Next Generation Plant Biotechnology

  • Chapter
  • First Online:
Biotechnology and Biodiversity

Part of the book series: Sustainable Development and Biodiversity ((SDEB,volume 4))

Abstract

Modern plant biotechnology began with the transfer of foreign chimeric genes into plants. Initially recombinant genes were derived from bacteria, animals and plants for gene transfer. Gene transfer was accomplished by Agrobacterium-mediated or biolistic methods into the plant genome. The first wave of transgenic plants that were monitored for transgene integration and expression, the second wave transgenic plants carried economically important genes for herbicide tolerance, pest resistance, drought and salt tolerance, growth traits, and flowering control. Subsequently, a number of genetically modified crops with several useful traits have been commercialized. Although relatively stable transgene expression has been observed in a number of plant species, there were also unintended unstable events in transgenic plants. This is due to the fact that transgene integration achieved by the two traditional methods (Agrobacterium or biolistic) of gene transfer in the plant genome is random, and one to several copies of the transgenes may be integrated at one or several locations in the genome. In order to overcome the problem of randomness of transgene integration, site-specific transgene integration strategies have been experimentally tested in plants, and offer prospects of stable gene integration and expression in transgenic plants. In order to broaden the scope of transgenic plants, biotechnologists started looking for other useful avenues for their utility. With finite reserves of fossil fuels and climate change, and growing demands for fuels, plastics, and pharmaceuticals, transgenic plants have been also explored as production platforms for these commodities. This paper is an overview of next generation transgenic plants that can serve as bioreactors or biofactories for the cost-effective production of biofuels, biopharmaceuticals, bioplastics, and as a resource for nutritional supplements to meet human demands in the future. New developments in nanobiotechnology offer prospects for improved production of crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adame-Vega TC, Lim DKY, Timmins M, Vernen F, Li Y, Schenk PM (2012) Microbial biofactories: a promising approach towards sustainable omega-3 fatty acid production. Microb Cell Fact 11(1):96

    Google Scholar 

  • Adenle AA, Awoth OC, Akromah R, Parayil G (2012) Develo** GM super cassava for improved health and food security: future challenges in Africa. Agric Food Secur 1(11): 1–15

    Google Scholar 

  • Ahuja MR (1997) Transgene and genetic instability. In: Klopfenstein NB, Chun WYW, Kim M-S, Ahuja MR (eds) Micropropagation and genetic engineering and molecular genetics of Populus. Technical Report RM-GTR-297, USDA Forest Service, Rocky Mountain Research Station, Fort Collins, pp 90–100

    Google Scholar 

  • Ahuja MR (2009) Transgene stability and dispersal in forest trees. Trees 23:1125–1135

    CAS  Google Scholar 

  • Ahuja MR (2011) Fate of transgene in the forest tree genome. Tree Genet Genom 7:221–230

    Google Scholar 

  • Ahuja MR, Fladung M (2014) Integration and inheritance of transgenes in crop plants and trees. Tree Genet Genom 10:779–790

    Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H et al (2003) Genome-wide insertional mutagenesis in Arabidopsis thaliana. Science 301:653–657

    PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  PubMed Central  Google Scholar 

  • Aravanityonnis IS, Mavromatis AG, Grammatikaki-Avgeli G, Sakellarious M (2008) Banana cultivars: biotechnological approaches and genetic transformation. Int J Food Sci Technol 43:1871–1879

    Google Scholar 

  • Barman G, Maiti S, Laha JK (2014) Biofabrication of gold nanoparticles using aqueous extract of red tomato and its use as a colorimetrixc sensor. Nanoscale Res Lett 8:181

    Google Scholar 

  • Barrell PJ, Meiyalagham S, Jocobs JME, Conner AJ (2013) Application of biotechnology and genomics in potato improvement. Plant Biotechnol J 11:907–920

    PubMed  CAS  Google Scholar 

  • Barta A, Sommengruber K, Thompson D, Hartmuth K, Matzke AJM (1986) The expression of a nopaline synthase human growth hormone chimeric gene in transformed tobacco and sunflower callus tissue. Plant Mol Biol 6:347–357

    PubMed  CAS  Google Scholar 

  • Bashir K, Takahashi R, Nakanishi H, Nishizawa NK (2013) The road to micronutrient biofortification of rice: progress and perspectives. Front Plant Sci—Plant Physiol 4(Article 15):1–7

    Google Scholar 

  • Beer LL, Boyd, ES, Peters JW, Posewitz MC (2009) Engineering algae for biohydrogen and biofuel production. Curr Opin Biotechnol 20:264–271

    PubMed  CAS  Google Scholar 

  • Belhaj K, Chaparro-Garcia A, Kamoun S, Nekrasov V (2013) Plant genome editing made easy: targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 9:39

    PubMed  PubMed Central  Google Scholar 

  • Bevan M, Flavell R, Chilton M (1983) A chimeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    CAS  Google Scholar 

  • Beyer P (2010) Golden rice and “golden” crops for human nutrition. New Biotechnol 27:478–481

    CAS  Google Scholar 

  • Bhaskar PB, Wu L, Busse JS, Whitty BR, Hamernik AJ, Jansky SH, Buell CR, Bethke PC, Jiang JM (2010) Suppression of vacuolar invertase gene prevents cold-induced sweetening in potato. Plant Physiol 154:939–948

    PubMed  CAS  PubMed Central  Google Scholar 

  • Boerjan W (2005) Biotechnology and the domestication of forest trees. Curr Opin Biotechnol 16:159–166

    PubMed  CAS  Google Scholar 

  • Bogdanski A (2012) Integrated food-energy systems for climate-smart agriculture. Agric Food Secur 1:9

    Google Scholar 

  • Bogdanov AJ, Voytas DF (2011) TAL effectors: customizable proteins for DNA targeting. Science 333:1843–1846

    Google Scholar 

  • Bohmert K, Balbo I, Kopka J, Mittendorf V, Nawrath C, Poirier Y, Tischendorf G, Trethewey R, Willmitzer L (2000) Transgenic Arabidopsis plants can accumulate polyhydroxybutyrate to up to 4 % of their fresh weight. Planta 211:841–845

    PubMed  CAS  Google Scholar 

  • Bohmert K, Balbo I, Steinbüchel A, Tischendorf G, Willmitzer L (2002) Constitutive expression of the β-ketothiolase gene in transgenic plants: a major obstacle for obtaining polyhydroxybutyrate-producing plants. Plant Physiol 128:1282–1290

    PubMed  CAS  PubMed Central  Google Scholar 

  • Bohmert-Tatarev K, McAvoy S, Daughtry S, Peoples OP, Snell KD (2011) High levels of bioplastics are produced in fertile transplastomic tobacco plants engineered with a synthetic operon for production of polyhydroxybutyrate. Plant Physiol 155:1690–1708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Borejsza-Wysocka E, Norelli J, Aldwinckle HS, Malnoy M (2010) Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over 12 year period. BMC Biotechnol 10:41

