Visual Analytics of Signalling Pathways Using Time Profiles

  • Chapter
  • First Online:
Signal and Image Analysis for Biomedical and Life Sciences

Abstract

Data visualisation is usually a crucial first step in analysing and exploring large-scale complex data. The visualisation of proteomics time-course data on post-translational modifications presents a particular challenge that is largely unmet by existing tools and methods. To this end, we present Minardo, a novel visualisation strategy tailored for such proteomics data, in which data layout is driven by both cellular topology and temporal order. In this work, we utilised the Minardo strategy to visualise a dataset showing phosphorylation events in response to insulin. We evaluated the visualisation together with experts in diabetes and obesity, which led to new insights into the insulin response pathway. Based on this success, we outline how this layout strategy could be automated into a web-based tool for visualising a broad range of proteomics time-course data. We also discuss how the approach could be extended to include protein 3D structure information, as well as higher dimensional data, such as a range of experimental conditions. We also discuss our entry of Minardo in the international DREAM8 competition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This famous graphic shows Napoleon’s disastrous Russian campaign of 1812 – the graphic is regarded as an exemplar by many data visualisation specialists [4].

  2. 2.

    http://www.jameslab.com.au

  3. 3.

    http://locate.imb.uq.edu.au/

References

  1. M. Baitaluk, M. Sedova, A. Ray, A. Gupta, Biological networks: visualization and analysis tool for systems biology. Nucleic Acids Res. 34, W466–W471 (2006)

    Article  Google Scholar 

  2. A. Barsky, J. Gardy, R. Hancock, T. Munzner, Cerebral: a cytoscape plugin for layout of and interaction with biological networks using subcellular localisaiton annotation. Bioinformatics 28(8), 1040–1042 (2007)

    Article  Google Scholar 

  3. V. Batagelj, A. Mrvar, Pajek – program for large network analysis. Connections 2, 47–57 (1998)

    Google Scholar 

  4. E.R. Tufte, The Visual Display of Quantitative Information, 2nd edn. (Graphics, Cheshire, 2001)

    Google Scholar 

  5. M. Bostock, V. Ogievetsky, J. Heer, D3: Data-driven documents, in IEEE Transactions Visualization & Computer Graphics (Proceedings of InfoVis 2011), Providence, 2011

    Google Scholar 

  6. E.G. Cerami, B.E. Gross, E. Demir, I. Rodchenkov, Ö. Babur, N. Anwar, N. Schultz, G.D. Bader, C. Sander, Pathway commons, a web resource for biological pathway data. Nucleic Acids Res. 39(suppl 1), D685–D690 (2011)

    Article  Google Scholar 

  7. P. Chandler, J. Sweller, Cognitive load theory and the format of instruction. Cogn. Instr. 8(4), 293–332 (1991)

    Article  Google Scholar 

  8. T. Chouard, Structural biology: breaking the protein rules. Nature 471, 151–153 (2011)

    Article  Google Scholar 

  9. P. Cohen, The origins of protein phosphorylation. Nat. Cell Biol. 4, E127–E130 (2002)

    Article  Google Scholar 

  10. J. Cox, M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26(Database issue), 1367–1372 (2008)

    Google Scholar 

  11. M.E. Cusick, N. Klitgord, M. Vidal, D.E. Hill, Interactome: gateway into systems biology. Hum. Mol. Genet. 14(suppl 2), R171–R181 (2005)

    Article  Google Scholar 

  12. R. David, H. Alla, Discrete, Continuous, and Hybrid Petri Nets, 2nd edn. (Springer, Berlin, 2010)

    Book  Google Scholar 

  13. H. Dinkel, C. Chica, A. Via, C.M. Gould, L.J. Jensen, T.J. Gibson, F. Diella, Phospho.ELM: a database of phosphorylation sites. Nucleic Acids Res. 39(Database issue), D261–D267 (2011)

    Google Scholar 

  14. N. Gehlenborg, S.I. O’Donoghue, N. Baliga, A. Goesmann, M. Hibbs, H. Kitano, O. Kohlbacher, H. Neuweger, R. Schneider, D. Tenenbaum, A-C. Gavin., Visualisation of omics data for systems biology. Nat. Methods 7, S56–S68 (2010)

    Google Scholar 

  15. S. Humphrey, G. Yang, P. Yang, D. Fazakerley, J. Stockli, J. Yang, D. James, Dynamic adipocyte phosphoporteome reveals that Akt directly regulates mTORC2. Cell Metab. 17, 1–12 (2013)

    Article  Google Scholar 

  16. A. Inselberg, The plane with parallel coordinates. Vis. Comput. 1(4), 69–91 (1985)

    Article  MATH  Google Scholar 

  17. James lab, http://www.jameslab.com.au, Last visited: 6 June 2013

  18. M. Kanehisa, A database for post-genome analysis. Trends Genet. 13(9), 375–376 (1997)

    Article  Google Scholar 

  19. D. Keim, Information visualisation and visual data mining. IEEE Trans. Vis. Comput. Grap. 8(1), 1077–2626 (2002)

    Google Scholar 

  20. H. Kitano, Systems biology: a brief overview. Science 295(5560), 1662–1664 (2002)

    Article  Google Scholar 

  21. D. Ma, C. Stolte, S. Kaur, M. Bain, S.I. O’Donoghue, Visual analytics of phosphorylation time-series data on insulin response, in International Symposium on Computational Models for Life Sciences, Sydney, ed. by C. Sun, T. Bednarz, T.D. Pham, P. Vallotton, D. Wang. AIP Conference Proceedings, 2013, pp. 185–196

