Fly Ash Pollutants, Treatment and Recycling

  • Chapter
  • First Online:
Pollutant Diseases, Remediation and Recycling

Abstract

This chapter reviews fly ash typology, composition, treatment, deposition, recycling, functional re-use, and metals and organic pollutants abatement. Fly ash is a by-product of power and incineration plants operated either on coal and biomass, or municipal solid waste. The growing of environmental awareness and increasing energy and material demand will foster recycling. Recycling will help to reuse valuable materials which would otherwise be wasted, and reduce energy consumption and greenhouse gas emissions from extract ion and processing. Fly ash is world’s fifth largest material resource because of the large amount of ash produced in the world. Fly ash can be classified into several categories: coal fly ash obtained from power plant burning coal; flue gas desulphurisation fly ash, that is the byproduct generated by the air pollution control equipment in coal-fired power plants to prevent (reduce) the release of SO2; biomass fly ash produced in the thermal conversion of biomass; and municipal solid waste incineration (MSWI) fly ash, that is the finest residue obtained from the scrubber system in a municipal solid waste incineration plant.

Fly ash often contains pollutants such as heavy metals and organic compounds. The composition of fly ash is very variable, depending on their origins, then also the pollutants can be very different. For example, MSWI fly ash are the most problematic ash in terms of contaminant content. We review existing techniques for fly ash inertization, separately considering heavy metals entrapment or organic abatement. We show that fly ash is a valuable resource with potential use in several applications like agriculture, synthesis of zeolite and geopolymer, adsorbent and building materials. Finally all advantages in fly ash recovery and re-use are discussed. It is shown that fly ash recycling will reduce landfilling disposal, raw materials employ, greenhouse gas emission and water consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AES:

Acid Extraction Sulphide stabilisation process

APC:

Air Pollution-Control

CDD:

ChloroDibenzo-p-Dioxin

CDF:

ChloroDibenzo-p-Furan

COSMOS:

Colloidal Silica Medium to Obtain Safe inert

DC:

Direct Current

DDT:

DichloroDiphenylTrichloroethane

EDTA:

EthyleneDiamineTetraAcetate

FA:

Fly Ash

FGD:

Flue Gas Desulphurisation

HpCDD:

HeptaChloroDibenzo-p-Dioxin

HpCDF:

HeptaChloroDibenzo-p-Furan

HRGC/HRMS:

High Resolution Gas Chromatography/High Resolution Mass Spectrometry

HxCDD:

HexaChloroDibenzo-p-Dioxin

HxCDF:

HexaChloroDibenzo-p-Furan

LCA:

Life Cycle Assessments

LOI:

Loss of Ignition

MSWI:

Municipal Solid Waste Incineration

OCDD:

OctaChloroDibenzo-p-Dioxin

OCDF:

OctaChloroDibenzo-p-Furan

PAH:

Polycyclic Aromatic Hydrocarbon

PCB:

Polychlorinated Bifenyl

PCDD:

PolyChloroDibenzo-p-Dioxin

PCDF:

PolyChloroDibenzo-p-Furan

PeCDD:

PentaChloroDibenzo-p-Dioxin

PeCDF:

PentaChloroDibenzo-p-Furan

RHA:

Rice Husk Ash

S/S:

Solidification/Stabilisation

TCDD:

TetraChloroDibenzo-p-Dioxin

TCDF:

TetraChloroDibenzo-p-Furan

TEQ:

Toxic Equivalent

VOC:

Volatile Organic Compound

WHO-TEQ:

World Health Organisation-Toxic Equivalent

References

  • ACAA (2010) American Coal Ash Association: Coal Combustion Product (CCP) Production & Use ACAA, Aurora CO

    Google Scholar 

  • ACAA (2011) American Coal Ash Association: ash at work. Applications, science and sustainability of coal ash. Lesser Pubblications, New York

    Google Scholar 

  • Adesanya DA, Raheem AA (2009) Development of corn cob ash blended cement. Constr Build Mater 23:347–352

    Google Scholar 

  • Adesanya DA, Raheem AA (2010) A study of the permeability and acid attack of corn cob ash blended cements. Constr Build Mater 24:403–409

    Google Scholar 

  • Adriano DC, Page AL, Elseewi AA, Chang AC, Straugham I (1980) Utilization and disposal of fly-ash and coal residues in terrestrial ecosystem; a review. J Environ Qual 9:333–344

    CAS  Google Scholar 

  • Adriano DC, Weber J, Bolan NS, Paramasivan S, Koo Bon-Jun, Sajwan KS (2002) Effects of high rates of coal fly ash on soil, turfgrass, and groundwater quality. Water Air Soil Pollut 139:365–385

    CAS  Google Scholar 

  • Agrawal DK (1998) Microwave processing of ceramics. Curr Opin Solid State Mater Sci 3:480–485

    CAS  Google Scholar 

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36:327–363

    CAS  Google Scholar 

  • Ahmaruzzaman M (2011) Industrial wastes as low-cost potential adsorbents for the treatment of wastewater laden with heavy metals. Adv Colloid Interface Sci 166:36–59

    CAS  Google Scholar 

  • Akgerman A, Zardkoohi M (1996) Adsorption of phenolic compounds on fly ash. J Chem Eng Data 41:185–187

    CAS  Google Scholar 

  • Aksu Z, Yener J (2001) A comparative adsorption/biosorption study of mono-chlorinated phenols onto various sorbents. Waste Manag 21:695–702

    CAS  Google Scholar 

  • Alba N, Gasso S, Lacorte T, Baldasano JM (1997) Characterization of municipal solid waste incineration residues from facilities with different air pollution control systems. J Air Waste Manage Assoc 47:1170–1179

    CAS  Google Scholar 

  • Alemany LJ, Jimenez MC, Larrubia MA, Delgado F, Blasco JM (1996) Removal of phenol from aqueous solution by adsorption on to coal fly ash. Adsorpt Sci Technol 13:527–536

    CAS  Google Scholar 

  • Al-Shawabkeh A, Matsuda H, Hasatani M (1995) Comparative reactivity of treated FBC- and PCC-fly ash for SO2 removal. Can J Chem Eng 73:678–685

    CAS  Google Scholar 

  • An DM, Guo YP, Zou B, Zhu YC, Wang ZC (2011) A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenerg 35:1227–1234

    CAS  Google Scholar 

  • Andersson P, Rappe C, Maaskant O, Unsworth JF, Marklund S (1998) Low temperature catalytic destruction of PCDD/F in flue gas from waste incineration. Organohalog Compd 36:109–112

    CAS  Google Scholar 

  • Andreola F, Barbieri L, Hreglich S, Lancellotti I, Morselli L, Passarini F, Vassura I (2008) Reuse of incinerator bottom and fly ashes to obtain glassy materials. J Hazard Mater 153:1270–1274

    CAS  Google Scholar 

  • Apak R, Atun G, Guclu K, Tutem E (1996) Sorptive removal of cesium-137 and strontium-90 from water by unconventional sorbents. II. Usage of coal fly ash. J Nucl Sci Technol 33:396–402

    CAS  Google Scholar 

  • Apak R, Tutem E, Hugul M, Hizal J (1998) Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res 32:430–440

    CAS  Google Scholar 

  • Appleton TJ, Gloder RI, Kingman SW, Lowndes IS, Read AG (2005) Microwave technology for energy-efficient processing of waste. Appl Energy 81:85–113

    CAS  Google Scholar 

  • Arayapranee W, Naranong N, Rempel GL (2005) Application of rice husk ash as fillers in the natural rubber industry. J Appl Polym Sci 98:34–41