    PubMed  PubMed Central  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Madsen LH, Darbani B, Noeparvar S, Holm PB (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56:204–213

    CAS  Google Scholar 

  • Borrill P, Connorton J, Balk J, Miller T, Sanders D, Uauy C (2014) Biofortification of wheat grain with iron and zinc: integrating novel genomic resources and knowledge from model crops. Front Plant Sci 5:53

    PubMed  PubMed Central  Google Scholar 

  • Bourton JH (2007) Molecular breeding of switchgrass for use as a biofuel crop. Curr Opin Genet Dev 17:553–558

    Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extraction of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    CAS  Google Scholar 

  • Breyer D, Goossens M, Herman P, Sneyers M (2009) Biosafety considerations associated with molecular farming in genetically modified plants. J Med Plant Res 3:825–838

    Google Scholar 

  • Buiatti M, Christou P, Pastore G (2013) The application of GMO’s in agriculture and in food production for a better nutrition: two different scientific points of view. Genes Nutr 8:255–270

    PubMed  CAS  PubMed Central  Google Scholar 

  • Burris JN, Lenaghan SC, Zhang M, Stewart CN (2012) Nanoparticle biofabrication using English ivy (Hedera helix). J Nanotechnol 10:41

    CAS  Google Scholar 

  • Buteye KJM, Cammue BPA, Delauŕe SL, De Bolle MFC (2005) Approaches to minimize variation in transgene expression in plants. Mol Breed 16:79–91

    Google Scholar 

  • Cai CQ, Doyon Y, Ainley WM et al (2009) Targeted transgene integration in plant cells using zinc finger nucleases. Plant Mol Biol 69:699–709

    PubMed  CAS  Google Scholar 

  • Cao H, Zhang J, Xu J, Yun Z, Xu Q, Deng X (2012) Comprehending crystalline β-carotene accumulation by comparing engineered cell models and the natural carotenoid-rich system of citrus. J Exp Bot 63:4403–4417

    PubMed  CAS  PubMed Central  Google Scholar 

  • Capita NC, McCann MC (2008) Maize and sorghum: genetic resources for bioenergy grasses. Trends Plant Sci 13:415–420

    Google Scholar 

  • Carroll D (2011) Genome editing with zinc finger nucleases. Genetics 188:773–782

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chakraborthy S, Chakraborthy N, Agrawal L, Ghosh, S, Narula K, Shekhar S, Naik PS, Pande PC, Chakraborti SK, Datta A (2010) Next generation protein-rich potato expressing the seed protein gene AmA1 is a result of proteome rebalancing in transgenic tuber. Proc Natl Acad Sci USA 107:17533–17538

    Google Scholar 

  • Chaogang W, Zhangli H, An** L, Baohui J (2010) Biosynthesis of poly-3-hydroxybutyrate (PHB) in the transgenic green algae Chlamydomonas reinhardtii. J. Phycol 46:396–402

    Google Scholar 

  • Chee J-Y, Yoga S-S, Lau N-S, Ling S-C, Abed RMM, Sudesh K (2010) Bacterially produced polyhydroxyalkanoates (PHA): converting renewable resources into bioplastics. In: Méndez-Vilas A (ed) Current research, technology and education topics in microbiology and microbial biotechnology. Formatex Research, Spain, pp 1395–1404

    Google Scholar 

  • Chen G-Q (2009) A microbial polyhydroxyalkanoates (PHA) based bio- and material industry. Chem Soc Rev 38:2434–2446

    PubMed  CAS  Google Scholar 

  • Chen G-Q (2010) Industrial production of PHA. In: Chen G-Q (ed) Plastics from bacteria: natural functions and applications. Springer, Berlin, pp 121–132

    Google Scholar 

  • Chen Q, Lai H (2013) Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 91:26–49

    Google Scholar 

  • Chen S, Hajirezaei MR, Zanor MI, Hornyik C, Debast S, Lacomme C, Fernie AR, Sonnewald U, Bornke F (2008) RNA interference-mediated repression of sucrose-phosphatase in transgenic potato tubers (Solanum tuberosum) strongly affects the hexose-to-sucrose ratio upon cold storage with only minor effects on total soluble carbohydrate accumulation. Plant Cell Environ 31:165–176

    PubMed  CAS  Google Scholar 

  • Christou P, Twyman RM (2004) The potential of genetically enhanced plants to address food insecurity. Nutr Res Rev 17:23–42

    PubMed  Google Scholar 

  • Circelli P, Donini M, Villani ME, Benvenuto E, Marusic C (2010) Efficient Agrobacterium-based transient expression system for the production of biopharmaceuticals in plants. Bioeng Bugs 13:221–224

    Google Scholar 

  • Coleman HD, Samuels AL, Guy RD, Mansfield SD (2008) Perturbed lignifications impacts tree growth in hybrid poplar—a function of sink strength, vascular integrity, and photosynthetic assimilation. Plant Physiol 148:1229–1237

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cressey D (2013) A new breed. Nature 497:27–29

    PubMed  CAS  Google Scholar 

  • Curtin SJ, Voytas DF, Stupar RM (2012) Genome engineering of crops with designer nucleases. Plant Genom 5:42–50

    CAS  Google Scholar 

  • Da Cunha NB, Vianna GR, TD Lima, Rech E (2014) Molecular farming of human cytokines and blood products from plants: challenges in biosynthesis and detection of plant-produced recombinant proteins. Biotechnol J 9:39–50

    PubMed  CAS  Google Scholar 

  • Dalton DA, MA C, Shrestha S, Kitin P, Strauss SH (2011) Trade-offs between biomass growth and inducible biosynthesis of polyhydroxhbutyrate in transgenic poplar. Plant Biotechnol J 9:759–767

    PubMed  CAS  Google Scholar 

  • Daniell H, Streatfield SJ, Wycoff K (2001) Medical molecuclar farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 5:219–226

    Google Scholar 

  • Daniell H, Singh ND, Mason H, Streatfield SJ (2009) Plant made vaccine antigens and biopharmaceuticals. Trends Plant Sci 14:669–679

    PubMed  CAS  PubMed Central  Google Scholar 

  • D’Aoust MA, M M-J, Coulter NC, Charland N, Trépanier S, Landry N, Ors F, Vézina LP (2010) The production of hemagglutinin-based virus-like particles in plants: a rapid efficient and safe response to pandemic influenza. Plant Biotechnol J 8:607–619

    PubMed  Google Scholar 

  • Davies HM (2010) Commercialization of whole-plant systems for biomanufacturing of protein products: evolution and prospects. Plant Biotechnol J 8:845–861

    PubMed  Google Scholar 

  • De Buck S, Peck I, De Wilde C, Marjanac G, Nolf J, De Paepe A, Depicker A (2007) Generation of single-copy T-DNA transformants in Arabidopsis by the CRE/loxP recombination-mediated resolution system. Plant Physiol 145:1171–1182

    PubMed  CAS  PubMed Central  Google Scholar 

  • Domnigo JL, Bardonaba JG (2011) A literature on the safety of genetically modified plants. Environ J 37:734–742