    Google Scholar 

  22. J. Mackinlay, Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5(2), 110–141 (1986)

    Article  Google Scholar 

  23. M. Magrane, The UniProt consortium, UniProt knowledgebase: a hub of integrated protein data. Database (2011). doi:10.1093/database/bar009

    Google Scholar 

  24. L. Matthews, G. Gopinath, M. Gillespie, M. Caudy, D. Croft, B. de Bono, P. Garapati, J. Hemish, H. Hermjakob, B. Jassal, A. Kanapin, S. Lewis, S. Mahajan, B. May, E. Schmidt, I. Vastrik, G. Wu, E. Birney, L. Stein, P. D’Eustach, Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37, D619–D622 (2009)

    Article  Google Scholar 

  25. H. Mi, S. Dong, A. Muruganujan, P. Gaudet, S. Lewis, P.D. Thomas, PANTHER version 7: improved phylogenetic trees, orthologs, and collaboration with the gene ontology consortium. Nucleic Acids Res. 38, D240–D244 (2010)

    Article  Google Scholar 

  26. L. Michaelis, M.L. Menten, Die kinetik der invertinwirkung. Biochemische Zeitschrift 49, 333–369 (1913)

    Google Scholar 

  27. D. Nishimura, A view from the web: biocarta. Biotech Softw. Internet Rep. 2(3), 117–120 (2001)

    Article  Google Scholar 

  28. S.I. O’Donoghue, A.-C. Gavin, N. Gehlenborg, D.S. Goodsell, J.-K. Hériché, C.B. Nielsen, C. North, A.J. Olson, J.B. Procter, D.W. Shattuck, T. Walter, B. Wong, Visualizing biological data – now and in the future. Nat. Methods 7, S2–S4 (2010)

    Article  Google Scholar 

  29. S.I. O’Donoghue, D.S. Goodsell, A.S. Frangakis, F. Jossinet, R.A. Laskowski, M. Nilges, H.R. Saibil, A. Schafferhans, R.C. Wade, E. Westhof, A.J. Olson, Visualization of macromolecular structures. Nat. Methods 7, S42–S55 (2010)

    Article  Google Scholar 

  30. E. Pafilis, S.I. O’Donoghue, L.J. Jensen, H. Horn, M. Kuhn, N.P. Brown, R. Schneider, Reflect: augmented browsing for the life scientist. Nat. Biotechnol. 27, 308–310 (2009)

    Article  Google Scholar 

  31. G.A. Pavlopoulos, S.D. Hooper, A. Sifrim, R. Schneider, J. Aerts, Medusa: a tool for exploring and clustering biological networks. BMC Res. Notes 4, 104 (2011)

    Article  Google Scholar 

  32. S. Pletscher-Frankild, J.X. Binder, K. Tsafou, C. Stolte, S.I. O’Donoghue, R. Schneider, L.J. Jensen, Compartments: unification and visualization of protein subcellular localization evidence. Database (2014). doi:10.1093/database/bau012

    Google Scholar 

  33. R. Samaga, J. Saez-Rodriguez, L.G. Alexopoulos, P.K. Sorger, S. Klamt, The logic of EGFR/ErbB signaling: theoretical properties and analysis of high-throughput data. PLoS Comput. Biol. 5(8), e1000438 (2009)

    Google Scholar 

  34. A. Schafferhans, J.E.W. Meyer, S.I. O’Donoghue, The PSSH database of alignments between protein sequences and tertiary structures. Nucleic Acids Res. 31(5), 494–498 (2003)

    Article  Google Scholar 

  35. M. Secrier, R. Schneider, Visualizing time-related data in biology, a review. Brief. Bioinformatics (2013). doi:10.1093/bib/bbt021

    Google Scholar 

  36. P. Shannon, A. Markiel, O. Ozier, N. Baliga, J. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003)

    Article  Google Scholar 

  37. A. Srinivasan, M. Bain, Knowledge-guided identification of petri net models of large biological systems, in Proceedings of the 21st International Conference on Inductive Logic Programming (ILP 2011; Revised Selected Papers), Windsor Great Park, ed. by S.H. Muggleton, A. Tamaddoni-Nezhad, F.A. Lisi. Volume 7207 of Lecture Notes in Computer Science (Springer, Berlin, 2012), pp. 317–331

    Google Scholar 

  38. J. Sweller, Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4(4), 295–312 (1994)

    Article  Google Scholar 

  39. M. Tarini, P. Cignoni, C. Montani, Ambient occlusion and edge cueing to enhance real time molecular visualization. IEEE Trans. Vis. Comput. Graph. 12(5), S42–S55 (2006)

    Article  Google Scholar 

  40. A. Zanzoni, D. Carbajo, F. Diella, P.F. Gheradini, A. Tramontano, M. Helmer-Citterich, A. Via, Phospho3D 2.0: an enhanced database of three-dimensional structures of phosphorylation sites. Nucleic Acids Res. 39(Database issue), D268–D271 (2011)

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge helpful conversations with our colleagues Prof. David James, Dr Sean Humphrey, Dr Adelle Coster, Annabel Minard, and Beverley Murrow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seán I. O’Donoghue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ma, D.K.G., Stolte, C., Kaur, S., Bain, M., O’Donoghue, S.I. (2015). Visual Analytics of Signalling Pathways Using Time Profiles. In: Sun, C., Bednarz, T., Pham, T., Vallotton, P., Wang, D. (eds) Signal and Image Analysis for Biomedical and Life Sciences. Advances in Experimental Medicine and Biology, vol 823. Springer, Cham. https://doi.org/10.1007/978-3-319-10984-8_1

Download citation

Publish with us

Policies and ethics

Navigation