang T-K, McDonald KA (2009) Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem Eng J 45:168–184

    Article  CAS  Google Scholar 

  11. Kracke-Helm HA, Rinas U, Hitzmann B, Schügerl K (1991) Cultivation of recombinant E. coli and production of fusion protein in 60-l bubble column and airlift tower loop reactors. Enzyme Microb Technol 13:554–564

    Article  CAS  PubMed  Google Scholar 

  12. Farrell P, Sun J, Gao M, Sun H, Pattara B, Zeiser A et al (2012) Development of a scaled-down aerobic fermentation model for scale-up in recombinant protein vaccine manufacturing. Vaccine 30:5695–5698

    Article  CAS  PubMed  Google Scholar 

  13. Singh RS, Yadav M (2013) Enhanced production of recombinant aspartase of Aeromonas media NFB-5 in a stirred tank reactor. Bioresour Technol 145:217–223

    Article  CAS  PubMed  Google Scholar 

  14. De León A, Hernández V, Galindo E, Ramı amp x et al (2003) Effects of dissolved oxygen tension on the production of recombinant penicillin acylase in Escherichia coli. Enzyme Microb Technol 33:689–697

    Article  Google Scholar 

  15. Glazyrina J, Materne E-M, Dreher T, Storm D, Junne S, Adams T et al (2010) High cell density cultivation and recombinant protein production with Escherichia coli in a rocking-motion-type bioreactor. Microb Cell Fact 9:42

    Article  PubMed Central  PubMed  Google Scholar 

  16. Dubey KK, Haque S, Jawed A, Singh BP, Behera BK (2010) Construction of recombinant Escherichia coli for enhanced bioconversion of colchicine into 3-demethylated colchicine at 70 l bioreactor level. Process Biochem 45:1036–1042

    Article  CAS  Google Scholar 

  17. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    Google Scholar 

  18. Standbury PF, Whitaker A, Hall SJ (2003) Principles of fermentation technology. Butterworth-Heinemanh, Massachusetts

    Google Scholar 

  19. Bhattacharya S, Gupta VS, Prabhune AA, SivaRaman H, Debnath M, Ranjekar PK (1993) Studies of operational variables in batch mode for genetically engineered Escherichia coli cells containing penicillin acylase. Enzyme Microb Technol 15:1070–1073

    Article  CAS  PubMed  Google Scholar 

  20. Bhattacharya SK, Dubey AK (1997) Effects of dissolved oxygen and oxygen mass transfer on overexpression of target gene in recombinant E. coli. Enzyme Microb Technol 20:355–360

    Article  CAS  Google Scholar 

  21. Kapat A, Jung JK, Park YH (2001) Enhancement of glucose oxidase production in batch cultivation of recombinant Saccharomyces cerevisiae: optimization of oxygen transfer condition. J app microbiol 90:216–222

    Article  CAS  Google Scholar 

  22. Mel M, Karim MIA, Salleh HM (2010) The evaluation of kLa values for recombinant Escherichia coli fermentation producing b-glucuronidase enzyme. J App Sci 10(4):325–330

    Article  Google Scholar 

  23. Amid A (2013) 30 L bromelain production. Kuala Lumpur, (Personal Communication)

    Google Scholar 

  24. Lin SJ, Hsieh YF, Lai LA, Chao ML, Chu WS (2008) Characterization and large-scale production of recombinant Streptoverticillium platensis transglutaminase. J Ind Microbiol Biotechnol 35:981–990

    Article  CAS  PubMed  Google Scholar 

  25. Anane E, van Rensburg E, Görgens JF (2013) Optimisation and scale-up of α-glucuronidase production by recombinant Saccharomyces cerevisiae in aerobic fed-batch culture with constant growth rate. Biochem Eng J 81:1–7

    Article  CAS  Google Scholar 

  26. Junker BH (2004) Scale-up methodologies for E.coli and yeast fermentation processes. J Biosci Bioeng 97(6):347–364

    Article  CAS  PubMed  Google Scholar 

  27. Flickinger MC, Greenstein M, Bremmon C, Conlin J (1993) Strain selection, medium development and scale-up of toyocamycin production by Streptomyces chrestomyceticus. Bioprocess Eng 5:143–153

    Article  Google Scholar 

  28. Bartholomew WH (1960) Scale-up of submerged fermentations. Adv App Micro 2:289–300

    Article  CAS  Google Scholar 

  29. Banks GT (1979) Scale-up of fermentation processes. Topics in enzyme and fermentation biotechnology. Wiley, New York, pp 170–266

    Google Scholar 

  30. Oosterhuis NMG (1984) Scale-up of bioreactors: a scale down approach. Suike Unie, Netherland

    Google Scholar 

  31. Imamoglu E, Sukan FV (2013) Scale-up and kinetic modeling for bioethanol production. Bioresour Technol 144:311–320

    Article  CAS  PubMed  Google Scholar 

  32. Lee TS (2009) A methodological approach to scaling up fermentation and primary recovery processes to the manufacturing scale for vaccine production. Vaccine 27:6439–6443

    Article  CAS  PubMed  Google Scholar 

  33. Rao DG (2010) Introduction to biochemical engineering. Tata McGraw-Hill, New Delhi

    Google Scholar 

  34. Kim HJ, Kim YH, Roh YH, Seong BL, Shin CS (2005) Optimization of enterokinase fermentation using a recombinant Saccharomyces cerevisiae. Process Biochem 40:717–722

    Google Scholar 

  35. Kay M. Frey FBO-S, Schmidt H, Steinbüchel A (2002) Technical-Scale production of cyanophycin with recombinant strains of Escherichia coli. Appl Environ Microbiol 68:3377–3384

    Article  Google Scholar 

  36. Marques MPC, Cabral JMS, Fernandes P Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. J Chem Technol Biotechnol 85:1184–1198

    Google Scholar 

  37. Caşcaval D, Galaction AI, Cămăruţ S (2011) Scale-up of aerobic stirred bioreactors using the mixing time criteria 1. Simulated broths. Chem Biochem Eng Q 25:43–54

    Google Scholar 

  38. Singh V (1999) Disposable bioreactor for cell culture using wave-induced agitation. Cytotechnology 30:149–158

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Pollard DJ, Kirschner TF, Hunt GR, Tong IT, Stieber R, Salmon PM (2007) Scale up of a viscous fungal fermentation: application of scale-up criteria with regime analysis and operating boundary conditions. Biotechnol bioeng 96:307–317

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azlin Suhaida Azmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Azmi, A., Sulaiman, S., Amin, N., Ali, F. (2015). Scaling-Up Recombinant Enzyme Fermentation. In: Amid, A. (eds) Recombinant Enzymes - From Basic Science to Commercialization. Springer, Cham. https://doi.org/10.1007/978-3-319-12397-4_7

Download citation

Publish with us

Policies and ethics

Navigation