Thermoluminescence of Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon
  • 3561 Accesses

Abstract

The characteristics of electronics states in porous silicon (PS) from measurements of thermoluminescence (TL) are presented. The observed shape of the TL peaks at low temperatures (4–250 K) is explained by quasi-continuous spectrum of the electron traps with activation energy in range of 0.03–0.4 eV. The high-energy peaks observed at 100–300 °C are associated with radiation-induced defects E′ (≡ Si •) and nonbridging oxygen hole centers (≡ Si − O •) that generated in insulating SiOx layer which covers the PS surface. Currently, the TL of PS is not exploited as a radiation dosimeter, due to the low activation energies of the traps and strong fading. Nevertheless, the observations of high temperature peaks of TL in oxidized PS, its biocompatibility and other properties, suggest a potential use of this material for in vivo dosimetry. An additional application could be the use of PS as a template for more established scintillation materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 379.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul Rahman AT, Hugtenburg RP, Abdul Sani SF, Alalawi AIM, Issa F, Thomas R, Barry MA, Nisbet A, Bradley DA (2012) An investigation of the thermoluminescence of Ge-doped SiO2 optical fibres for application in interface radiation dosimetry. Appl Radiat Isot 70:1436–1441

    Article  Google Scholar 

  • Anastasiadis C, Triantis D (2000) Thermally stimulated detrap** in porous silicon. Mater Sci Eng B 69–70:149–151

    Article  Google Scholar 

  • Benabdesselam M, Mady F, Girard S (2013) Assessment of Ge-doped optical fibre as a TL-mode detector. J Non-Cryst Solids 360:9–12

    Article  Google Scholar 

  • Blonskyy IV, Brodyn MS, Vakhnin AY, Kadan VM, Kadashchuk AK (2001) Thermoluminescent study of porous silicon. Phys Lett A 279:391–394

    Article  Google Scholar 

  • Blonskyy IV, Kadan VM, Kadashchuk AK, Vakhnin AY, Zhugayevych AY, Crervak IV (2003) New mechanism of charge carriers localization in silicon nanowires. Phys Low Dimens Struct 7/8:25

    Google Scholar 

  • Brodovoy OV, Skryshevsky VA, Brodovoy VA (2002) Recombination properties of electronic states in porous silicon. Solid State Electron 46(1):83–87

    Article  Google Scholar 

  • Chen R, McKeever SWS (1997) Theory of thermoluminescence and related phenomena. World Scientific, Singapore

    Book  Google Scholar 

  • Ciurea ML, Baltog I, Lazar M, Iancu V, Lazanu S, Pentia E (1998) Electrical behaviour of fresh and stored porous silicon films. Thin Solid Films 325(1–2):271–277

    Article  Google Scholar 

  • Ciurea ML, Draghici M, Lazanu S, Iancu V, Nassiopoulou A, Ioannou V, Tsakiri V (2000) Trap** levels in nanocrystalline porous silicon. Appl Phys Lett 76:3067–3069

    Article  Google Scholar 

  • Cooke DW, Bennett BL, Farnum EH, Hults WL, Muenchausen RE, Smith JL (1997) Thermally stimulated luminescence from x-irradiated porous silicon. Appl Phys Lett 70:3594

    Article  Google Scholar 

  • de Carvalho lB Jr, Guzzo PL, Sullasi HL, Khoury HJ (2010) Effect of particle size in the TL response of natural quartz sensitized by high dose of gamma radiation and heat-treatments. Mater Res 13(2):265–271

    Article  Google Scholar 

  • Franiv AV, Bovgyra OV, Savchyn OV (2004) Thermostimulated luminescence spectra of InxTl1−xI nanostructures synthesized in porous silicon. Funct Mater 11(4):742–745

    Google Scholar 

  • Hashim S, Al-Ahbabi S, Bradley DA, Webb M, Jeynes C, Ramli AT, Wagiran H (2009) The thermoluminescence response of doped SiO2 optical fibres subjected to photon and electron irradiations. Appl Radiat Isot 67:423–427

    Article  Google Scholar 

  • Kortov V (2007) Materials for thermoluminescent dosimetry: current status and future trends. Radiat Meas 42:576–581

    Article  Google Scholar 

  • Koul DK (2008) 110 °C thermoluminescence glow peak of quartz-a brief review. Pramana J Phys 71(6):1209–1229

    Article  Google Scholar 

  • Kovalev D, Heckler H, Averboukh B, Ben-Chorin M, Schwartzkopff M, Koch F (1998) Hole burning spectroscopy of porous silicon. Phys Rev B 57(7):3741–3744

    Article  Google Scholar 

  • McKeever SWS (1984) Thermoluminescence in quartz and silica. Radiat Prot Dosim 8(1/2):81–98

    Google Scholar 

  • Moscovitch M, Horowitz YS (2007) Thermoluminescent materials for medical applications: LiF:Mg, Ti and LiF:Mg, Cu, P. Radiat Meas 41:S71–S77

    Article  Google Scholar 

  • Pinčik E, Bartoš P, Jergel M, Falcony C, Bartoš J, Kučera M, Kákoš J (1999) The metastability of porous silicon/crystalline silicon structure. Thin Solid Films 343–344:277–280

    Article  Google Scholar 

  • Rivera T (2011) Synthesis and thermoluminescent characterization of ceramics materials. In: Sikalidis C (ed) Advances in ceramics – synthesis and characterization, processing and specific applications. InTech, Rijeka, Croatia pp 127–164

    Google Scholar 

  • Skryshevskii YA, Skryshevskii VA (2001) Thermally stimulated luminescence in porous silicon. J Appl Phys 89(5):2711–2714

    Article  Google Scholar 

  • Tale IA (1981) Trap spectroscopy by the fractional glow technique. Phys Status Solidi A66:65–75

    Article  Google Scholar 

  • Tretyak OV, Skryshevsky VA, Vikulov VA, Boyko YV, Zinchuk VM (2003) Surface electronic states in metal-porous silicon-silicon structures. Thin Solid Films 445(1):144–150

    Article  Google Scholar 

  • Trukhin AN, Troks J, Griscom DL (2007) Thermostimulated luminescence and electron spin resonance in X-ray- and photon-irradiated oxygen-deficient silica. J Non-Cryst Solids 353:1560–1566

    Article  Google Scholar 

  • Wintle AG (1997) Luminescence dating: laboratory procedures and protocols. Radiat Meas 27(5/6):769–817

    Article  Google Scholar 

  • Yusoff AL, Hugtenburg RP, Bradley DA (2005) Review of development of a silica-based thermoluminescence dosimeter. Radiat Phys Chem 74:459–481

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy Skryshevsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Skryshevsky, V. (2014). Thermoluminescence of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_35

Download citation

Publish with us

Policies and ethics

Navigation