Thermal Degradation of Polymer Blends, Composites and Nanocomposites

  • Chapter
  • First Online:
Thermal Degradation of Polymer Blends, Composites and Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter deals with a brief account of thermal degradation of polymer-based blends, composites and nanocomposites. Different synthesising, preparation and characterisation methods of thermal degradation of polymer-based blends, composites and nanocomposites are discussed. Finally the applications, new challenges and opportunities for these thermal degradation of polymer-based blends, composites and nanocomposites are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Thomas, R., Vijayan, P., Thomas, S.: Recycling of thermosetting polymers. In: Fainleib, A., Grigoryeva, O. (eds.) Recent developments in polymer recycling, pp. 122–129. Transworld Research Network, Kerala (2011)

    Google Scholar 

  2. Irfan, M.H.: Chemistry and Technology of Thermosetting Polymers in Construction Applications, pp. 78–96, 230–239. Springer Science and Business Media, Dodrecht (1998)

    Google Scholar 

  3. Shojaei, A., Faghihi, M.: Physico-mechanical properties and thermal stability of thermoset nanocomposites based on styrene-butadiene rubber/phenolic resin blend. Mat. Sci. Eng. A. 527, 917–926 (2010)

    Article  Google Scholar 

  4. Honmute, S., Ganachari, S.V., Bhat, R., Naveen Kumar, H.M.P., Huh, D.S., Venkatarman, A.: Studies on polyaniline-polyvinyl alcohol (PANI-PVA) interpenetrating polymer network (IPN) thin films. Int. J. Sci. Res. 1(2), 102–106 (2012)

    Google Scholar 

  5. Merlin, L.M., Sivasankar, B.: Synthesis and characterization of semi-interpenetrating polymer networks using biocompatible polyurethane and acrylamide monomer. Eur. Polym. J. 45, 165–170 (2009)

    Article  Google Scholar 

  6. Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B Eng. 43, 2762–2771 (2012)

    Article  Google Scholar 

  7. Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Meredith, J.C.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polym. 54, 6589–6598 (2013)

    Article  Google Scholar 

  8. Hameed, N., Sreekumar, P.A., Francis, B., Yang, W., Thomas, S.: Morphology, dynamic mechanical and thermal studies on poly(styrene-co-acrylonitrile) modified epoxy resin/glass fibre composites. Compos. A Appl. Sci. Manuf. 38, 2422–2432 (2007)

    Article  Google Scholar 

  9. Pandey, J.K., Reddy, K.R., Kumar, A.P., Singh, R.P.: An overview on the degradability of polymer nanocomposites. Polym. Degrad. Stab. 88, 234 (2005)

    Article  Google Scholar 

  10. Ollier, R., Rodriguez, E., Alvarez, V.: Unsaturated polyester/bentonite nanocomposites: influence of clay modification on final performance. Compos. A Appl. Sci. Manuf. 48, 137–143 (2013)

    Google Scholar 

  11. Carrasco, F., Pagès, P.: Thermal degradation and stability of epoxy nanocomposites: influence of montmorillonite content and cure temperature. Polym. Degrad. Stab. 93, 1000 (2008)

    Article  Google Scholar 

  12. Lakshmi, M.S., Narmadha, B., Reddy, B.S.R.: Enhanced thermal stability and structural characteristics of different MMT-Clay/epoxy-nanocomposite materials. Polym. Degrad. Stab. 93, 20125–45213 (2008)

    Google Scholar 

  13. Saitoh, K., Ohashi, K., Oyama, T., Takahashi, A., Kadota, J., Hirano, H.: Development of high-performance epoxy/clay nanocomposites by incorporating novel phosphonium modified montmorillonite. J. Appl. Polym. Sci. 122, 666 (2011)

    Google Scholar 

  14. Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim. Acta 523, 1–24 (2011)

    Google Scholar 

  15. Sahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010)

    Google Scholar 

  16. Segev, O., Kushmaro, A., Brenner, A.: Environmental impact of flame retardants (persistence and biodegradability). Int. J. Environ. Res. Public Health 6, 478–491 (2009)