    CAS  Google Scholar 

  • Arthur MA, Zwick TC, Tolle DA, Voris PV (1984) Effects of fly ash on microbial CO2 evolution from an agricultural soil. Water Air Soil Pollut 22:209–216

    Google Scholar 

  • Asokan P, Saxena M, Asolekar SR (2005) Coal combustion residues environmental implications and recycling potentials. Resour Conserv Recycl 43:239–262

    Google Scholar 

  • ASTM (2005) Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete (C618-05). In: Annual book of ASTM standards, concrete and aggregates, vol 04.02. American Society for Testing Materials, Philadelphia

    Google Scholar 

  • Aubert JE, Husson B, Vaquier A (2004) Use of municipal solid waste incineration fly ash in concrete. Cem Concr Res 34:957–963

    CAS  Google Scholar 

  • Aubert JE, Husson B, Sarramone N (2006) Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement. Part 1: Processing and characterization of MSWI fly ash. J Hazard Mater 136:624–631

    CAS  Google Scholar 

  • Auer PO, Eichler B, Ludwig C, Stucki S, Wochele J (1999) Recycling heavy metals by the method of fractionated condensation. In: 4th world congress – recovery, recycling, re-integration, vol IV, Geneve, pp 328–333

    Google Scholar 

  • Ayala J, Blanco F, Garcia P, Rodriguez P, Sancho J (1998) Austrian fly ash as a heavy metals removal material. Fuel 77:1147–1154

    CAS  Google Scholar 

  • Ayswarya EP, Abraham BT, Thachil ET (2012) HDPE-ash nanocomposites. J Appl Polym Sci 124:1659–1667

    CAS  Google Scholar 

  • Bakharev T (2006) Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem Concr Res 36:1134–1147

    CAS  Google Scholar 

  • Banerjee SS, Jayaram RV, Joshi MV (2003) Removal of nickel(II) and zinc(II) from wastewater using fly ash and impregnated fly ash. Sep Sci Technol 38:1015–1032

    CAS  Google Scholar 

  • Banerjee SS, Joshi MV, Jayaram RV (2004) Removal of Cr(VI) and Hg(II) from aqueous solutions using fly ash and impregnated fly ash. Sep Sci Technol 39:1611–1629

    CAS  Google Scholar 

  • Barbieri L, Lancellotti I (2004) Incinerator waste as secondary raw material: examples of applications in glasses, glass-ceramics and ceramics. Geol Soc Spec Pub 236:423–433

    CAS  Google Scholar 

  • Bastardie F, Cannavacciuolo M, Capowiez Y, de Dreuzy J-R, Bellido A, Cluzeau D (2002) A new simulation for modeling the topology of earthworm burrow systems and their effects on macropore flow in experimental soils. Biol Fertil Soils 36:161–169

    Google Scholar 

  • Basu M, Pande M, Bhadoria PBS, Mahapatra SC (2009) Potential fly-ash utilization in agriculture: a global review. Progr Nat Sci 19:1173–1186

    CAS  Google Scholar 

  • Batabyal D, Sahu A, Chaudhuri SK (1995) Kinetics and mechanism of removal of 2,4- dimethyl phenol from aqueous solutions with coal fly ash. Sep Technol 5:179–186

    CAS  Google Scholar 

  • Baur I, Ludwig C, Johnson CA (2001) The leaching behavior of cement stabilized air pollution control residues: a comparison of field and laboratory investigations. Environ Sci Technol 35:2817–2822

    CAS  Google Scholar 

  • Bayat B (2002a) Comparative study of adsorption properties of Turkish fly ashes. I. The case of nickel(II), copper(II) and zinc(II). J Hazard Mater 3897:1–23

    Google Scholar 

  • Bayat B (2002b) Comparative study of adsorption properties of Turkish fly ashes. II. The case of chromium(VI) and cadmium(II). J Hazard Mater 3898:1–16

    Google Scholar 

  • Bayat B (2002c) Combined removal of zinc (II) and cadmium (II) from aqueous solutions by adsorption onto high-calcium Turkish fly ash. Water Air Soil Pollut 136:69–92

    CAS  Google Scholar 

  • Bayuseno AP (2006) Mineral phases in raw and processed municipal waste incineration residues- towards a chemical stabilisation and fixation of heavy metals. PhD thesis, Bochum, Germany

    Google Scholar 

  • Bayuseno AP, Schmahl WW (2011) Characterization of MSWI fly ash through mineralogy and water extraction original research article resources. Conserv Recycl 55:524–534

    Google Scholar 

  • Beagle EC (1981) Rice husk conversion to energy. FAO, Rome

    Google Scholar 

  • Belevi H, Moench H (2000) Factors determining the element behavior in municipal solid waste incinerator. 1. Field studies. Environ Sci Technol 34:2501–2506

    CAS  Google Scholar 

  • Belviso C, Cavalcante F, Ragone P, Fiore S (2010) Immobilization of Ni by synthesising zeolite at low temperatures in a polluted soil. Chemosphere 78:1172–1176

    CAS  Google Scholar 

  • Benezet JC, Adamiec P, Benhassaine A (2008) Relation between silico-aluminous fly ash and its coal of origin. Particuology 6:85–92

    CAS  Google Scholar 

  • Bernardo E, Bonomo E, Dattoli A (2010) Optimisation of sintered glass–ceramics from an industrial waste glass. Ceram Int 36:1675–1680

    CAS  Google Scholar 

  • Bernoux M, Volkoff B, Carvalho MS (2003) CO2 emissions from liming of agricultural soils in Brazil. Global Biogeochem Cycles 17:18–21

    Google Scholar 

  • Beveridge TJ, Murray RGE (1980) Sites of metal deposition in the cell wall of Bacillus subtilis. J Biotechnol 141:876–887

    CAS  Google Scholar 

  • Bhattacharjee U, Kandpal TC (2002) Potential of fly utilization in India. Energy 27:151–166

    CAS  Google Scholar 

  • Bhattacharya AK, Mandal SN, Das SK (2006) Adsorption of Zn(II) from aqueous solution by using different adsorbents. Chem Eng J 123:43–51

    CAS  Google Scholar 

  • Bhattacharya AK, Naiya TK, Mandal SN, Das SK (2008) Adsorption, kinetics and equilibrium studies on removal of Cr(VI) from aqueous solutions using different low-cost adsorbents. Chem Eng J 137:529–541

    CAS  Google Scholar 

  • Binici H, Yucegok F, Aksogan O, Kaplan H (2008) Effect of corncob, wheat straw, and plane leaf ashes as mineral admixtures on concrete durability. J Mater Civ Eng 20:478–484

    CAS  Google Scholar 

  • Biricik H, Akoz F, Turker F, Berktay I (2000) Resistance to magnesium sulfate and sodium sulfate attack of mortars containing wheat straw ash. Cem Concr Res 30:1189–1197

    CAS  Google Scholar 

  • Blissett RS, Rowson NA (2012) A review of the multi-component utilisation of coal fly ash. Fuel 97:1–23

    CAS  Google Scholar 

  • Boccaccini AR, Bucker M, Bossert J, Marszalek K (1997) Glass matrix composites from coal flyash and waste glass. Waste Manage 17:39–45

    CAS  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010a) A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J Environ Monit 12:2093–2099

    CAS  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010b) A new powder filler, obtained by applying a new technology for fly ash inertisation procedure. Adv Sci Technol 62:27–33

    CAS  Google Scholar 

  • Boonserm K, Sata V, Pimraksa K, Chindaprasirt P (2012) Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cem Concr Compos 34:819–824