    Google Scholar 

  • Du C, Sabrirova J, Soetaert W, Lin SKC (2012) Polyhydroxyalkanoates production from low-cost sustainable raw materials. Curr Chem Biol 6:14–25

    CAS  Google Scholar 

  • Dunwell JM (2010) Crop biotechnology: prospects and opportunities. J Agric Sci 145(S1):17–29

    Google Scholar 

  • Edwards D, Batley J (2010) Plant genome sequencing: applications for crop improvement. Plant Biotechnol J 8:209

    Google Scholar 

  • Espinoza C, Schlechter R, Herrera D, Torres E, Serrano A, Medina C, Arce-Johnson P (2013) ­Cisgenesis and intragnesis: new tools for improving crops. Biol Res 46:323–331

    PubMed  CAS  Google Scholar 

  • Filipecki M, Malepszy S (2006) Unintended consequences of plant transformation: a molecular insight. J Appl Genet 47:277–286

    PubMed  Google Scholar 

  • Finnegan J, McElroy D (1994) Transgene inactivation: plants fight back. Biotechnology ­12:883–888

    Google Scholar 

  • Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM (2004) Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 7:152–158

    PubMed  CAS  Google Scholar 

  • Fischer R, Schillberg S, Twyman RM (2009) Molecular farming of antibodies in plants. In: Kirakosyan A, Kaufman PB (eds) Recent advances in plant biotechnology. Springer, Berlin, pp 35–63

    Google Scholar 

  • Fitzpatrick TB, Basset, GJC, Borel P, Carrari F, Della Penna D et al (2012) Vitamin deficiencies in humans: can plant science help? Plant Cell 24:395–414

    PubMed  CAS  PubMed Central  Google Scholar 

  • Flachowsky H, LeRue PM, Peil A, Patocchi A, Richter K, Hanke M-V (2011) Application of high-speed breeding technology to apple (Malus x domestica) based on transgenic early flowering plants and marker-assisted selection. New Phytol 192:364–377

    PubMed  CAS  Google Scholar 

  • Fladung M, Becker D (2010) Targeted integration and removal of transgenes in hybrid aspen (Populus tremula L. x P. tremuloides Michx.) using site-specific recombination systems. Plant Biol 12:334–340

    PubMed  CAS  Google Scholar 

  • Fladung M, Schenk, TMH, Polak O, Becker D (2010) Elimination of marker genes and targeted integration via FLP/FRT recombination system from yeast in hybrid aspen (Populus tremula L. x P. tremuloides Michx.). Tree Genet Genom 6:205–217

    Google Scholar 

  • Fladung M, Hoenicka H, Ahuja MR (2013) Genomic stability and long-term transgene expression in poplars. Transgenic Res 22:1167–1178

    PubMed  CAS  Google Scholar 

  • Fornale S, Capellades M, Encina A, Wang K, Irar S et al (2012) Altered lignin biosynthesis ­improves cellulosic bioethanol production in transgenic maize plants down-regulated from cinnamyl alcohol dehydrogenase. Mol Plant 5:817–830

    PubMed  CAS  Google Scholar 

  • Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS et al (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    PubMed  CAS  PubMed Central  Google Scholar 

  • Franconi R, Demurtas OC, Massa O (2010) Plant-derived vaccines and other therapeutics produced in contained systems. Expert Rev Vaccin 9:877–892

    CAS  Google Scholar 

  • Fu G, Mielenz JR, **ao X, Ge Y, Hamilton CH et al (2011) Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci U S A 108:3803–3808

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fu Y-Q, Li L-H, Wang P-W, Qu J, Fu Y-P, Wng H, Sun J-R, Lü C-L (2012) Delivering DNA into plant cell gene carriers of ZnS nanoparticles. Chem Res Univ 28:672–676

    CAS  Google Scholar 

  • Gaj T, Gersbach CA, Barbass CF (2013) ZFN, TALEN, and CRISPR/Cas-based methods for ­genome engineering. Trends Biotechnol 31:397–405

    PubMed  CAS  PubMed Central  Google Scholar 

  • Galili G, Amir R (2013) Fortifying plants with the essential amino acid lysine and methionine to improve nutritional quality. Plant Biotechnol J 11:211–222

    PubMed  CAS  Google Scholar 

  • Gao Y, Ma Y, Li M, Cheng T, Li SW, **a NS (2003) Oral immunization of animals with transgenic cherry tomatillo expressing HBsAg. World J Gastroenterol 9:996–1002

    PubMed  CAS  Google Scholar 

  • Gelvin SB, Kim S-I (2007) Effect of chromatin upon Agrobacterium T-DNA integration and transgene expression. Biochim Biophys Acta 1769:410–421

    PubMed  CAS  Google Scholar 

  • Gheysen G, Villarroel R, Van Montagu M (1991) Illegitimate recombination in plants: a model for T-DNA integration. Genes Dev 5:287–297

    PubMed  CAS  Google Scholar 

  • Ghormade V, Deshpande MV, Panikar KM (2011) Perspectives for nano-biotechnology enabled protection and nutrition of plants. Biotechnol Adv 29:792–803

    PubMed  CAS  Google Scholar 

  • Gibson LG (2012) The hierarchical structure and mechanics of plant materials. J R Soc Interface 9:2749–2766

    PubMed  CAS  PubMed Central  Google Scholar 

  • Gidoni D, Srivastava V, Carmi N (2008) Site-specific excisional recombination strategies for elimination of undesirable transgenes from crop plants. In Vitro Cell Dev Biol Plant 44:457–467

    CAS  Google Scholar 

  • Giorgi C, Franconi R, Rybicki E (2010) Human papillomavirus vaccines in plants. Expert Rev Vaccin 9:913–924

    CAS  Google Scholar 

  • Giuliano G, Diretto G, Tavazza R, Welsch R, Pizzichini D, Mourgues F, Paacchioli V, Breyer P (2006) Metabolic engineering of potato tuber carotenoid through tuber-specific silencing of lycopene epsilon cyclase. BMC Plant Biol 6:13

    PubMed  PubMed Central  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    PubMed  CAS  Google Scholar 

  • Gleba Y, Kimyuk V, Marrilonnet S (2005) Magnifection—a new platform for expressing recombinant vaccines in plants. Vaccine 23:2042–2048

    PubMed  CAS  Google Scholar 

  • Godfray HC, Beddington JR, Crute IR, Haddad L, Lawrence D et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    PubMed  CAS  Google Scholar 

  • Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509

    PubMed  CAS  Google Scholar 

  • Gressel J (2008) Transgenics are imperative for biofuel crops. Plant Sci 174:246–263

    CAS  Google Scholar 

  • Guo F, Zhou W, Zhang J, Xu Q, Deng X (2012) Effect of the citrus lycopene β-cyclase transgene on carotenoid metabolism in transgenic tomato fruits. PLoS ONE 7(2):e32221

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hadar Y (2013) Sources for lignocellulosic raw materials for the production of ethanol. In: Franco V (ed) Lignocellulose conversion. Springer, Berlin, pp 21–38