    Article  Google Scholar 

  17. Murphy, J.: Modifying specific properties: flammability-flame retardants. In: Additives for Plastics, Handbooks, pp. 115–140. Elsevier Science Ltd., New York (2001)

    Google Scholar 

  18. Kumara, A.P., Depana, D., Tomerb, N.S., Singha, R.P.: Nanoscale particles for polymer degradation and stabilization—Trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)

    Article  Google Scholar 

  19. Laoutid, F., Bonnaud, L., Alexandre, M., Lopez-Cuesta, J.-M., Dubois, Ph: New prospects in flameretardant polymer materials: from fundamentals to nanocomposites. Mater. Sci. Eng. R. 63(3), 100–125 (2009)

    Article  Google Scholar 

  20. Zhang, J., Ji, Q., Zhang, P., **a, Y., Kong, Q.: Thermal stability and flame-retardancy mechanism of poly(ethyleneterephthalate)/boehmitena nocomposites. Polym. Degrad. Stab. 95, 1211–1218 (2010)

    Article  Google Scholar 

  21. Ke, Y.C., Wu, T.B., **a, Y.F.: The nucleation, crystallization and dispersion behavior of PET with monodisperse SiO2 composites. Polymer 11, 3324–3336 (2007)

    Article  Google Scholar 

  22. Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V., et al.: Hydroxide and oxide ultra fine powders—effective retardant additives in polymers. In: Abstract 10th Branch Meeting Problems and development prospects of the Tomsk Petrochemical Complex, Tomsk, Russia, p. 37 (1996) (In Russian)

    Google Scholar 

  23. Gromov, A.A., Nazarenko, O.B., Tikhonov, D.V., Il**, A.P., Pautova, Y.I.: Electroex plosive Nanometals. In: Gromov, A., Teipel, U. (eds.) Metal Nanopowders Production, Characterization, and Energetic Applications, pp. 67–78. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2014)

    Chapter  Google Scholar 

  24. Kwon, Y.-S., Kim, J.-C., Ilyin, A.P., Nazarenko, O.B., Tikhonov, D.V.: Electroexplosive technology of nano powders production: current status and future prospect. J. Korean Powder Metall. Inst. 19(1), 40–48 (2012)

    Article  Google Scholar 

  25. Nazarenko, O.B., Amelkovich, Y.A., Ilyin, A.P., Sechin, A.I.: Prospects of using nanopowders as flame retardant additives. Adv. Mater. Res. 872, 123–127 (2014)

    Article  Google Scholar 

  26. Haque, M.H., Upadhyaya, P., Roy, S., Ware, T., Voit, W., Lu, H.: The changes in flexural properties and microstructures of carbon fiber bismaleimide composite after exposure to a high temperature. Compos. Struct. 108, 57–64 (2014)

    Article  Google Scholar 

  27. La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42, 579–588 (2011)

    Article  Google Scholar 

  28. Salavatian, M., Smith, L.: An improved analytical model for shear modulus of fiber reinforced laminates with damage. Compos. Sci. Technol. 105, 9–14 (2014)

    Article  Google Scholar 

  29. Yu, T., Jiang, N., Li, Y.: Functionalized multi-walled carbon nanotube for improving the flame retardancy of ramie/poly(lactic acid) composite. Compos. Sci. Technol. 104, 26–33 (2014)

    Article  Google Scholar 

  30. Srikanth, I., Padmavathi, N., Kumar, S., Ghosal, P., Kumar, A., Subrahmanyam, Ch.: Mechanical, thermal and ablative properties of zirconia, CNT modified carbon/phenolic composites. Compos. Sci. Technol. 80, 1–7 (2013)

    Article  Google Scholar 

  31. Harle, S.M.: The performance of natural fiber reinforced polymer composites: review. Int. J. Civil. Eng. Res. 5, 285–288 (2014)