    CAS  Google Scholar 

  • Born JGP, Mulder P, Louw R (1993) Fly ash mediated reactions of phenol and monochlorophenols: oxychlorination, deep oxidation, and condensation. Environ Sci Technol 27:1849–1863

    CAS  Google Scholar 

  • Bosio A, Ardesi R, Zacco A, Brisotto M, Gianoncelli A, Gelfi M, Depero LE, Bontempi E (2012) Reuse of COSMOS filler, obtained by Municipal Solid Waste Incineration fly ash inertization, in plastic materials. In: Proceedings of third international conference on “industrial and hazardous waste management”, Chania, Crete, Greece, 12–14 Sept 2012

    Google Scholar 

  • Bosshard PP, Bachofen R, Brandl H (1996) Metal leaching of fly ash from municipal waste incineration by Aspergillus. Niger Environ Sci Technol 30:3066–3070

    CAS  Google Scholar 

  • Bouché MB, Al-Addan F (1997) Earthworms, water infiltration and soil stability: some new assessments. Soil Biol Biochem 29:441–452

    Google Scholar 

  • Bouma J (1991) Influence of soil macroporosity on environmental quality. Adv Agron 46:1–37

    Google Scholar 

  • Bowman RS (2003) Applications of surfactant-modified zeolites to environmental remediation. Microporous Mesopor Mater 61:43–56

    CAS  Google Scholar 

  • Breck DW (1984) Ion exchange reactions in zeolites. In: Zeolite molecular sieves, structure, chemistry, and use, vol 7. Robert E. Krieger Publishing, Malabar, p 245213

    Google Scholar 

  • Bridgeman TG, Darvell LI, Jones JM, Williams PT, Fahmi R, Bridgewater AV, Barraclough T, Shield I, Yates N, Thain SC, Donnison IS (2007) Influence of particle size on the analytical and chemical properties of two energy crops. Fuel 86:60–72

    CAS  Google Scholar 

  • Bruckner M, Giljum S, Lutz C, Wiebe KS (2012) Materials embodied in international trade – global material extraction and consumption between 1995 and 2005. Global Environ Change 22:568–576

    Google Scholar 

  • Burke M (2007) CCP experts gather in India. In: Ash at work, vol 2. American Coal Ash Association, Aurora, pp 17–19

    Google Scholar 

  • Campbell DJ, Fox WE, Aitken RL, Bell LC (1983) Physical characteristics of sands amended with fly ash. Aust J Soil Res 21:147–154

    Google Scholar 

  • Cerevelli S, Petruzzelli G, Perna A, Menicagli R (1986) Soil nitrogen and fly ash utilization: a laboratory investigation. Agrochemica 30:27–33

    Google Scholar 

  • Chandrasekhar S, Pramada PN (2006) Rice husk ash as an adsorbent for methylene blue-effect of ashing temperature. Adsorption 12:27–43

    CAS  Google Scholar 

  • Chandrasekhar S, Pramada PN, Praveen L (2005) Effect of organic acid treatment on the properties of rice husk silica. J Mat Sci 40:6535–6544

    CAS  Google Scholar 

  • Chang AC, Lund LJ, Page AL, Warneke JE (1977) Physical properties of fly ash amended soils. J Environ Qual 6:267–270

    CAS  Google Scholar 

  • Chaowasakoo T, Sombatsompop N (2007) Mechanical and morphological properties of fly ash/epoxy composites using conventional thermal and microwave curing methods. Compos Sci Technol 67:2282–2291

    CAS  Google Scholar 

  • Chareonpanich M, Namto T, Kongkachuichay P, Limtrakul J (2004) Synthesis of ZSM- 5 zeolite from lignite fly ash and rice husk ash. Fuel Process Technol 85:1623–1634

    CAS  Google Scholar 

  • Chaturvedi AK, Yadava KP, Pathak KICK, Singh VN (1990) Defluoridation of water by adsorption of fly ash. Water Air Soil Pollut 49:51–61

    CAS  Google Scholar 

  • Chaudhary DS, Jollands MS (2004) Characterization of rice hull ash. J Appl Polym Sci 93:1–8

    CAS  Google Scholar 

  • Chen J, Li Y (2006) Coal fly ash as an amendment to container substrate for Spathiphyllum production. Bioresour Technol 97:1920–1926

    CAS  Google Scholar 

  • Chen Y, Zhu Y, Wang Z, Li Y, Wang L, Ding L, Gao X, Ma Y, Guo Y (2011) Application studies of activated carbon derived from rice husks produced by chemical-thermal process – a review. Adv Colloid Interface Sci 163:39–52

    CAS  Google Scholar 

  • Chen-Tan NW, van Riessen A, Chi VLY, Southam DC (2009) Determining the reactivity of a fly Ash for production of geopolymer. J Am Ceram Soc 92:881–887

    CAS  Google Scholar 

  • Cheung KICK, Venkitachalam TH (2000) Improving phosphate removal of sand infiltration system using alkaline fly ash. Chemosphere 41:243–249

    CAS  Google Scholar 

  • Chimenos J, Fernández A, Cervantes A, Miralles L, Fernández M, Espiell F (2005) Optimizing the APC residue washing process to minimize the release of chloride and heavy metals. Waste Manage 25:686–693

    CAS  Google Scholar 

  • Chindaprasirt P, Rukzon S, Sirivivatnanon V (2008) Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash. Constr Build Mater 22:932–938

    Google Scholar 

  • Choi W, Hong SJ, Chang YS, Cho Y (2000) Photocatalytic degradation of polychlorinated dibenzo-p-dioxins on TiO2 film under UV or solar light irradiation. Environ Sci Technol 34:4810–4815

    CAS  Google Scholar 

  • Chou SY, Lo SL, Hsieh CH, Chen CL (2009) Sintering of MSWI fly ash by microwave energy. J Hazard Mater 163:357–362

    CAS  Google Scholar 

  • Christensen TH, Lundtrop K, Jensen L, Sorensen A, Mogensen EPB (2001) Stabilization of waste incinerator APC-residues with FeSO4. In: Proceedings of eighth international landfill symposium, Sardinia, Cagliari, Italy

    Google Scholar 

  • Chu TC, Wang KS, Lin KL, Chien CC, Chen JH (2013) Synthesis of waste-derived glass-ceramics from MSWI fly ash and EAF dust: kinetics of nucleation and crystallization. Environ Prog Sustain Energy 32(3):480–488. doi:10.1002/ep.11647

    CAS  Google Scholar 

  • Ciccu R, Ghiani M, Serci A, Fadda S, Peretti R, Zucca A (2003) Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Miner Eng 16:187–192

    CAS  Google Scholar 

  • Cicek T, Tanriverdi M (2007) Lime based steam autoclaved fly ash bricks. Constr Build Mater 21:1295–1300

    Google Scholar 

  • Comans R, Zuiver E, Geelhoed P, Hoede D (2003) Characterisation of leaching properties of C-fix products and components. ECN, Petten

    Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurrences and uses, 2nd edn. Wiley-VCH, Weinheim

    Google Scholar 

  • Cothern CR, Smith JE (1987) Environmental radon. Plenum Press, New York, p 363

    Google Scholar 

  • Daifullah AEH, Gad H (1998) Sorption of semi-volatile organic compounds by bottom and fly ashes using HPLC. Adsorpt Sci Technol 16:273–283

    CAS  Google Scholar 

  • Damaris NM, Paul MS, Rachel MN, Geoffrey NK (2002) Adsorption and detection of some phenolic compounds by rice husk ash of Kenyan origin. J Environ Monit 4:978–984