    Google Scholar 

  • Hamilton JP, Buell CR (2012) Advances in plant genome sequencing. Plant J 70:177–190

    PubMed  CAS  Google Scholar 

  • Harris PJ, Stone BA (2008) Chemistry and molecular organization of plant cell walls. In: Himmel ME (ed) Biomass recalcitrance. Blackwell, Oxford, pp 60–93

    Google Scholar 

  • Haslam RP, Ruiz-Lopez N, Eastmond P, Moloney M, Sayanova O, Napier JA (2013) The modification of plant oil composition via metabolic engineering—better nutrition by design. Plant Biotechnol J 11:157–168

    PubMed  CAS  Google Scholar 

  • Hasna AS, Rajiv P, Kamraj M, Jagdeeswaran P, Sangheetha G, Rajeshwari S (2012) Plant: green route for nanoparticle synthesis. Int Res J Biol Sci 1:85–90

    Google Scholar 

  • Hayashi Y, Inoue M, Takizawa H, Suganuma K (2008) Nanoparticle fabrication. In: Morris JE (ed) Nanopackaging: nanotechnologies and electronics packaging. Springer, Berlin, pp 109–120

    Google Scholar 

  • Hefferon KL (2013) Can plant-derived vaccines improve global human health? Int J Virol Stud Res 1:101

    Google Scholar 

  • Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbüchel A, Maier UG (2011) Micoalgae as bioreactors for bioplastic production. Microbiol Cell Fact 10:81

    CAS  Google Scholar 

  • Herdt RW (2006) Biotechnology in agriculture. Annu Rev Environ Resour 31:265–295

    Google Scholar 

  • Herrera-Estrella L, Depicker A, Van Maontagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using Ti-plasmid derived vector. Nature 303:209–213

    CAS  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    PubMed  CAS  Google Scholar 

  • Hisano H, Nandkumar R, Wang Z-Y (2009) Genetic modification of lignin biosynthesis for ­improved biofuel production. In Vitro Cell Dev Biol Plant 43:306–313

    Google Scholar 

  • Holme IB, Wendt T, Holm PB (2013) Intragenesis and cisgenesis as alternatives to transgenic crop development. Plant Biotechnol 11:395–407

    CAS  Google Scholar 

  • Hood EE, Witcher DR, Maddock S, Meyer T, Basczynski C et al (1997) Commercial production of avidin from transgenic maize: characterization of transformant, production, processing, extraction and purification. Mol Breed 3:291–306

    CAS  Google Scholar 

  • Huang GH, Chen F, Wei D, Zhang XW (2010) Biodiesel production by microalgal biotechnology. Appl Energy 87:38–46

    CAS  Google Scholar 

  • Ihemere U, Arias-Garzon D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced starch production. Plant Biotechnol J 4:453–465

    PubMed  CAS  Google Scholar 

  • James C (2013) Global status of commercialized biotech/GM crops: 2013. ISAAA Brief No 46. ISAA, Ithaca

    Google Scholar 

  • Jauhar PP (2006) Modern biotechnology as an integral supplement to conventional plant breeding: the prospects and challenges. Crop Sci 46:1841–1859

    CAS  Google Scholar 

  • Jones CS, Luong T, Hannon M, Tran M, Gregory JA, Shen Z, Briggs SP, Mayfield SP (2013) Heterologous expression of the c-terminal antigen domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii. Appl Microbiol Biotechnol ­97:1987–1995

    PubMed  CAS  Google Scholar 

  • Jørgensen U (2011) Benefits versus risks of growing biofuel crops: the case of Miscanthus. Curr Opin Environ Sustain 3:24–30

    Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Scouten HJ, Krens FA (2011) Functional analysis and expression profiling of HerVfi and HerVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    PubMed  CAS  PubMed Central  Google Scholar 

  • Jouzani GS, Tohidfar M (2013) Plant molecular farming: future prospects and biosafety ­challenges. Biosafety 2:2

    Google Scholar 

  • Joyce BL, Stewart CN (2012) Designing the perfect plant feedstock for biofuel production: using the whole buffalo to diversify fuels and products. Biotechnol Adv 30:1011–1022

    PubMed  CAS  Google Scholar 

  • Kapila J, De Rycke R, Van Montagu M, Angenon G (1997) An Agrobacterium-mediated transient gene expression system for intact leaves. Plant Sci 122:101–108

    CAS  Google Scholar 

  • Karg SR, Kallio PT (2009) The production of biopharmaceuticals in plant systems. Biotechnol Adv 27:879–894

    PubMed  CAS  Google Scholar 

  • Kavitha KS, Syed B, Rakshith D, Kavitha HU, Yashwantha Rao HC, Harini BP, Satish S (2013) Plants as green source towards synthesis of nanoparticles. Int Res J Biotechnol Sci 2:66–76

    Google Scholar 

  • Kim MY, Yang MS, Kim TG (2009) Expression of dengu virus E glycoprotein domain III in non-nicotinic transgenic tobacco plants. Biotechnol Bioprocess Eng 14:725–730

    CAS  Google Scholar 

  • Kohli A, Twyman RM, Abranches R, Wegel E, Stoger E, Christou P (2003) Transgene integration, organization and interaction in plants. Plant Mol Biol 52:247–258

    PubMed  CAS  Google Scholar 

  • Kohli A, Miro B, Twyman RM (2010) Transgene integration, expression and stability in plants: strategies for improvement. In: Kole C (ed) Transgenic crop plants. Springer, Berlin, pp 201–237

    Google Scholar 

  • Komarova TV, Baschieri S, Marusic C, Benvenuto E, Dorokhov Y (2010) Transient expression systems for plant-derived biopharmaceuticals. Expert Rev Vaccin 9:859–876

    CAS  Google Scholar 

  • Kovács G, Sági L, Jacon G, Arinaitwe G, Busogoro J-P, Thiry E, Strosse H, Swennen R, Remy S (2013) Expression of a rice chitinase gene in transgenic banana (‘Gros Michel’, AAA genome group) confers resistance to black leaf streak disease. Transgenic Res 22:117–130

    PubMed  PubMed Central  Google Scholar 

  • Kramer MG, Radenbaugh K (1994) Commercialization of a tomato with an antisense polygalacturonase gene: the FLAVRSAVR tomato story. Euphytica 79:293–297

    Google Scholar 

  • Krens FA, Schaart JG, Groenwold R, Walraven AEJ, Hesselink T, Thiessen JTNM (2012) ­Performance and long-term stability of the barley hordothionin gene in multiple transgenic apple lines. Transgenic Res 20:1113–1123

    Google Scholar 

  • Kulkarni V, Butte KD, Rathod SS (2012) Natural polymers—a comprehensive review. Int J Res Pharm Biomed Sci 3:1597–1613

    Google Scholar 

  • Kullander S (2010) Food security: crops for people not for cars. AMBIO 39:249–256

    PubMed  PubMed Central  Google Scholar 

  • Kumar S, Fladung M (2001) Controlling transgene integration in plants. Trends Plant Sci ­6:156–159