    Google Scholar 

  32. Hanu, L.G., Simon, G.P., Cheng, Y.-B.: Thermal stability and flammability of silicone polymer composites. Polym. Degrad. Stab. 91, 1373–1379 (2006)

    Article  Google Scholar 

  33. Cai, Y., Wei, Q., Huang, F., Lin, S., Chen, F., Gao, W.: Thermal stability, latent heat and flame retardant properties of the thermal energy storage phase change materials based on paraffin/high density polyethylene composites. Renewable Energy 34, 2117–2123 (2009)

    Article  Google Scholar 

  34. Chrissafis, D.B.: Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523, 1–24 (2011)

    Google Scholar 

  35. Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S.: Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability. Carbon 49, 198–205 (2011)

    Article  Google Scholar 

  36. Lin, J., Zhang, P., Zheng, C., Wu, X., Mao, T., Zhu, M., Wang, H., Feng, D., Qian, S., Cai, X.: Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties. Appl. Surf. Sci. 316, 114–123 (2014)

    Article  Google Scholar 

  37. Santos, T.F.A., Vasconcelos, G.C., de Souza, W.A., Costa, M.L., Botelho, E.C.: Suitability of carbon fiber-reinforced polymers as power cable cores: galvanic corrosion and thermal stability evaluation. Mater. Des. 65, 780–788 (2015)

    Article  Google Scholar 

  38. Bian, L., **ao, J., Zeng, J., **ng, S., Yin, C., Jia, A.: Effects of thermal treatment on the mechanical properties of poly(p-phenylenebenzobisoxazole) fiber reinforced phenolic resin composite materials. Mater. Des. 54, 230–235 (2014)

    Google Scholar 

  39. Kim, J.A., Seong, D.G., Kang, T.J., Youn, J.R.: Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44, 1898–1905 (2006)

    Article  Google Scholar 

  40. Liew, K.M., Lei, Z.X., Zhang, L.W.: Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review. Compos. Struct. 120, 90–97 (2015)

    Article  Google Scholar 

  41. Xu, S., Girouard, N., Schueneman, G., Shofner, M.L., Carson Meredith, J.: Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystals. Polymer 54, 6589−6598 (2013)

    Google Scholar 

  42. Kaiser, H.F.: The varimax criterion for analytic rotation in factor analysis. Psychometrika 23, 187−200 (1958)

    Google Scholar 

  43. Sylvestre, E.A., Lawton, W.H., Maggio, M.S.: Curve resolution using a postulated chemical reaction. Technometrics 16(3), 353−368 (1974)

    Google Scholar 

  44. Malinowski, E.R.: Factor Analysis in Chemistry, 3rd edn. Wiley, New York (2002)

    Google Scholar 

  45. Sanchez, F.C., Toft, J., van den Bogaert, B. and Massart, D.L.: Orthogonal projection approach applied to peak purity assessment. Anal. Chem. Chem. 68, 79 (1996)

    Google Scholar 

  46. Chapiro, A.: Radiation Chemistry of Polymer Materials. Wiley Interscience Publishers, New York (1962)

    Google Scholar 

  47. Clough, R.L.: Radiation-resistant polymers. In: Encyclopedia of Polymer Science and Engineering, 2nd edn. pp. 667–708. Wiley, New York (1988)

    Google Scholar 

  48. Bhattacharya, A.: Radiation and industrial polymers. Prog. Polym. Sci. 25, 371–401 (2000)

    Article  Google Scholar 

  49. Clegg, D.W., Collyer, A.A. (eds.): Irradiation Effects on Polymers. Elsevier Applied Science, London (1999)

    Google Scholar 

  50. Woods, R.J.: Applied Radiation Chemistry: Radiation Processing. Wiley Interscience Publishers, New York (1994)

    Google Scholar 

  51. Clough, R. L.: High-energy radiation and polymers. A review of commercial processes and emerging applications. Nucl. Instrum. Methods Phys. Res. B. 185, pp. 8–33 (2001)