    Google Scholar 

  • Dasmahapatra GP, Pal TK, Bhadra AK, Bhattacharya B (1996) Studies on separation characteristics of hexavalent chromium from aqueous solution by fly ash. Sep Sci Technol 31:2001–2009

    CAS  Google Scholar 

  • Davidovits J (1994) Geopolymers: inorganic polymeric new materials. J Mater Educ 16:91–139

    CAS  Google Scholar 

  • Davini P (1995) Investigation of flue gas desulphurization by fly ash and calcium hydroxide mixtures. Resour Conserv Recycl 15:193–201

    Google Scholar 

  • Davini P (1996) Investigation of the SO2 adsorption properties of Ca(OH)2-fly ash systems. Fuel 75:713–716

    CAS  Google Scholar 

  • Davini P (2002) Flue gas treatment by activated carbon obtained from oil-fired fly ash. Carbon 40:1973–1979

    CAS  Google Scholar 

  • De Boom A, Degrez M (2012) Belgian MSWI fly ashes and APC residues: a characterisation study. Waste Manage 32:1163–1170

    Google Scholar 

  • Deepthi MV, Sharma M, Sailaja RRN, Anantha P, Sampathkumaran P, Seetharamu S (2010) Mechanical and thermal characteristics of high density polyethylene-fly ash cenospheres composites. Mater Des 31:2051–2060

    CAS  Google Scholar 

  • Demirbas A (2005) Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Prog Energy Combust Sci 31:171–192

    CAS  Google Scholar 

  • Denuex-mustin S, Roussel-Debet S, Mustin C, Henner P, Munier-Lamy C, Colle C, Berthein J, Garnier-Laplace J, Leyval C, Mobilite et al (2003) Transfer des elements en traces: in.uence des microorganisms du so. Tec et Doc, Paris p 282

    Google Scholar 

  • Derie R (1996) A new way to stabilise fly ash from municipal incinerators. Waste Manage 16:711–716

    CAS  Google Scholar 

  • Diamadopoulos E, Loannidis S, Sakellaropoulos GP (1993) As(V) removal from aqueous solutions by fly ash. Water Res 27:1773–1777

    CAS  Google Scholar 

  • Dombrowski K, Buchwald A, Weil M (2007) The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J Mater Sci 42:3033–3043

    CAS  Google Scholar 

  • DSIRI (1992) Department of Scientific and Industrial Research India. Technology evaluation in rice milling industry, New Delhi, India

    Google Scholar 

  • Dubini MM (1965) J Phys Chem 39:697–704

    Google Scholar 

  • Dutta B, Basu JK, Das Gupta S (2003) Removal of cresol from aqueous solution using fly ash as adsorbent: experiments and modeling. Sep Sci Technol 38:1345–1360

    CAS  Google Scholar 

  • Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ (2005) Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloid Surf A 269:47–58

    CAS  Google Scholar 

  • Dwivedi VN, Singh NP, Das SS, Singh NB (2006) A new pozzolanic material for cement industry: bamboo leaf ash. Int J Phys Sci 1:106–111

    Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Mishra S, Shukla MK, Tiwari KK, Singh R, Rai UN (2007) Growth performance and biochemical responses of three rice (Oryza sativa L.) cultivars grown in fly-ash amendment soil. Chemosphere 67:140–151

    CAS  Google Scholar 

  • Ecke H (2003) Sequestration of metals in carbonated municipal solid waste incineration (MSWI) fly ash. Waste Manage 23:631–640

    CAS  Google Scholar 

  • Ecke H, Sakanakura H, Matsuto T, Tanaka N, Lagerkvist A (2000) State-of-the-art treatment processes for municipal solid waste incineration residues in Japan. Waste Manag Res 18:41–51

    CAS  Google Scholar 

  • ECOBA (2008) European Coal Combustion Products Association: production and utilisation of CCPs in 2008 in Europe (EU 15)

    Google Scholar 

  • Eighmy TT, Eusden JD, Krzanowski JE, Dominggo DS, Stampfli D (1995) Comprehensive approach toward understanding element speciation and leaching behaviour in municipal solid waste incineration electrostatic precipitator ash. Environ Sci Technol 29:629–646

    CAS  Google Scholar 

  • Eighmy TT, Crannell BS, Butler LC, Cartledge FK, Emery EF, Oblas D, Krzanowski JE, Eusden JD, Shaw EL, Francis CA (1997) Heavy metal stabilisation in municipal solid waste combustion dry scrubber residue using soluble phosphate. Environ Sci Technol 37:3330–3338

    Google Scholar 

  • Elinwa AU, Mahmood YA (2002) Ash from timber waste as cement replacement material. Cem Concr Compos 24:219–222

    CAS  Google Scholar 

  • EPA (1997) Mercury study report to Congress EPA-452/R-97-10

    Google Scholar 

  • Erol M, Küçükbayrak S, Ersoy-Meriçboyu A (2007) Characterization of coal fly ash for possible utilization in glass production. Fuel 86:706–714

    CAS  Google Scholar 

  • Eswaran A, Manivannan K (2007) Effect of foliar application of lignite fly ash on the management of papaya leaf curl disease. Acta Hort (ISHS) 740:271–275

    CAS  Google Scholar 

  • Everaert K, Baeyens J (2004) Catalytic combustion of volatile organic compounds. J Hazard Mater 109:113–139

    CAS  Google Scholar 

  • Fail JL Jr, Wochok ZS (1977) Soyabean growth on fly ash amended strip mine spoils. Plant Soil 48:473–484

    Google Scholar 

  • Fedje KK, Ekberg C, Skarnemark G, Steenari BM (2010) Removal of hazardous metals from MSW fly ash – an evaluation of ash leaching methods. J Hazard Mater 173:310–317

    Google Scholar 

  • Feng Q, Lin Q, Gong F, Sugita S, Shoya M (2004) Adsorption of lead and mercury by rice husk ash. J Colloid Interface Sci 278:1–8

    CAS  Google Scholar 

  • Fermo P, Cariati F, Pozzi A, Demartin F, Tettamanti M, Collina E, Lasagni M, Pieta D, Puglisi O, Russo U (1999) The analytical characterization of municipal solid waste incinerator fly ash: methods and preliminary results. Fresenius J Anal Chem 365:666–673

    CAS  Google Scholar 

  • Fermo P, Cariati F, Pozzi A, Tettamanti M, Collina E, Pieta D (2000) Analytical characterization of municipal solid waste incinerator fly ash: Part II. Fresenius J Anal Chem 366:267–272

    CAS  Google Scholar 

  • Ferreira C, Ribeiro A, Ottosen L (2003) Possible applications for municipal solid waste fly ash. J Hazard Mater B 96:201–216

    CAS  Google Scholar 

  • Fiedler H (2003) Persistent organic pollutants. Springer, Berlin

    Google Scholar 

  • Finocchio E, Busca G, Notaro M (2006) A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Appl Catal B Environ 62:12–20

    CAS  Google Scholar 

  • Fisher GL, Chang DPY, Brummer M (1976) Fly-Ash collected from electrostatic precipitators- microcrystalline structure and mystery of spheres. Science 192:553–555

    CAS  Google Scholar 

  • Flower D, Sanjayan J (2007) Green house gas emissions due to concrete manufacture. Int J Life Cycle Assess 12:282–288

    CAS  Google Scholar 

  • Forestier LL, Libourel G (1998) Characterization of flue gas residues from municipal solid waste combustors. Environ Sci Technol 32:2250–2256

