Part of the book series: SpringerBriefs in Molecular Science ((BRIEFSMAGNET))

Abstract

The concept of “diradical character based design” for efficient functional substances is introduced using the dissociation process of a homodinuclear system . The diradical character , which is one of the quantum-chemically well-defined chemical indices and indicates the singlet open-shell nature, is employed for classification of arbitrary electronic structures into three categories, i.e., weak, intermediate and strong electron correlation regions. In this book, we present a simple relationship between diradical character and the ground/excited electronic structures, and illuminate that the systems in the intermediate diradical character region have the advantage of exhibiting highly efficient optoelectronic functionality. As examples, we show the diradical character based molecular design principles for highly efficient nonlinear optical (NLO) and singlet fission (SF) properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 51.99
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Salem, C. Rowland, Angew. Chem., Int. Ed. 11, 92 (1972)

    Article  CAS  Google Scholar 

  2. W.T. Borden (ed.), Diradicals (Wiley, New York, 1982)

    Google Scholar 

  3. V. Bonaic-Koutecky, J. Koutecky, J. Michl, Angew. Chem. Int. Ed. 26, 170 (1987)

    Article  Google Scholar 

  4. A. Rajca, Chem. Rev. 94, 871 (1994)

    Article  CAS  Google Scholar 

  5. F. Breher, Coord. Chem. Rev. 251, 1007 (2007)

    Article  CAS  Google Scholar 

  6. M. Abe, Chem. Rev. 113, 7011 (2013)

    Article  CAS  Google Scholar 

  7. C.J. Calzado, J. Cabrero, J.P. Malrieu, R. Caballol, J. Chem. Phys. 116, 2728 (2002)

    Article  CAS  Google Scholar 

  8. M. Nakano, R. Kishi, S. Ohta et al., Phys. Rev. Lett. 99, 033001 (2007)

    Article  Google Scholar 

  9. E.F. Hayes, A.K.Q. Siu, J. Am. Chem. Soc. 93, 2090 (1971)

    Article  CAS  Google Scholar 

  10. K. Yamaguchi, in Self-Consistent Field: Theory and Applications, ed. by R. Carbo, M. Klobukowski (Elsevier: Amsterdam, 1990), p. 727

    Google Scholar 

  11. M. Head-Gordon, Chem. Phys. Lett. 372, 508 (2003)

    Article  CAS  Google Scholar 

  12. K. Kamada, K. Ohta et al., J. Phys. Chem. Lett. 1, 937 (2010)

    Article  CAS  Google Scholar 

  13. M. Nakano et al. Theor. Chem. Acc. 130, 711 (2011); erratum 130, 725

    Google Scholar 

  14. M. Nakano, R. Kishi et al., J. Phys. Chem. A 109, 885 (2005)

    Article  CAS  Google Scholar 

  15. M. Nakano, R. Kishi, S. Ohta et al., J. Chem. Phys. 125, 074113 (2006)

    Article  Google Scholar 

  16. M. Nakano, K. Yoneda et al, J. Chem. Phys. 131, 114316 (2009)

    Google Scholar 

  17. M. Nakano, B. Champagne et al., J. Chem. Phys. 133, 154302 (2010)

    Article  Google Scholar 

  18. M. Nakano, T. Minami et al., J. Phys. Chem. Lett. 2, 1094 (2011)

    Article  CAS  Google Scholar 

  19. M. Nakano, T. Minami et al., J. Chem. Phys. 136, 024315 (2012)

    Article  Google Scholar 

  20. M. Nakano et al., J. Chem. Phys. 138, 244306 (2013)

    Article  Google Scholar 

  21. M.J. Smith, J. Michl, Chem. Rev. 110, 6891 (2010)

    Article  CAS  Google Scholar 

  22. D. Burland (ed.), Special Issue on Optical Nonlinearities in Chemistry. Chem. Rev. 94, 1–278 (1994)

    Google Scholar 

  23. H.S. Nalwa and S. Miyata (eds.), Nonlinear Optics of Organic Molecules and Polymers (CRC, Boca Raton, FL, 1997)

    Google Scholar 

  24. H.S. Nalwa (ed.), Handbook of Advanced Electronic and Photonic Materials and Devices, vol. 9, (Academic Press, New York, 2001)