    Google Scholar 

  • Kumar S, Franco M, Allen GC (2006) Gene targeting: development of novel systems for genome engineering in plants. In: Da Silva JAT (ed) Floriculture, ornamentals and plant biotechnologies, 4th edn. Global Science Books, London, pp 84–98

    PubMed  CAS  Google Scholar 

  • Kumar BV, Raja TK, Wani MR, Sheikh SA, Lone MA et al (2013) Transgenic plants as green factories for vaccine production. Afr J Biotechnol 12:6147–6158

    Google Scholar 

  • Lakshmi PS, Verma D, Yang X, Lloyd B, Daniell H (2013) Low cost tuberculosis vaccine antigens in capsules: expression in chloroplasts, bio-encapsulation, stability and functional evaluation in vitro. PLoS ONE 8:e54708

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee S, Jeon US, Lee SJ, Kim Y-K, Persson DP, Husted S, Schjørring JK, Kakei Y, Masuda H, Nishizawa NK, An G (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Natl Acad Sci U S A 106:22014–22019

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lee S, Jeon JS, An G (2012) Iron homeostasis and fortification in rice. J Plant Biol 55:261–267

    CAS  Google Scholar 

  • Li Z, **ng A, Moon BP, McCardell RP, Mills K, Falco SC (2009) Site-specific integration of transgene in soybean via recombinase-mediated DNA cassette exchange. Plant Physiol ­151:1097–1095

    Google Scholar 

  • Li Z, Moon BP, **ng A, Liu Z-B, McCardell RP, Damude HG, Falco SC (2010) Stacking ­multiple transgenes at a selected genomic site via repeated recombinase-mediated DNA cassette exchange. Plant Physiol 154:622–631

    PubMed  CAS  PubMed Central  Google Scholar 

  • Liu ZR, Davies CS, Mount DW (2000) TREGED: a new strategy for inducing gene deletion in plant genomes. Plant Mol Biol Rep 18:255–263

    Google Scholar 

  • Liu L, Jia C, Zhang M, Chen D, Guo R, Guo D, Wang Q (2014) Ecotropic expression of BZR1–1D transcription factor in brassinosteroid signalling enhances carotenoid accumulation and fruit quality attributes in tomato. Plant Biotechnol J 12:105–115

    PubMed  CAS  Google Scholar 

  • Llorente B, Rodriguez V, Alonso GD, Torres HN, Flawia MM, Bravo-Almonacid F (2010) ­Improvement of aroma in transgenic potato as a consequence of impairing tuber browning. PLoS ONE 5(11):e14030

    PubMed  PubMed Central  Google Scholar 

  • Locato V, Cimini S, De Gara L (2013) Strategies to increase vitamin C in plants: from plant defense perspective to food biofortfication. Front Plant Sci Plant Physiol 4(Article 152):1–12

    Google Scholar 

  • Louwerse JD, van Lier MCM, van der Steen DM, de Vlaam CMT, Hooykaas PJJ, Vergunst AC (2007) Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. Plant Physiol 145:1282–1293

    PubMed  CAS  PubMed Central  Google Scholar 

  • Lowe JA, Jones P (2007) Biopharmaceuticals and the future of pharmaceutical industry. Curr Opin Drug Discov Dev 10:513–514

    CAS  Google Scholar 

  • Luo K, Duan H, Zhao D, Zheng X, Chen Y et al (2007) ‘GM-gene-deletor’: fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgenic excision from pollen and seed of tobacco plants. Plant Biotechnol J 5:263–274

    PubMed  CAS  Google Scholar 

  • Lyznik LA, Gordion-Kamm WJ, Taom Y (2003) Site-specific recombination of genetic engineering in plants. Plant Cell Rep 21:925–932

    PubMed  CAS  Google Scholar 

  • Ma JK-C, Drake PMW, Christou P (2003) The production of recombinant pharmaceutical proteins in plants. Nat Rev Genet 4:794–805

    PubMed  CAS  Google Scholar 

  • Makarevitch I, Svitashev SK, Somers DA (2003) Complete sequence analysis of transgene loci from plants transformed via microprojectile bombardment. Plant Mol Biol 52:421–432

    PubMed  CAS  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarto JE, Norville JE, Church GM (2013) ­RNA-guided human genome engineering via Cas9. Science 339:823–826

    PubMed  CAS  PubMed Central  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wyosocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa2, confer resistance to the fungal pathogen Venturis inaequalis inciting apple scab disease. Mol Plant Microbe Interact 21:448–458

    PubMed  CAS  Google Scholar 

  • Mansfield SD, Kang K-Y, Chapple C (2012) Designed for deconstruction—poplar trees altered in cell wall lignifications improves the efficiency of bioethanol production. New Phytol ­194:91–101

    PubMed  CAS  Google Scholar 

  • Marchiol L, Mattiello A, Pošćić F, Giordano C, Musetti R (2014) In vivo synthesis of nanomaterials in plants: location of silver nanoparticles and plant metabolism. Nanoscale Res Lett 9:101

    PubMed  PubMed Central  Google Scholar 

  • Martin-Ortigosa S, Valenstein JS, Lin VSY, Trewyn BG, Wang K (2012) Gold functionalized mesoporous silica nanoparticle mediated protein and DNA codelivery to plant cells via the biolistic method. Adv Funct Mater 22:3576–3582

    CAS  Google Scholar 

  • Martin-Ortigosa S, Paterson DJ, Valenstein JS, Lin VSY, Trewyn BG, Lyznik LA, Wang K (2014) Mesoporous silica nano-particle-mediated intracellular Cre protein delivery for maize genome editing via loxP site excision. Plant Physiol 164:537–547

    PubMed  CAS  PubMed Central  Google Scholar 

  • Martins DA, Custódio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, Abu-Salah KM (2013) Alternative sources of n–3 long-chain polysaturated fatty acids in marine microalgae. Mar Drugs 11:2259–2281

    PubMed  PubMed Central  Google Scholar 

  • Mason HS, Lam DM-K, Arntzen CJ (1992) Expression of hepatitis B surface antigen in transgenic plants. Proc Natl Acad Sci U S A 89:11745–11749

    PubMed  CAS  PubMed Central  Google Scholar 

  • Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutrition. Curr Opin Plant Biol 11:166–170

    PubMed  CAS  Google Scholar 

  • Mayerhofer R, Koncz-Kalman Z, Narwath C, Bakkeren G, Crameri A et al (1991) T-DNA integration: a mode of illegitimate recombination in plants. EMBO J 10:697–704

    PubMed  CAS  PubMed Central  Google Scholar 

  • McCormick AA, Reddy S, Reinl SJ, Cameron TI, Czerwinkski DK et al (2008) Plant-produced idiotype vaccines for the treatment of non-Hodgkin’s lymphoma: safety and immunogenicity in a phase I clinical study. Proc Natl Acad Sci USA 105:10131–10136

    PubMed  CAS  PubMed Central  Google Scholar 

  • McGloughlin MN (2010) Modifying agricultural crops for improved nutrition. New Biotechnol 27:495–504