    Google Scholar 

  • Francois D, Criado C (2007) Monitoring of leachate at a test road using treated fly ash from municipal solid waste incinerator. J Hazard Mater B139:543–549

    Google Scholar 

  • Frugier P, Godon N, Vernaz E, Larché F (2002) Influence of composition variations on the initial alteration rate of vitrified domestic waste incineration fly-ash. Waste Manage 22:137–142

    CAS  Google Scholar 

  • Fukui K, Arai K, Fukui K, Yoshida H (2006) Phillipsite synthesis from fly ash prepared by hydrothermal treatment with microwave heating. Adv Powder Technol 17:369–382

    CAS  Google Scholar 

  • Fukui K, Fukui K, Yamamoto T, Yoshida H (2007) Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment. Adv Powder Technol 18:381–393

    CAS  Google Scholar 

  • Gaikwad RW (2004) Removal of Cd (II) from acqueous solution by activated charcoal derived from coconut shell. Electron J Environ Agric Food Chem 3:702–709

    Google Scholar 

  • Galiano LY, Fernández Pereira C, Vale J (2011) Stabilization/solidification of a municipal solid waste incineration residue using fly ash-based geopolymers. J Hazard Mater 185:373–381

    Google Scholar 

  • Ganesan K, Rajagopal K, Thangavel K (2008) Rice husk ash blended cement: assessment of optimal level of replacement for strength and permeability properties of concrete. Constr Build Mater 22:1675–1683

    Google Scholar 

  • Garau MA, Dalmau JL, Felipo MT (1991) Nitrogen mineralization in soil amended with sewage sludge and fly ash. Biol Fertil Soils 12:199–201

    CAS  Google Scholar 

  • García R, Vigil de la Villa R, Vegas I, Frías M, Sánchez de Rojas MI (2008) The pozzolanic properties of paper sludge waste. Constr Build Mater 22:1484–1490

    Google Scholar 

  • Garg UK, Kaur MP, Garg VK, Sud D (2007) Removal of hexavalent Cr from aqueous solutions by agricultural waste biomass. J Hazard Mater 140:60–68

    CAS  Google Scholar 

  • Gashi ST, Daci NM, Ahmeti XM, Selimi TJ, Hoxha EM (1988) Removal of heavy metals from industrial wastewaters, chemistry for protection of the environment. Elsevier, Amsterdam

    Google Scholar 

  • Geysen D, Vandecasteele C, Jaspers M, Wauters G (2004) Comparison of immobilisation of air pollution control residues with cement and with silica. J Hazard Mater 107:131–143

    CAS  Google Scholar 

  • Ghosal S, Self SA (1995) Particle size-density relation and cenosphere content of coal fly-ash. Fuel 74:522–529

    CAS  Google Scholar 

  • Giaccio GM, Malhotra VM (1988) Concrete incorporating high volumes of ASTM Class F fly ash. Cem Concr Aggreg 10:88–95

    CAS  Google Scholar 

  • Girón RP, Ruiz B, Fuente E, Gil RR, Suárez-Ruiz I (2013) Properties of fly ash from forest biomass combustion. Fuel 114(3):71–77

    Google Scholar 

  • Gómez-Barea A, Vilches LF, Leiva C, Campoy M, Fernández-Pereira C (2009) Plant optimisation and ash recycling in fluidised bed waste gasification. Chem Eng J 146:227–236

    Google Scholar 

  • Goswami D, Das AK (2000) Removal of arsenic from drinking water using modified fly-ash bed. Int J Water 1:61–70

    Google Scholar 

  • Grover M, Narayanaswamy MS (1982) Removal of hexavalent chromium by adsorption on flay ash. J Inst Eng (India), Part EN: Environ Eng Div 1:36–39

    Google Scholar 

  • Guo X, **ang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manage 30:4–10

    Google Scholar 

  • Gupta VK, Ali I (2000) Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. Sep Purif Technol 18:131–140

    CAS  Google Scholar 

  • Gupta VK, Ali I (2001) Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Res 35:33–40

    CAS  Google Scholar 

  • Gupta VK, Sharma S (2003) Removal of zinc from aqueous solutions using bagasse fly ash – a low cost adsorbent. Ind Eng Chem Res 42:6619–6624

    CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S (1998a) Removal of lead from wastewater using bagasse fly ash – a sugar industry waste material. Sep Sci Technol 33:1331–1333

    CAS  Google Scholar 

  • Gupta VK, Sharma S, Yadav IS, Mohan D (1998b) Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. J Chem Technol Biotechnol 71:180–186

    CAS  Google Scholar 

  • Gupta VK, Mohan D, Sharma S, Park KT (1999) Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash – a sugar industry waste material. Environmentalist 19:129–136

    Google Scholar 

  • Gupta VK, Jain CK, Ali I, Chandra S, Agarwal S (2002) Removal of lindane and malathion from wastewater using bagasse fly ash – a sugar industry waste. Water Res 36:2483–2490

    CAS  Google Scholar 

  • Gupta VK, Ali I, Jain CK, Sharma M, Saini VK (2003) Removal of cadmium and nickel from wastewater using bagasse fly ash – a sugar industry waste. Water Res 37:4038–4044

    CAS  Google Scholar 

  • Hagenmaier H, Horch K, Fahlenkamp H, Schetter G (1991) Destruction of PCDD and PCDF in refuse incineration plants by primary and secondary measures. Chemosphere 23:1429–1437

    CAS  Google Scholar 

  • Haiying Z, Youcai Z, **gyu Q (2007) Study on use of MSWI fly ash in ceramic tile. J Hazard Mater 141:106–114

    Google Scholar 

  • Helmuth R (1987) Fly ash in cement and concrete. Portland Cement Association, Skokie, pp 36–61

    Google Scholar 

  • Hinton WS, Lane AM (1991) Characteristics of municipal solid waste incinerator fly ash promoting the formation of polychlorinated dioxins. Chemosphere 22:473–483

    CAS  Google Scholar 

  • Hjelmar O (1996) Disposal strategies for municipal solid waste incineration residues. J Hazard Mater 47:345–368

    CAS  Google Scholar 

  • Hjelmar O, Birch H (1997) Treatment of air pollution control residues from MSW incinerators prior to landfilling. In: Proceedings of Sardinia 97, sixth international landfill symposium, S. Margharita di Pula, Cagliari, Italy, pp 535–544

    Google Scholar 

  • Hjelmar O, Hansen JB (2006) A one-stage treatment process for improving the leaching characteristics of APC residues from MSW incinerators. In: Proceedings of WASCON 2006, sixth international conference on the environmental and technical implications of construction with alternative materials – science and engineering of recycling for environmental protection. ISCOWA, Belgrade, pp 97–105. ISBN 86–9088 15–0–6

    Google Scholar 

  • Hjelmar O, Birch H, Hansen JB (1999) Development of a process for treatment of APC residues from MSW incinerators prior to landfilling. In: Proceedings of Sardinia 99, seventh international landfill symposium I, pp 543–548

    Google Scholar 

  • Hjelmar O, Birch H, Hansen JB (2001) The VKI process for treatment of APC residues from MSW incinerators: process development and optimisation in pilot scale. In: Proceedings of the second ISWA seminar on waste-to-energy – state of the art and latest news, Malmö, Sweden, 25–26 October

    Google Scholar 

  • Höller H, Wirsching U (1985) Zeolites formation from fly ash. Foftschritte der Mineralogist 63:21–43

    Google Scholar 

  • Hollis JF, Keren R, Gal M (1988) Boron release and sorption by fly ash as affected by pH and particle size. J Environ Qual 17:181–184

