A Higher Order Immersed Discontinuous Galerkin Finite Element Method for the Acoustic Interface Problem

  • Conference paper
  • First Online:
Advances in Applied Mathematics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 87))

  • 1501 Accesses

Abstract

We present an interface discontinuous Galerkin finite element method on non-fitted meshes for solving acoustic wave propagation problems in nonhomogeneous media. The proposed method uses the standard discontinuous Galerkin finite element formulation with polynomial approximation on elements that contain one material while on interface elements containing multiple materials it uses a specially build piecewise polynomial shape functions that satisfy the interface jump conditions. We present several computational results that suggest that the proposed method has optimal convergence rates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Hesthaven, J., Warburton, T.: Nodal high-order methods on unstructured grids-I. Time-domain solution of Maxwell’s equations. J. Comput. Phys. 181, 186–221 (2002)

    MATH  MathSciNet  Google Scholar 

  2. Minoli, C.A.A., Kopriva, D.A.: Discontinuous Galerkin spectral element approximations on moving meshes. J. Comput. Phys. 230, 1876–1902 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Wilcox, L.C., Stadler, G., Burstedde, C., Ghattas, O.: A high-order discontinuous Galerkin method for wave propagation through coupled elastic–acoustic media. J. Comput. Phys. 229(24), 9373–9396 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Carpenter, M.H., Kennedy, C.A.: Fourth order 2N-storage Runge Kutta scheme. Techical Memorandum NASA-TM-109112, NASA Langley Research Center, Hampton (1994)

    Google Scholar 

  5. Manthey, J.L., Hu, F.Q., Hussaini, M.Y.: Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics. J. Comput. Phys. 124, 177–191 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hu, F.Q., Hussaini, M.Y., Rasetarinera, P.: An analysis of the discontinuous Galerkin method for wave propagation problems. J. Comput. Phys. 151, 921–946 (1999)

    Article  MATH  Google Scholar 

  7. Williamson, J.H.: Low storage Runge Kutta schemes. J. Comput. Phys. 35, 48–56 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  8. Falk, R., Richter, G.: Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36, 935–952 (1999)

    Article  MathSciNet  Google Scholar 

  9. Monk, P., Richter, G.R.: A discontinuous Galerkin method for linear symmetric hyperbolic systems in inhomogeneous media. J. Sci. Comput. 22–23, 443–477 (2005)

    Article  MathSciNet  Google Scholar 

  10. Babuška, I.: The finite element method for elliptic equations with discontinuous coefficients. Computing 5, 207–213 (1970)

    Article  MATH  Google Scholar 

  11. Bramble, J.H., King, J.T.: A finite element method for interface problems in domains with smooth boundary and interfaces. Adv. Comput. Math. 6, 109–138 (1996)

    Article  MathSciNet  Google Scholar 

  12. Chen, Z., Zou, J.: Finite element methods and their convergence for elliptic and parabolic interface problems. Numer. Math. 79, 175–202 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Heinrich, B.: Finite Difference Methods on Irregular Networks. International Series of Numerical Mathematics, vol. 82. Birkhäuser, Boston (1987)

    Google Scholar 

  14. Li, Z., Ito, K.: The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains. Frontiers in Applied Mathematics, vol. 33. Cambridge University Press, SIAM, Cambridge (2006)

    Google Scholar 

  15. Samarskiǐ, A.A., Andreev, V.B.: Méthodes aux Différences pour Équations Elliptiques. Mir, Moscow (1978)

    Google Scholar 

  16. Xu, J.: Estimate of the convergence rate of the finite element solutions to elliptic equation of second order with discontinuous coefficients. Nat. Sci. J. **angtan Univ. 1, 1–5 (1982)

    Google Scholar 

  17. Lombard, B., Piraux, J.: A new interface method for hyperbolic problems with discontinuous coefficients: one-dimensional acoustic example. J. Comput. Phys. 1168, 227–248 (2001)

    MathSciNet  Google Scholar 

  18. Lombard, B., Piraux, J.: Numerical treatment of two dimensional interfaces for acoustic and elastic waves. J. Comput. Phys. 195, 90–116 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Adjerid, S., Ben-Romdhane, M., Lin, T.: Higher degree immersed finite element methods for elliptic interface problems. Int. J. Numer. Anal. Model. 11(3), 541–566 (2014)

    Google Scholar 

  20. Adjerid, S., Lin, T.: Higher-order immersed discontinuous Galerkin methods. Int. J. Inform. Syst. Sci. 3(4), 555–568 (2007)

    MATH  MathSciNet  Google Scholar 

  21. Adjerid, S., Lin, T.: p-th degree immersed finite element for boundary value problems with discontinuous coefficients. Appl. Numer. Math. 59(6),1303–1321 (2009)

    Google Scholar 

  22. He, X., Lin, T., Lin Y.: Approximation capability of a bilinear immersed finite element space. Numer. Meth. Part. Differ. Equat. 24, 1265–1300 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. He, X., Lin, T., Lin, Y.: Immersed finite element methods for elliptic interface problems with non-homogeneous jump conditions. Int. J. Numer. Anal. Model. 8(2), 284–301 (2011)

    MATH  MathSciNet  Google Scholar 

  24. He, X., Lin, T., Lin, Y., Zhang, X.: Immersed finite element methods for parabolic equations with moving interface. Numer. Meth. Part. Differ. Equat. 29(2), 619–646 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kafafy, R., Lin, T., Lin, Y., Wang, J.: Three-dimensional immersed finite element methods for electric field simulation in composite materials. Int. J. Numer. Meth. Eng. 64, 904–972 (2005)

    Article  MathSciNet  Google Scholar 

  26. Ainsworth, M.: Dispersive and dissipative behaviour of high order discontinuous Galerkin finite element methods. J. Comput. Phys. 198, 106–130 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Adjerid, S., Moon, K.: A high order immersed discontinuous Galerkin method for the two dimensional acoustic problem (2014, in preparation)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Science Foundation (Grant Number DMS 1016313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Adjerid .

Editor information

Ali R. Ansari

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Adjerid, S., Moon, K. (2014). A Higher Order Immersed Discontinuous Galerkin Finite Element Method for the Acoustic Interface Problem. In: Ansari, A. (eds) Advances in Applied Mathematics. Springer Proceedings in Mathematics & Statistics, vol 87. Springer, Cham. https://doi.org/10.1007/978-3-319-06923-4_6

Download citation

Publish with us

Policies and ethics

Navigation