    Google Scholar 

  • Menzel G, Harloff HJ, Jung C (2003) Expression of bacterial poly (3-hydroxybutyrate) synthesis genes in hairy roots of sugar beet (Beta vulgaris L.). Appl Microbiol Biotechnol 60:571–576

    PubMed  CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5:561–573

    Google Scholar 

  • Mooney BP (2009) The second green revolution? Production of plant-based biodegradable plastics. Biochem J 418:219–232

    PubMed  CAS  Google Scholar 

  • Murgia I, De Garra L, Grusak MA (2013) Biofortification: how can we exploit plant science and biotechnology to reduce micronutrient deficiencies. Front Plant Sci Plant Physiol 4(Article 429):1–3

    Google Scholar 

  • Nair R, Varghese SH, Nair BJ, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticle delivery to plants. Plant Sci 179:154–163

    CAS  Google Scholar 

  • Naqvi S, Zhu C, Farre G, Rasmessar K, Bassle L et al (2009) Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways. Proc Natl Acad Sci U S A 106:7762–7767

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nawrath C, Poirier Y, Somerville C (1994) Targeting of the polyhydroxybutyrate biosynthetic pathway to the plastids of Arabidopsis thaliana results in high levels of polymer accumulation. Proc Natl Acad Sci U S A 91:12760–12764

    PubMed  CAS  PubMed Central  Google Scholar 

  • Nieminen K, Robischon M, Immanen J, Helariutta Y (2012) Towards optimizing wood development in bioenergy trees. New Phytol 194:46–53

    PubMed  CAS  Google Scholar 

  • Obeme OO, Popoola JO, Leelavathi S, Reddy SV (2011) Advances in plant molecular farming. Biotechnol Adv 29:210–222

    Google Scholar 

  • Odell J, Russel SH (1994) Use of site-specific recombination system in plants. In: Paszkowski J (ed) Homologous recombination and gene silencing in plants. Kluwer Academic, The Netherlands, pp 219–270

    Google Scholar 

  • Olhoft PM, Flagel LE, Somers DA (2004) T-DNA locus structure in a large population of soybean plants transformed using Agrobacterium-mediated cotyledonary-node method. Plant Biotechnol J 2:289–300

    PubMed  CAS  Google Scholar 

  • Oltamanns H, Frame B, Lee LY, Johnson S, Li B, Wang K, Gelvin SB (2010) Generation of ­backcross-free, low transgene copy plants by launching T-DNA from Agrobacterium chromosomes. Plant Physiol 152:1158–1166

    Google Scholar 

  • Onouchi H, Yokoi K, Machida C, Matzusaki H, Oshima Y, Matsuoka K, Nakamura K, Machida Y (1991) Operation of an efficient site-specific recombination system of Zygosaccharomyces rouxii in tobacco cells. Nucleic Acid Res 19:6373–6378

    PubMed  CAS  PubMed Central  Google Scholar 

  • OW D (2011) Recombinase-mediated gene stacking as a transformation operating system. J Integr Plant Biol 53:512–519

    PubMed  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    PubMed  CAS  Google Scholar 

  • Pazskowski J, Baur M, Bogucki A, Potrykus I (1998) Gene targeting in plants. EMBO J ­7:4021–4026

    Google Scholar 

  • Peňa L, Séguin A (2001) Recent advances in genetic transformation of trees. Trends Biotechnol 12:500–506

    Google Scholar 

  • Penney CA, Thomas DR, Deen SS, Walmsley AM (2011) Plant-made vaccines in support of the millennium development goals. Plant Cell Rep 30:789–798

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pérez-Masscot E, Banakar R, Gómez-galera S, Zorilla-López U, Sanahua G et al (2013) The ­contribution of transgenic plants to a better health through improved nutrition: opportunities and constraints. Genes Nutr 8:29–41

    Google Scholar 

  • Petrasovits LA, Zhao L, McQualter RB, Snell KD, Somleva MN, Patterson NA, Nielson LK, Brumbley SM (2012) Enhanced polyhydroxybutyrate production in transgenic sugarcane. Plant Biotechnol J 10:569–578

    PubMed  CAS  Google Scholar 

  • Petrasovits LA, McQualter RB, Gebbie LK, Blackman DM, Nielsen LK, Brumbley SM (2013) Chemical inhibition of acetyl coenzyme A carboxylase as a strategy to increase polyhydroxybutyrate yields in transgenic sugarcane. Plant Biotechnol J 11:1146–1151

    PubMed  CAS  Google Scholar 

  • Petrie JR, Shreshtha P, Zhou X-R, Mansour MP, Liu Q, Belide S, Nichols PD, Singh SP (2012) Metabolic engineering plant seeds with fish oil-like levels of DHA. PLoS ONE 7(11):e49165

    PubMed  CAS  PubMed Central  Google Scholar 

  • Pilate G, Déjardin A, Leplé J-C (2012) Field trials with lignin-modified transgenic trees. In: Jouanin L, Lapierre C (eds) Advances in botanical research-lignins: biosynthesis biodegradation and bioengineering. Academic, London, pp 1–36

    Google Scholar 

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hywönen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6

    PubMed  CAS  PubMed Central  Google Scholar 

  • Poirier Y, Guys KJ (2002) production of polyhydroxyalkanoates in transgenic plants. In: Doi Y, Steinbüchel A (eds) Biopolymers: polyesters in biological systems and biotechnological production. VCH, Wiley, Weinheim, pp 401–435

    Google Scholar 

  • Poirier Y, Dennis DE, Klomparens K, Somerville C (1992) Polyhydroxybutyrate, a biodegradable thermoplastic produced in transgenic plants. Science 256:520–523

    PubMed  CAS  Google Scholar 

  • Pons E, Alquézar B, Rodŕiguez A, Martorell P, Genovés S, Ramón D, Rodrigo JJ, Zacarias L, Péna L (2014) Metabolic engineering of ß-carotene in orange fruit increases its in vivo antioxidant properties. Plant Biotechnol J 12:17–27

    PubMed  CAS  Google Scholar 

  • Pool R (1989) In search of the plastic potato. Science 245:1187–1189

    PubMed  CAS  Google Scholar 

  • Porta C, Lomonossoff GP (2002) Viruses as vectors for the expression of foreign sequences in plants. Biotechnol Genet Eng Rev 19:245–291

    PubMed  CAS  Google Scholar 

  • Pouge GP, Vojdani F, Palmer KE, Hiatt E, Hume S et al (2010) Production of pharmaceutical-grade recombinant aprotinin and a monoclonal antibody product using plant-based transient expression systems. Plant Biotechnol J 8:638–654

    Google Scholar 

  • Pourcel L, Moulin M, Fitzpatrick TB (2013) Engineering strategies to facilitate vitamin B1 ­biofortification of plants by genetic engineering. Front Plant Sci Plant Physiol 4(Article 160):1–8