    CAS  Google Scholar 

  • Hong KJ, Tokunaga S, Kajiuchi T (2000) Extraction of heavy metals from MSW incinerator fly ashes by chelating agents. J Hazard Mater 75:57–73

    CAS  Google Scholar 

  • Hosseini MM, Shao Y, Whalen JK (2011) Biocement production from silicon-rich plant residues: perspectives and future potential in Canada. Biosyst Eng 110:351–362

    Google Scholar 

  • Hower JC, Maroto-Valer MM, Taulbee DN, Sakulpitakphon T (2000) Mercury capture by distinct fly ash carbon forms. Energy Fuel 14:224–226

    CAS  Google Scholar 

  • Hu SH (2005) Stabilization of heavy metals in municipal solid waste incineration ash using mixed ferrous/ferric sulfate solution. J Hazard Mater 123:158–164

    CAS  Google Scholar 

  • Hu Y, Zhang P, Chen D, Zhou B, Li J, Li XW (2012) Hydrothermal treatment of municipal solid waste incineration fly ash for dioxin decomposition. J Hazard Mater 207–208:79–85

    Google Scholar 

  • Huang K, Inoue K, Harada H, Kawakita H, Ohto K (2011) Leaching behavior of heavy metals with hydrochloric acid from fly ash generated in municipal waste incineration plants. Trans Nonferrous Met Soc China 21:1422–1427

    Google Scholar 

  • IAWG (International Ash Working Group), Chandler AJ, Eighmy TT, Hartlén O, Kosson D, Sawell SE, van der Sloot H, Vehlow J (1997) Municipal solid waste incinerator residues, vol 67, Studies in environmental science. Elsevier, Amsterdam

    Google Scholar 

  • Iretskaya S, Nzihou A, Zahraoui C, Sharrock P (1999) Metal leaching from MSW fly ash before and after chemical and thermal treatments. Environ Prog 18:144–148

    CAS  Google Scholar 

  • Ismail MS, Waliuddin AM (1996) Effect of rice husk ash on high strength. Concr Const Build Mater 10:521–526

    Google Scholar 

  • Ito T (1996) Vitrification of fly ash by swirling-flow furnace. Waste Manage 16:453–460

    CAS  Google Scholar 

  • Iyer RS, Scott JA (2001) Power station fly ash e a review of value-added utilization outside of the construction industry. Resour Conserv Recycl 31:217–228

    Google Scholar 

  • Izquierdo M, Querol X (2012) Leaching behaviour of elements from coal combustion fly ash: an overview. Int J Coal Geol 94:54–66

    CAS  Google Scholar 

  • Izumikawa C (1996) Metal recovery from fly ash generated from vitrification process for MSW ash. Waste Manage 16:501–507

    CAS  Google Scholar 

  • Jakob A, Stucki S, Kuhn P (1995) Evaporation of heavy metals during the heat treatment of municipal solid waste incinerator fly ash. Environ Sci Technol 29:2429–2436

    CAS  Google Scholar 

  • Jakob A, Stucki S, Struis RW (1996) Complete heavy metal removal from fly ash by heat treatment – influence of chlorides an evaporation rates. Environ Sci Technol 30:3275–3283

    CAS  Google Scholar 

  • Jala S, Goyal D (2006) Fly ash as a soil ameliorant for improving crop production: a review. Bioresour Technol 97:1136–1147

    CAS  Google Scholar 

  • Jankowski J, Ward CR, French D, Groves S (2006) Mobility of trace elements from selected Australian fly ashes and its potential impact on aquatic ecosystems. Fuel 85:243–256, Special issue: the 21st annual International Pittsburgh Coal Conference

    CAS  Google Scholar 

  • Janos P, Buchtova H, Ryznarova M (2003) Sorption of dyes from aqueous solutions onto fly ash. Water Res 37:4938–4944

    CAS  Google Scholar 

  • Jarvis ST, Brooks TG (1996) The use of PFA: cement pastes in the stabilization of abundant mine workings. Waste Manage 16:135–144

    CAS  Google Scholar 

  • Jayasinghe GY, Tokashiki Y (2006) Utilization of coal fly ash for the production of artificial aggregates as a crop growth medium with acidic “Kunigami Mahji” soils in Okinawa, Japan. J Solid Waste Manag Technol 32:1–9

    CAS  Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M (2005) Development of synthetic lightweight soil aggregates utilizing coal fly ash and mine clay as waste materials. Tropic Agric Res Ext 8:1–12

    Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M (2007) Assessment and utilization of synthetic soil aggregates developed by using coal fly ash and paper waste. In: Conference proceedings of Agronomy Society of America (ASA), Crop Science Society of America (CSSA), and Soil Science Society of America (SSSA), 4–8 November, New Orleans, LA, USA. A Century of Integrating Crops, Soils and Environment, Madison

    Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M (2008) Characteristics of synthetic soil aggregates produced by mixing acidic “Kunigami Mahji” soil with coal fly ash and their utilization as a medium for crop growth. Soil Sci Plant Nutr 54:264–276

    CAS  Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M, Kinjo K (2009) Coal fly ash based synthetic aggregates as potential alternative container substrates for ornamentals. J Plant Nutr Soil Sci 172:720–728

    CAS  Google Scholar 

  • Jayasinghe GY, Tokashiki Y, Kitou M (2010) Use of synthetic soil aggregates as a containerized growth medium component to substitute peat in the ornamental plant production. Arch Agron Soil Sci 56(2):183–199

    CAS  Google Scholar 

  • Jensen DL, Lundtrop K, Christensen TH (2002) Treatment of waste incineration air-pollution control residues with FeSO4: laboratory investigation of design parameters. Waste Manage Res 20:80–89

    CAS  Google Scholar 

  • ** M, Huang C, Chen L, Sun X, Wang L (2011) Immobilization of MSWI fly ash with geopolymers. Adv Mater Res 150–151:1564–1569

    Google Scholar 

  • Jiang J-g, Du X-j, Chen M-z, Zhang C (2009) Continuous CO(2) capture and MSWI fly ash stabilization, utilizing novel dynamic equipment. Environ Pollut 157:2933–2938

    CAS  Google Scholar 

  • Johansson I, Van Bavel B (2003a) Levels and patterns of polycyclic aromatic hydrocarbons in incineration ashes. Sci Total Environ 311:221–231

    CAS  Google Scholar 

  • Johansson I, Van Bavel B (2003b) Polycyclic aromatic hydrocarbons in weathered bottom ash from incineration of municipal solid waste. Chemosphere 53:123–128

    CAS  Google Scholar 

  • Jones DA, Lelyveld TP, Mavrofidis SD, Kingman SW, Miles NJ (2002) Microwave heating applications in environmental engineering – a review. Resour Conserv Recycl 34:75–90

    Google Scholar 

  • Joshi RC, Lothia RP (1997) Fly ash in concrete: production, properties and uses, vol 2, Advances in concrete technology. Gordon and Breach Science Publishers, New York

    Google Scholar 

  • Jung CH, Matsuto T, Tanaka N (2005) Behavior of metals in ash melting and gasification-melting of municipal solid waste (MSW). Waste Manage 25:301–310

    CAS  Google Scholar 

  • Juwarkar AA, Jambhulkar HP (2008) Restoration of fly ash dumps through biological interventions. Environ Monit Assess 139:355–365

    CAS  Google Scholar 

  • Kalapathy U, Proctor A, Shultz J (2000) Simple method for production of pure silica from rice hull ash. Bioresour Technol 73:257–262