    Google Scholar 

  52. Spinks, J.W.T., Woods, R.J. (eds.): Introduction to Radiation Chemistry, 3rd edn. Wiley, New York (1990)

    Google Scholar 

  53. Dawes, K., Glover, L.C., Vroom, D.A.: The effects of electron beam and γ-irradiation on polymer materials. In: Mark, J.E. (ed.) Physical Properties of Polymer. Handbook, 2nd edn. Springer, New York (2007)

    Google Scholar 

  54. Makuuchi, K., Chang, S. (eds.): Radiation Processing of Polymer Materials and its Industrial Applications. Wiley, New York (2012)

    Google Scholar 

  55. Zaharescu, T., Jipa S.: Radiochemical modifications in polymers. In: Arndt, K.F., Lechner, M.D. (eds.), Landolt-Börnstein Series, Polymer Solids and Polymer Melts, vol. VIII/6 C2, pp. 95–184. Springer, Heidelberg (2013)

    Google Scholar 

  56. Drobny, J.G.: Ionizing radiation and polymers: principles, technology, and applications. PDL Handbook Series, Elsevier (2012)

    Google Scholar 

  57. Cleland, M.R., Park, L.A., Chang, S.: Applications for radiation processes of material. Nucl. Instrum. Meth. Phys. Res. B 208, 66–73 (2003)

    Google Scholar 

  58. Gehring, J.: With radiation crosslinking of polyolefin engineering plastics into the next millennium. Radiat. Phys. Chem. 57, 361–365 (2000)

    Article  Google Scholar 

  59. Nablo, S.V., Chrusciel, J., Cleghorn, D.A., Rangwalla, I.: Factors influencing equipment selection in electron beam processing. Nucl. Instrum. Meth. Phys. Res. B 208, 90–101 (2003)

    Google Scholar 

  60. Miller, A.: Approval and control of radiation processing, EB and gamma. Radiat. Phys. Chem. 31, 385–393 (1988)

    Google Scholar 

  61. Cleland M.R., Park L.A.: Medium and high-energy electron beam radiation processing for commercial applications. Nucl. Instrum. Meth. Phys. Res. B 208, 74–89 (2003)

    Google Scholar 

  62. Saylor, M.C., Parks, L.A., Herring, C.H.: Technical and regulatory for radiation sterilization facilities using electron beam accelerators. Nucl. Instrum. Meth. Phys. Res. B 79, 875–878 (1993)

    Google Scholar 

  63. Pilette, L.: Effects of ionizing treatments on packaging—food simulant combinations. Packag. Technol. Sci. 3, 17–20 (1990)

    Article  Google Scholar 

  64. Zimek, Z., Przybytniak, G., Nowicki, A., Mirkowski, K., Roman, K.: Optimization of electron beam crosslinking for cables. Radiat. Phys. Chem. 94, 161–165 (2014)

    Google Scholar 

  65. Bartoníček, B., Plaček, V., Hnát, V.: Comparison of degradation effects induced by gamma radiation and electron beam radiation in two cable jacketing materials. Radiat. Phys. Chem. 76, 857–863 (2007)

    Article  Google Scholar 

  66. Voit, W., Ware, T., Gall, K.: Radiation crosslinked shape-memory polymers. Polymer 51, 3551–3559 (2010)

    Article  Google Scholar 

  67. Banik, I., Bhowmick, A.K.: Effect of electron beam irradiation on the properties of crosslinked rubbers. Radiat. Phys. Chem. 58, 293–298 (2000)

    Article  Google Scholar 

  68. Haque, M.E., Dafader, N.C., Akhtar, F., Ahmad, M.U.: Radiation dose required for the vulcanization of narural rubber latex. Radiat. Phys. Chem. 48, 505–510 (1996)

    Article  Google Scholar 

  69. Kurtz, S.M., Muratoglu, O.K., Evans, M., Edidin, A.A.: Advances in the processing, sterilization and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplast. Biomaterials 20, 1659–1688 (1999)