    Google Scholar 

  • Puchta H, Fauser F (2013) Gene targeting in plants: 25 years later. Int J Dev Biol 57:629–637

    PubMed  CAS  Google Scholar 

  • Rai M, Ingle A (2012) Role of nanotechnology in agriculture with special reference to management of insect pests. Appl Microbiol Biotechnol 94:287–293

    PubMed  CAS  Google Scholar 

  • Rai M, Yadav A (2013) Plants as potential synthesiszer of precious metal nanoparticles: progress and prospects. IET Nanobiotechnol 7:117–124

    PubMed  CAS  Google Scholar 

  • Rigano MM, De Guzman G, Walmsley AM, Frusciante L, Barone A (2013) Production of pharmaceutical proteins in Solanaceae crops. Int J Mol Sci 14:2753–2773

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rogalski M, Carrer H (2011) Engineering plastid fatty acid biosynthesis to improve food quality and biofuel production in higher plants. Plant Biotechnol J 9:554–564

    PubMed  CAS  Google Scholar 

  • Rybicki EP (2010) Plant-made vaccines for humans and animals. Plant Biotechnol J 8:620–637

    PubMed  CAS  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfiffer WH (2013) Biofortification: progress towards a more nourishing future. Global Food Secur 2:9–17

    Google Scholar 

  • Sauer B, Henderson N (1990) Targeted insertion of exogenous DNA into eukaryotic genome by Cre recombinase. New Biol 2:441–449

    PubMed  CAS  Google Scholar 

  • Sayre R, Beeching JR, Cahoon EB, Egesi C, Fauquet C, Fellman J et al (2011) The biocassava plus program: biofortification of cassava for sub-Sahara Africa. Annu Rev Plant Biol 62:251–272

    PubMed  CAS  Google Scholar 

  • Schäfer T, Hanke M-V, Flachowsky H, König S, Peil A, Kaldorf M, Polle A, Buscot F (2012) Chitinase activities, scab resistance, mycorrhization rates and biomass of own-rooted and grafted transgenic apple. Genet Mol Biol 35:466–473

    PubMed  PubMed Central  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high efficiency microalgae for biofuel production. Bioenergy Res 1:20–43

    Google Scholar 

  • Shama LM, Peterson RKD (2008) Assessing risks of plant-based pharmaceuticals: I. Human ­dietary exposure. Human Ecol Risk Assess 14:179–193

    CAS  Google Scholar 

  • Sharma MK, Singh NK, Jani D, Sisoda R, Thungpathra M, et al. (2008) Expression of toexin co-regulated pilus subunit A (TCPA) of Vibrio cholerae and its immunogenic epitopes to choleratoxin B subunit in transgenic tomato (Lycopersicon esculentum). Plant Cell Rep 27:307–318

    PubMed  CAS  Google Scholar 

  • Sharma, DK, Sharma T (2013) Biotechnological approaches for biodiversity conservation. Indian J Sci Res 4:183–186

    Google Scholar 

  • Sharma, HC, Crouch JH, Sharma N, Seetharama N, Hash CT (2002) Applications of biotechnology for crop improvement: prospects and constraint. Plant Sci 163:381–385

    CAS  Google Scholar 

  • Shen H, He X, Poovaiah CR Wuddinch WA, Ma J, Mann DJM et al (2012) Functional characterization of the switchgrass (Panicum virgatum) R2R3 MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 193:121–136

    PubMed  CAS  Google Scholar 

  • Shen H, Poovaiah CR, Ziebell A, Tschaplinski TJ, Pattathil S et al (2013) Enhanced characteristics of genetically modified switchgrass (Panicum virgatum) for high biofuel production. Biotechnol Biofuels 6:71

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shukla VK, Doyon Y, Miller JC, Dekelver RC, Hoehle EA et al (2009) Precise geneome modification in the crop species Zea mays using zinc-finger nucleases. Nature 449:437–441

    Google Scholar 

  • Simmons BA, Loqué D, Ralph J (2010) Advances in modifying lignin for enhanced biofuel ­production. Curr Opin Plant Biol 13:313–320

    PubMed  CAS  Google Scholar 

  • Sirko A, Vanĕk T, Góra-Sochacka A, Redkiewicz P (2011) Recombinant cytokines from plants. Int J Mol Sci 12:3536–3552

    PubMed  CAS  PubMed Central  Google Scholar 

  • Slater SC, Vioge WH, Dennis DE (1988) Cloning and expression in Escherichia coli of the Alcaligenes eutrphus H16 poly-ß-hydroxybutyric biosynthesis pathway. J Bacteriol 170:4431–4436

    PubMed  CAS  PubMed Central  Google Scholar 

  • Snell C, Bernheim A, Bergé J-P, Kuntz M, Pascal G, Paris A, Ricroch AE (2012) Assessment of the health impact of GM plant diet in long-term and multigenerational animal feeding trials: a literature review. Food Chem Toxic 50:1134–1148

    CAS  Google Scholar 

  • Somleva, MN, Peoples OP, Snell KD (2013) PHA bioplastics, biochemicals, and energy from crops. Plant Biotechnol J 11:233–252

    PubMed  CAS  Google Scholar 

  • Sparrow PAC, Twyman RM (2009) Biosafety, risk assessment and regulation of plant made pharmaceuticals. In: Fay L, Gomrod V (eds) Methods in molecular biology, recombinant proteins from plants, vol 483. Springer, Berlin, pp 341–253

    Google Scholar 

  • Specht EA, Mayfield SP (2014) Algae-based oral recombinant vaccines. Front Microbiol 5:60

    PubMed  PubMed Central  Google Scholar 

  • Srivastava V (2013) Site-specific gene integration in rice. Methods Mol Biol 956:83–93

    PubMed  Google Scholar 

  • Srivastava V, Ow DW (2004) Marker-free site-specific gene integration in plants. Trends Biotechnol 22:627–629

    PubMed  CAS  Google Scholar 

  • Srivastava V, Ariza-Nieto M, Wilson AJ (2004) Cre-mediated site-specific integration for ­consistent transgene expression in rice. Plant Biotech J 2:169–179

    CAS  Google Scholar 

  • Stearfield SJ (2006) Mucosal immunization using recombinant plant-based oral vaccines. ­Methods 38:150–157

    Google Scholar 

  • Stewart D (2010) Pharmaceutical market overview. http://www.plantformcorp.com

  • Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable ­cellulosic ethanol. Nature 9:434–443

    Google Scholar 

  • Sui X, Zhao Y, Wang S, Duan X, Xu L, Liang R, Li B (2012) Improvement of Fe content of wheat (Triticum aestivum) grain by soybean ferritin cassette without vector backbone sequence. J Agric Biotechnol 20:766–773

    CAS  Google Scholar 

  • Svitashev SK, Somers DA (2001) Genomic interspersion determine the size and complexity of transgene loci in transgenic plants produced by microprojectile bombardment. Genome 44:691–697

    PubMed  CAS  Google Scholar 

  • Tacket CO (2005) Plant-derived vaccines against diarrheal diseases. Vaccine 23:1866–1869