    CAS  Google Scholar 

  • Kamble SP, Mangrulkar PA, Bansiwal AK, Rayalu SS (2008) Adsorption of phenol and o-chlorophenol on surface altered fly ash based molecular sieves. Chem Eng J 138:73–83

    CAS  Google Scholar 

  • Kamon M, Katsumi T, Sano Y (2000) MSW fly ash stabilized with coal ash for geotechnical application. J Hazard Mater 76:265–283

    CAS  Google Scholar 

  • Kamseu E, Leonelli C, Obonyo E (2011) Int Ceram Rev 60:221–225

    Google Scholar 

  • Kao PC, Tzeng JH, Huang TL (2000) Removal of chlorophenols from aqueous solution by fly ash. J Hazard Mater 76:237–249

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1992) Adsorption of mercury from wastewater by fly ash. Adsorpt Sci Technol 9:130–147

    CAS  Google Scholar 

  • Karamanov A, Pelino M, Hreglich A (2003a) Sintered glass–ceramics from municipal solid waste-incinerator fly ashes. Part I: The influence of the heating rate on the sinter-crystallisation. J Eur Ceram Soc 23:827–832

    CAS  Google Scholar 

  • Karamanov A, Pelino M, Salvo M, Metekovits I (2003b) Sintered glass–ceramics from incinerator fly ashes. Part II. The influence of the particle size and heat-treatment on the properties. J Eur Ceram Soc 23:1609–1615

    CAS  Google Scholar 

  • Katsuura H, Inoue T, Hiraoka M, Sakai S (1996) Full-scale plant study on fly ash treatment by the acid extraction process. Waste Manage 16:491–499

    CAS  Google Scholar 

  • Kawakami I, Esaki M, Tetsuyama I, Sumitomo M (1996) Immobilization of fly ash from msw incinerators and ash-melting furnaces. Waste Manage 16:483–489

    CAS  Google Scholar 

  • Kelleher BP, O’Callaghan MN, Leahy MJ, O’Dwyer TF, Leahy JJ (2002) The use of fly ash from the combustion of poultry litter for the adsorption of chromium(III) from aqueous solution. J Chem Technol Biotechnol 77:1212–1218

    CAS  Google Scholar 

  • Kersch C, Ortiz SP, Woerlee GF, Witkamp GJ (2004) Leachability of metals from fly ash: leaching tests before and after extraction with supercritical CO2 and extractants. Hydrometallurgy 72:119–127

    CAS  Google Scholar 

  • Khalid N, Mukri M, Kamarudin F, Arshad MF (2012) Clay soil stabilized using Waste Paper Sludge Ash (WPSA) mixtures. Electron J Geotech Eng 17:1215–1225

    CAS  Google Scholar 

  • Khan MR, Khan MW (1996) The effect of fly-ash on plant growth and yield of tomato. Environ Pollut 92:105–111

    CAS  Google Scholar 

  • Khan MJ, Al-Juhani AA, Ul-Hamid A, Shawabkeh R, Hussein IA (2011) J Appl Polym Sci 122:2486–2496

    CAS  Google Scholar 

  • Khanna SK, Malhotra P (1997) Kinetics and mechanism of phenol adsorption on fly ash. Ind J Environ Health 19:224–237

    Google Scholar 

  • Khatri C, Rani A (2008) Synthesis of a nano-crystalline solid acid catalyst from fly ash and its catalytic performance. Fuel 87:2886–2892

    CAS  Google Scholar 

  • Khatri C, Mishra MK, Rani A (2010) Synthesis and characterization of fly ash supported sulfated zirconia catalyst for benzylation reactions. Fuel Process Technol 91:1288–1295

    CAS  Google Scholar 

  • Kikkawa H, Nakamoto T, Morishita M, Yamada K (2002) New wet FGD process using granular limestone. Ind Eng Chem Res 41:3028–3036

    CAS  Google Scholar 

  • Kilinçkale F, Aythan S, Apak R (1997) Solidification/stabilization of heavy metal- loaded red muds and fly ashes. J Chem Technol Biotechnol 69:240–246

    Google Scholar 

  • Kim Y, Lee D, Osako M (2002) Effect of dissolved humic matters of the leachability of PCDD/F from fly ash. Chemosphere 47:599–605

    CAS  Google Scholar 

  • Kim E, Oh J, Chang Y (2003) Effects of forest fire on the level and distribution of PCDD/Fs and PAH in soil. Sci Total Environ 311:177–189

    CAS  Google Scholar 

  • Kim SH, Kwak SY, Suzuki T (2006) Photocatalytic degradation of flexible PVC/TiO2 nanohybrid as an eco-friendly alternative to the current waste landfill and dioxin-emitting incineration of post-use PVC. Polymer 47:3005–3016

    CAS  Google Scholar 

  • Kim Y-R, Pinto I, Park S-W (2012) Experimental evaluation of anti-strip** additives in bituminous mixtures through multiple scale laboratory test results. Constr Build Mater 29:386–393

    Google Scholar 

  • Kingman FSW, Rowson NA (1998) Microwave treatment of minerals – a review. Miner Eng 11:1081–1087

    CAS  Google Scholar 

  • Kirby CS, Rimstidt JD (1993) Mineralogy and surface properties of municipal solid waste ash. Environ Sci Technol 27:652–660

    CAS  Google Scholar 

  • Kost DA, Bigham JM, Stehouwer RC, Beeghly JH, Fowler R, Traina SJ, Wolfe WE, Dick WA (2005) Chemical and physical properties of dry flue gas desulfurization products. J Environ Qual 34:676–686

    CAS  Google Scholar 

  • Krebs W, Bachofen R, Brandl H (2001) Growth stimulation of sulfur oxidizing bacteria for optimization of metal leaching efficiency of fly ash from municipal solid waste incineration. Hydrometallurgy 59:283–290

    CAS  Google Scholar 

  • Krishnamoorthy R (2000) Ash utilisation in India prospect and problems. Barrier and utilisation option for large volume application of fly ash in India. In: Hajela V (ed) Proceedings of the Workshop on USAID/India Greenhouse Gas Pollution Prevention Project. pp 63–67

    Google Scholar 

  • Krishnamurthy S, Brown HC (1980) Selective reductions. 27. Reaction of alkyl halides with representative complex metal hydrides and metal hydrides. Comparison of various hydride reducing agents. J Org Chem 45:849–856

    CAS  Google Scholar 

  • Kruger JE (1998) An overview. In: Kruger JE (ed) Guides on the use of South African fly ash as a cement extender guide. The South African Coal Fly Ash Association (SACAA), Cresta, p 2

    Google Scholar 

  • Kulkarni PS, Crespo JC, Afonso CAM (2008) Dioxins sources and current remediation technologies – a review. Environ Int 34:139–153

    CAS  Google Scholar 

  • Kumar P, Mal N, Oumi Y, Yamana K, Sano T (2001) Mesoporous materials prepared using coal fly ash as the silicon and aluminium source. J Mater Chem 11:3285–3290

    CAS  Google Scholar 

  • Kumar R, Kumar S, Mehrotra S (2007a) Towards sustainable solutions for fly ash through mechanical activation, resources. Conserv Recycl 52:157–179

    Google Scholar 

  • Kumar S, Kumar R, Alex TC, Bandopadhyay A, Mehrotra SP (2007b) Influence of reactivity of fly ash on geopolymerisation. Adv Appl Ceram 106:120–127

    CAS  Google Scholar 

  • Kumari K, Saxena SK (1988) Adsorption thermodynamics of carbofuran of fly ash. Colloid Surf 33:55–61

    CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2007) Stabilization of Pb and Cu contaminated soil using coal fly ash and peat. Environ Pollut 145:365–373