    Article  Google Scholar 

  70. Rezanejad, S., Kokab, M.: Shape memory and mechanical properties of cross-linked polyethylene/clay nanocomposites. Eur. Polym. J. 43, 2856–2865 (2007)

    Article  Google Scholar 

  71. Mahapram, S., Poompradub, S.: Preparation of natural rubber (NB) latex/low density polyethylene (LDPE) blown film and its properties. Polym. Test. 30, 716–725 (2011)

    Article  Google Scholar 

  72. Chattopadhyay, S., Chaki, T.K., Bhowmick, A.K.: Heat shrinkability of electron-beam-modified thermoplastic elastomeric films from blemds of ethylene vinylacetate copolymer and polyethylene. Radiat. Phys. Chem. 59, 501–505 (2000)

    Article  Google Scholar 

  73. Zhu, G., Liang, G., Xu, Q., Yu, Q.: Shape-memory effects of radiation crosslinked poly(ε-caprolactone). J. Appl. Polym. Sci. 90, 1589–1595 (2003)

    Article  Google Scholar 

  74. Mohamed, R.M.: Radiation induced modification of NBR and SBR montmorillonite nanocomposites. J. Ind. Eng. Chem. 19, 80–86 (2013)

    Article  Google Scholar 

  75. Crăciun, E., Jitaru, I., Zaharescu, T., Jipa, S.: Qualification of epoxy resin by radiochemical ageing. Optoelectr. Adv. Mater. Rapid Commun. 4, 1819–1822 (2010)

    Google Scholar 

  76. Thomas, J.K.: Fundamental aspects of the radiolysis of solid polymers, crosslinking and degradation. Nucl. Instrum. Meth. Phys. Res. B 265, 1–7 (2007)

    Google Scholar 

  77. Rosiak, J.M., Ulanski, I.P., Pajewski, L.A., Yoshii, F., Makuuchi, K.: Radiation formation of hydrogel for biomedical purposes. Some remarks and comments. Radiat. Phys. Chem. 46, 161–168 (1995)

    Article  Google Scholar 

  78. Żenkiewicz, M., Dzwonkowski, J.: Effects of electron radiation and compatibilizers on impact strength of composites of recycled polymers. Polym. Test. 26, 903–907 (2007)

    Article  Google Scholar 

  79. Zhang, Y., Liu, Q., **ang, J., Frost, R.L.: Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particles sized kaolinites. Appl. Clay Sci. 95, 159–166 (2014)

    Google Scholar 

  80. **ong, X., Wang, J., Jia, H., Fang, E., Ding, L.: Structure, thermal conductivity, and thermal stability of bromobutyl rubber nanocomposites with ionic liquid modified graphene oxide. Polym. Degrad. Stab. 98, 2208–2214 (2013)

    Article  Google Scholar 

  81. Ganter, M., Gronski, W., Semke, H., Zilg, T., Thomann, R., Mülhaupt, R.: Surface-compatibilized layered silicates—A novel class of nanofillers for rubbers with improved mechanical properties. Kautsch. Gummi Kunstst. 54(4), 166–171 (2001)

    Google Scholar 

  82. Pramanik, M., Srivastava, S.K., Samantaray, B.K., Bhowmick, A.K.: Rubber-Clay nanocomposite by solution blending. J. Appl. Polym. Sci. 87, 2216–2220 (2003)

    Google Scholar 

  83. Lim, S.K., Lim, S.T., Kim, H.B., Chin, I., Choi, H.J.: Preparation and physical characterization of polyepichlorohydrin elastomer/clay nanocomposites. J. Macromol. Sci. Part B Phys. B 42(6), 1197–1199 (2003)

    Article  Google Scholar 

  84. Wu, C.M., Hwang, W.G., Tien, K.C., Chang, Y.C., Fu, H.L.: In: 11th National Conference on Science and Technology of National Defense, Taipei, Taiwan (2003)