    Google Scholar 

  25. D.A. Pathenopoulos, P.M. Rentzepis, Science 245, 893 (1989)

    Google Scholar 

  26. B.H. Cumpston, S.P. Ananthavel et al., Nature 398, 51 (1999)

    Article  CAS  Google Scholar 

  27. W.R. Dichtel, J.M. Serin et al., J. Am. Chem. Soc. 126, 5380 (2004)

    Article  CAS  Google Scholar 

  28. S. Kawata, H.-B. Sun, T. Tanaka, K. Takada, Nature 412, 697 (2001)

    Article  CAS  Google Scholar 

  29. W. Zhou, S.M. Kuebler et al., Science 296, 1106 (2002)

    Article  CAS  Google Scholar 

  30. M. Albota, D. Beljonne, J.-L. Brédas, J.E. Ehrlich, Science 281, 1653 (1998)

    Article  CAS  Google Scholar 

  31. F. Terenziani, C. Katan et al., Adv. Mater. Weinheim: Ger. 20, 4641 (2008)

    Article  CAS  Google Scholar 

  32. M. Nakano, K. Yamaguchi, Chem. Phys. Lett. 206, 285 (1993)

    Article  CAS  Google Scholar 

  33. M. Nakano, I. Shigemoto, S. Yamada, K. Yamaguchi, J. Chem. Phys. 103, 4175 (1995)

    Article  CAS  Google Scholar 

  34. M. Nakano, H. Nagao, K. Yamaguchi, Phys. Rev. A 55, 1503 (1997)

    Article  CAS  Google Scholar 

  35. S. Singh, W. Jones, J.W. Siebrand, B.P. Stoicheff, W.G. Schneider, J. Chem. Phys. 42, 330 (1965)

    Article  CAS  Google Scholar 

  36. N. Geacintov, M. Pope et al., Phys. Rev. Lett. 22, 593 (1969)

    Article  CAS  Google Scholar 

  37. R.E. Merrifield, P. Avakian et al., Chem. Phys. Lett. 3, 386 (1969)

    Article  CAS  Google Scholar 

  38. M.C. Hanna, A.J. Nozik, J. Appl. Phys. 100, 074510 (2006)

    Article  Google Scholar 

  39. I. Paci, J.C. Johnson et al., J. Am. Chem. Soc. 128, 16546 (2006)

    Article  CAS  Google Scholar 

  40. P.J. Jadhav, A. Mohanty et al., Nano. Lett. 11, 1495 (2011)

    Article  CAS  Google Scholar 

  41. A. Rao, M.W. Wilson et al., J. Am. Chem. Soc. 132, 12698 (2010)

    Article  CAS  Google Scholar 

  42. H. Najafov, B. Lee et al., Nat. Mater. 9, 938 (2010)

    Article  CAS  Google Scholar 

  43. E.C. Greyson, J. Vura-Weis et al., J. Phys. Chem. B 114, 14168 (2010)

    Article  CAS  Google Scholar 

  44. P.M. Zimmerman et al., J. Am. Chem. Soc. 133, 19944 (2011)

    Article  CAS  Google Scholar 

  45. P.E. Teichen et al., J. Phys. Chem. B 116, 11473 (2012)

    Article  CAS  Google Scholar 

  46. T. Minami, M. Nakano, J. Phys. Chem. Lett. 3, 145 (2012)

    Article  CAS  Google Scholar 

  47. C. Lambert, Angew. Chem., Int. Ed. 50, 1756 (2011)

    Article  CAS  Google Scholar 

  48. Z. Sun, J. Wu, J. Mater. Chem. 22, 4151 (2012)

    Article  CAS  Google Scholar 

  49. M. Nishino et al., J. Phys. Chem. A 101, 705 (1997)

    Article  CAS  Google Scholar 

  50. H. Fukui et al., J. Phys. Chem. Lett. 2, 2063 (2011)

    Article  CAS  Google Scholar 

  51. H. Fukui et al., J. Phys. Chem. A 116, 5501 (2012)

    Article  CAS  Google Scholar 

  52. M. Nakano et al., Int. J. Quant. Chem. 113, 585 (2013)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masayoshi Nakano .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Nakano, M. (2014). Introduction. In: Excitation Energies and Properties of Open-Shell Singlet Molecules. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-08120-5_1

Download citation

Publish with us

Policies and ethics

Navigation