    PubMed  CAS  Google Scholar 

  • Torney F, Trewyn BG, Lin VSY, Wang K (2007) Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nat Nanotechnol 2:295–300

    PubMed  CAS  Google Scholar 

  • Townsend JA, Wright DA, Winfrey RJ, Fu F, Meader ML, Joung JK, Voytas DF (2009) High frequency modification of plant genes using engineered zinc finger nucleases. Nature ­459:442–445

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tremblay R, Wang D, Jevnikar AM, Ma S (2010) Tobacco, a highly efficient green bioreactor for production of therapeutic proteins. Biotechnol Adv 28:214–221

    PubMed  CAS  Google Scholar 

  • Tzfira T, White C (2005) Towards targeted mutagenesis and gene replacement in plants. Trends Biotechnol 23:567–569

    PubMed  CAS  Google Scholar 

  • Tzfira T, Weinthal D, Marton I, Zeevi V, Zucker A, Vainstein A (2012) Genomic modification of plants cells by custom-made restriction enzymes. Plant Biotechnol J 10:373–389

    PubMed  CAS  Google Scholar 

  • Vaezi R, Napier JA, Sayanova O (2013) Identification and functional characterization of genes encoding omega-3 polysunaturated fatty acid biosynthesis activities from unicellular microalgae. Mar Drugs 11:5116–5129

    PubMed  CAS  PubMed Central  Google Scholar 

  • Vadlapudi V, Kaladhar DSVGK (2014) Review: green synthesis of silver and gold nanoparticles. Middle-East J Sci Res 19:834–842

    Google Scholar 

  • Van Acker RL, Goeminne G et al (2014) Improved saccharification and ethanol yield from field-grown transgenic poplar deficient in cinnamoyl-CoA reductase. Proc Natl Acad Sci U S A 111:845–850

    PubMed  CAS  PubMed Central  Google Scholar 

  • Van Beilen JB, Poirier Y (2008) Production of renewable polymers from crop plants. Plant J 54:684–701

    PubMed  CAS  Google Scholar 

  • Varsani A, Williamson A-L, Stewart D, Rybicki EP (2006) Transient expression of human papillomavirus type 16L1 protein in Nicotiana benthamiana using an infectious tobamovirus vector. Virus Res 120:91–96

    PubMed  CAS  Google Scholar 

  • Vergunst AC, Jansen LE, Hooykaas PJ (1998) Site-specific ingtegration of Agrobacterium T-DNA in Arabidopsis thaliana mediated by cre recombinase. Nucl Acid Res 26:2729–2734

    CAS  Google Scholar 

  • Voelker SL, Lachenbach B, Meinzner FC, Strauss SH (2011) Reduced wood stiffness and strength, and altered stem form, in young antisense 4CL transgenic poplars with reduced lignin contents. New Phytol 189:1096–1109

    PubMed  Google Scholar 

  • Walsh G (2010) Biopharmaceutical benchmark 2010. Nat Biotechnol 28:917–924

    PubMed  CAS  Google Scholar 

  • Wang Y, Yau Y-Y, Perkin-Balding D, Thompson JD (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    PubMed  CAS  PubMed Central  Google Scholar 

  • Welsch R, Arango J, Bär C, Salazar B, Al-Babili S et al (2010) Provitamin A accumulation in cassava (Manihot exculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22:3348–3356

    PubMed  CAS  PubMed Central  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diet—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    PubMed  CAS  Google Scholar 

  • Winkler JT (2011) Biofortification: improving the nutritional quality of staple crops. In: Pasternack C (ed) Access not excess. Smith-Gordon, London, pp 100–112

    Google Scholar 

  • **a B, Dong C, Zhang WY, Lu Y, Chen JH, Shi JS (2013) Highly efficient uptake of ultrafine mesoporous silica nanoparticles with excellent biocompatibility by Liriodendron hybrid suspension cells. Sci China Life Sci 56:82–89

    PubMed  CAS  Google Scholar 

  • Xu K (2013) The next generation of biotechnology for apple improvement and beyond, the tale of TALENs and TALEs. New York Fruit Q 20:17–20

    Google Scholar 

  • Xu B, Escamilla-Treviňo LL, Sathitsuksanoh N, Shen Z, Shen H, Zhang HYP, Dixon RA, Zhao B (2011) Silencing of 4-coumarate:coenzyme A ligase in switchgrass leads to reduced lignin content and improved fermentable sugar yields for biofuel production. New Phytol 192:611–625

    PubMed  CAS  Google Scholar 

  • Yabuta Y, Tanaka H, Yoshimura S, Suzuki A, Tamoi M, Maruta T, Shigeoka S (2013) Improvement of vitamin A quality and quantity in tobacco and lettuce by chloroplast genetic engineering. Transgenic Res 22:319–402

    Google Scholar 

  • Yamagishi N, Kishigami R, Yoshikawa N (2014) Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant breeding technique with no transmission of genetic modification. Plant Biotechnol J 12:60–68

    PubMed  CAS  Google Scholar 

  • Yang A, Li Y, Xu Y, Zhang W-H (2013) A recptor-like protein is involved in regulation of iron acquisition in rice. J Exp Bot 64:5009–5020

    PubMed  CAS  PubMed Central  Google Scholar 

  • Ye X, Al-Babli S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (B-carotene) biosynthetic pathway into (carotene-free) rice endosperm. Science 287:303–305

    PubMed  CAS  Google Scholar 

  • Ye X, Busov V, Zhao N, Meilan R, McDonnell LM et al (2011) Transgenic Populus trees for forest products, bioenergy, and functional genomics. Crit Rev Plant Sci 30:415–434

    Google Scholar 

  • Yee KL, Rodriguez M, Tschaplinski TJ, Engle NL, Martin MZ (2012) Evaluation of the bioconversion of genetically modified switchgrass using simultaneous saccharification and fermentation and a consolidated bioprocessing approach. Biotechnol Biofuels 5:81

    PubMed  CAS  PubMed Central  Google Scholar 

  • Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13:421–429

    PubMed  CAS  Google Scholar 

  • Zhang Y-HP (2013) Next generation biorefineries will solve the food, biofuels, and environmental trilemma in the energy-food-water nexus. Energy Sci Eng 1:27–41

    CAS  Google Scholar 

  • Zhu C, Naqvi S, Gomez-Galera S, Pelacho AM, Capell T, Christou P (2007) Transgenic strategies for the nutritional enhancement of plants. Trends Plant Sci 12:548–555

    PubMed  CAS  Google Scholar 

  • Zhu C, Sanahuja G, Yuan D, Farré G, Arjó G et al (2013) Biofortification of plants with altered antioxidant content and composition: genetic engineering strategies. Plant Biotechnol J ­11:129–141

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M.R. Ahuja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ahuja, M. (2014). Next Generation Plant Biotechnology. In: Ahuja, M., Ramawat, K. (eds) Biotechnology and Biodiversity. Sustainable Development and Biodiversity, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-09381-9_6

Download citation

Publish with us

Policies and ethics

Navigation