    Google Scholar 

  85. Jeon, H.S., Rameshwaram, J.K., Kim, G.: Structure-property relationships in exfoliated polyisoprene/clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 42, 1000–1009 (2004)

    Article  Google Scholar 

  86. Peeterbroeck, S., Lepoittevin, B., Pollet, E., Benali, S., Broekaert, C., Alexandre, M., Bonduel, D., Viville, P., Lazzaroni, R., Dubois, P.: Polymer layered silicate/carbon nanotube nanocomposites: The catalyzed polymerization approach. Polym. Eng. Sci. 46, 1022–1030 (2006)

    Article  Google Scholar 

  87. Malas, A., Pal, P., Das, Ch.K.: Effect of expanded graphite and modified graphite flakes on the physical and thermo-mechanical properties of styrene butadiene rubber/polybutadiene rubber (SBR/BR) blends. Mater. Des. 55, 664−673 (2014)

    Google Scholar 

  88. Cabello, Ch., Saénz, A., López, L.I., Pérez, C., Barajas, L., Ávila, C.: Modificación superficial de (MWCNT) con H2SO4/HNO3 mediante ultrasonido. Afinidad 68, 370–374 (2012)

    Google Scholar 

  89. Cerin, O., Fontaine, G., Duquesne, S., Bourbigot, S.: Thermal stability of synthetic rubber nanocomposites. In: Mittal, V. (ed.) Recent Advance in Elastomeric Nanocomposites. Springer, Heidelberg (2011)

    Google Scholar 

  90. Scotti, R., Conzatti, L., D’Arienzo, M., Di Credico, B., Giannini, L., Hanel, T., Stagnaro, P., Susanna, A., Tadiello, L., Morazzoni, F.: Shape controlled spherical (0D) and rod-like (1D) silica nanoparticles in silica/styrene butadiene rubber nanocomposites: role of the particle morphology on the filler reinforcing effect. Polymer 55, 1497–1506 (2014)

    Article  Google Scholar 

  91. Dhere, N.G., Gadre, K.S.: Comparison of mechanical properties of EVA encapsulant in new and field-deployed PV modules. In: Proceedings of the 2nd World Photovoltaic Solar Energy Conference and Exhibition, Vienna, Austria, 6–10 July 1998

    Google Scholar 

  92. Dechthummarong, C., Wiengmoon, B., Chenvidhya, D., Jivacate, C., Kirtikara, K.: Physical deterioration of encapsulation and electrical insulation properties of PV modules after long-term operation in Thailand. Sol. Energy Mater. Sol. Cells 94(9), 1437–1440 (2010)

    Google Scholar 

  93. ASTMD1435–05: Standard Practice for Outdoor Weathering of Plastics. ASTMD, Philadelphia (1985)

    Google Scholar 

  94. Stark, W., Jaunich, M.: Investigation of Ethylene Vinyl Acetate copolymer (EVA) by thermal analysis DSC and DMA. Polym. Test. 30(2), 236–242 (2011)

    Google Scholar 

  95. Oreski, G., Wallner, G.M.: Damp heat induced physical aging of PV encapsulation materials. In: 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (Itherm 2010), pp. 1−6. Las Vegas, NV, 2–5 June 2010

    Google Scholar 

  96. Collins, G., Yoo, S.U., Recber, A., Jaffe, M.: Thermal analysis of complex relaxation processes in Poly(Desaminotyrosyl-Tyrosine Arylates). Polymer 48(4), 975–988 (2007)

    Google Scholar 

  97. Saffell, J.R., Matthiesen, A., McIntyre, R., Ibar, J.P.: Comparing thermal stimulated current (TSC) with other thermal analytical methods to characterize the amorphous phase of polymers. Thermochim Acta 192, 243–264 (1991)

    Google Scholar 

  98. Kümmerer, K.: Sustainable from the very beginning: rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 9, 899–907 (2007)

    Article  Google Scholar 

  99. Clarinval, A.M., Halleux, J.: Classification of biodegradable polymers, pp. 3–31. CRC Press, Boca Raton (2005)

    Google Scholar 

  100. Rhim, J.W., Park, H.M., Ha, C.S.: Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. 38, 1629–1652 (2013)

    Article  Google Scholar 

  101. Kumar, A.P., Depan, D., Singh Tomer, N., Singh, R.P.: Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. (Oxford). 34, 479–515 (2009)

    Google Scholar 

  102. Raquez, J.M., Habibi, Y., Murariu, M., Dubois, P.: Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 38, 1504–1542 (2013)

    Article  Google Scholar 

  103. Sinha Ray, S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50, 962–1079 (2005)

    Google Scholar 

  104. Bikiaris, D.: Can nanoparticles really enhance thermal stability of polymers? Part II: an overview on thermal decomposition of polycondensation polymers. Thermochim. Acta 523, 25–45 (2011)

    Article  Google Scholar 

  105. Yang, K.K., Wang, X.L., Wang, Y.Z.: Progress in Nanocomposite of Biodegradable Polymer. J Ind Eng Chem. 13, 485–500 (2007)

    Google Scholar 

  106. Mohanty, A.K., Wibowo, A., Misra, M., Drzal, L.T.: Development of renewable resource–based cellulose acetate bioplastic: Effect of process engineering on the performance of cellulosic plastics. Polym. Eng. Sci. 43, 1151–1161 (2003)

    Article  Google Scholar 

  107. Ray, S.S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater Sci. 50, 962–1079 (2005)

    Article  Google Scholar 

  108. Bandyopadhyay, S, Chen, R, Giannelis, E.P.: Biodegradable organic-inorganic hybrids based on poly(L-lactide). Polym. Mater. Sci. Eng. 81, 159−160 (1999)

    Google Scholar 

  109. Pluta, M., Galeski, A., Alexandre, M., Paul, M.A., Dubois, P.: Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: Structure and some physical properties. J. Appl. Polym. Sci. 86, 1497–1506 (2002)

    Article  Google Scholar 

  110. Chen, C.X., Yoon, J.S.: Morphology and thermal properties of poly(L -lactide)/poly (butylene succinate-co-butylene adipate) compounded with twice functionalized clay. J. Polym. Sci. Part B Polym. Phys. 43, 478–487 (2005)

    Article  Google Scholar 

  111. Marras, S.I., Zuburtikudis, I., Panayiotou, C.: Nanostructure vs. microstructure: Morphological and thermomechanical characterization of poly(l-lactic acid)/layered silicate hybrids. Eur. Polymer J. 43, 2191–2206 (2007)

    Article  Google Scholar 

  112. Bafna, A., Beaucage, G., Mirabella, F., Mehta, S.: 3D Hierarchical orientation in polymer–clay nanocomposite films. Polymer 44, 1103–1115 (2003)

    Article  Google Scholar 

  113. Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O.O., Maspoch, M.L.: Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polym. Degrad. Stab. 95, 116–125 (2010)

    Article  Google Scholar 

  114. de Paula, E.L., Mano, V., Pereira, F.V.: Influence of cellulose nanowhiskers on the hydrolytic degradation behavior of poly(d, l-lactide). Polym. Degrad. Stab. 96, 1631–1638 (2011)

    Article  Google Scholar 

  115. Hossain, K.Z., Ahmed, I., Parsons, A., Scotchford, C., Walker, G., Thielemans, W., et al.: Physico-chemical and mechanical properties of nanocomposites prepared using cellulose nanowhiskers and poly(lactic acid). J. Mater. Sci. 47, 2675–2686 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Visakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Visakh, P.M., Nazarenko, O.B. (2015). Thermal Degradation of Polymer Blends, Composites and Nanocomposites. In: Visakh, P., Arao, Y. (eds) Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-03464-5_1

Download citation

Publish with us

Policies and ethics

Navigation