    CAS  Google Scholar 

  • Kuo Y, Lin T, Tsai P, Lee W, Lin H (2003) Fate of polycyclic aromatic hydrocarbons during vitrification of incinerator ash in a coke bed furnace. Chemosphere 51:313–319

    CAS  Google Scholar 

  • Kutchko BG, Kim AG (2006) Fly ash characterization by SEM-EDS. Fuel 85:2537–2544

    CAS  Google Scholar 

  • Laethem B, van Herck P, Geuzens P, Vandecasteele C (1994) Integrated treatment of MSW-residues: treatment of fly ash in view of metal recovery. WASCON, pp 525–538

    Google Scholar 

  • Lam CHK, Ip AWM, Barford JP, McKay G (2010) Use of incineration MSW ash: a review. Sustainability 2:1943–1968

    CAS  Google Scholar 

  • Lamble KJ, Hill SJ (1998) Critical review – microwave digestion procedures for environmental materials. Analyst 123:103R–133R

    CAS  Google Scholar 

  • Lancellotti I, Kamseu E, Michelazzi M, Barbieri L, Corradi A, Leonelli C (2010) Chemical stability of geopolymers containing municipal solid waste incinerator fly ash. Waste Manag 30:673–679

    CAS  Google Scholar 

  • Landreth RE (1986) Guide to the disposal of chemically stabilized and solidified waste. EPA SW-72 U.S. Environmental Protection Agency, Cincinnati

    Google Scholar 

  • Langley WS, Carette GG, Malhotra VM (1989) Structural concrete incorporating high volumes of ASTM Class F fly ash. ACI Mater J 86:507–514

    CAS  Google Scholar 

  • Lasagni M, Collina E, Grandesso E, Piccinelli E, Pitea D (2009) Kinetics of carbon degradation and PCDD/PCDF formation on MSWI fly ash. Chemosphere 74:377–383

    CAS  Google Scholar 

  • Lee H, Ha HS, Lee CS, Lee YB, Kim PJ (2006) Fly ash effect on improving soil properties and rice productivity in Korean paddy soil. Bioresour Technol 97:1490–1497

    CAS  Google Scholar 

  • Lee VKC, Cheung WH, McKay G (2008) PCDD/PCDF reduction by the co-combustion process. Chemosphere 70:682–688

    CAS  Google Scholar 

  • Leiva C, Gomez-Barea A, Vilches LF, Ollero P, Vale J, Fernandez-Pereira C (2007) Use of biomass gasification fly ash in lightweight plasterboard. Energy Fuel 21:361–367

    CAS  Google Scholar 

  • Leiva C, Arenas CG, Vilches LF, Vale J, Gimenez A, Ballesteros JC, Fernández-Pereira C (2010) Use of FGD gypsum in fire resistant panels. Waste Manage 30:1123–1129

    CAS  Google Scholar 

  • Li X, Fernández Bertos M, Hills CD, Carey PJ, Simon S (2007) Accelerated carbonation of municipal solid waste incineration fly ashes. Waste Manage 27:1200–1206

    CAS  Google Scholar 

  • Lima AT, Ottosen LM, Ribeiro AB (2012) Assessing fly ash treatment: remediation and stabilization of heavy metals. J Environ Manage 95:110–115

    Google Scholar 

  • Lin CJ, Chang JE (2001) Effect of fly ash characteristics on the removal of Cu(II) from aqueous solution. Chemosphere 44:1185–1192

    CAS  Google Scholar 

  • Lingling X, Wei G, Tao W, Nanru Y (2005) Study on fired bricks with replacing clay by fly ash in high volume ratio. Constr Build Mater 19:243–247

    Google Scholar 

  • Llorente MJF, Garcia JEC (2006) Concentration of elements in woody and herbaceous biomass as a function of the dry ashing temperature. Fuel 85:1273–1279

    Google Scholar 

  • López-Antón MA, Díaz-Somoano M, Martínez-Tarazona MR (2007) Mercury retention by fly ashes from coal combustion: influence of the unburned coal content. Ind Eng Chem Res 46:927–931

    Google Scholar 

  • Lorenz K (1954) Secondary treatment of power-plant phenol waste with fly ash and cinders. Gesundh Ing 75:189

    CAS  Google Scholar 

  • Ludwig C, Schuler AJ, Wochele J, Stucki S (2000a) Source: measuring heavy metals by quantitative thermal vaporization. Water Sci Technol 42:209–216

    CAS  Google Scholar 

  • Ludwig C, Johnson CA, Kappeli M, Ulrich A, Riediker S (2000b) Hydrological and geochemical factors controlling the leaching of cemented MSWI air pollution control residues: a lysimeter field study. J Contam Hydrol 42:253–272

    CAS  Google Scholar 

  • Ludwig C, Lutz H, Wochele J, Stucki S (2001) Studying the evaporation behavior of heavy metals by thermo-desorption spectrometry. Fresenius J Anal Chem 371:1057–1062

    CAS  Google Scholar 

  • Ludwig C, Hellweg S, Stucki S (2003) Municipal solid waste management. Springer, Berlin/Heidelberg/New York. ISBN 3-540-44100-X

    Google Scholar 

  • Ludwig C, Wochele J, Jorimann U (2007) Measuring evaporation rates of metal compounds from solid samples. Anal Chem 79:2992–2996

    CAS  Google Scholar 

  • Lundtorp K, Jensen DL, Sørensen MA, Mogensen EPB, Christensen TH (1999) Stabilization of APC-Residues with FeSO4. In: Proceedings of Sardinia 99, seventh international landfill symposium I, pp 549–556

    Google Scholar 

  • Lundtorp K, Jensen DL, Sorensen MA, Christensen TH, Mogensen EPB (2002) Treatment of waste incinerator air-pollution-control residues with FeSO4: concept and product characterisation. Waste Manage Res 20:69–79

    CAS  Google Scholar 

  • Lutz H (2002) Detoxification of filter ashes from municipal solid waste incinerators, ETH Zürich, PhD thesis no 14653, Switzerland

    Google Scholar 

  • Ma WP, Brown PW (1997) Hydrothermal reactions of fly ash with Ca(OH)2 and CaSO4.2H2O. Cem Concr Res 27:1237–1248

    CAS  Google Scholar 

  • Mahin DB (1990) Energy from rice residue, biomass energy and technology report. Winrock International Institute for Agricultural Development, Arlington

    Google Scholar 

  • Mahvi AH, Maleki A, Eslami A (2004) Potential of rice husk and rice husk ash for phenol removal in aqueous systems. Am J Appl Sci 1:321–326

    CAS  Google Scholar 

  • Malhotra VM (1990) Durability of concrete incorporating high-volume of low- calcium (ASTM class F) fly ash. Cem Concr Compos 12:271–277

    CAS  Google Scholar 

  • Malviya R, Chaudhary R (2006) Factors affecting hazardous waste solidification/stabilization: a review. J Hazard Mater B 137:267–276

    CAS  Google Scholar 

  • Mandal A, Sengupta D (2003) Radioelemental study of Kolaghat, thermal power plant, West Bengal, India: possible environmental hazards. Environ Geol 44:180–186

    Google Scholar 

  • Mangialardi T (2001) Sintering of MSW fly ash for reuse as a concrete aggregate. J Hazard Mater 87:225–239

    CAS  Google Scholar 

  • Mangialardi T (2003) Disposal of MSWI fly ash through a combined washing-immobilisation process. J Hazard Mater 98:225–240

    CAS  Google Scholar 

  • Mangialardi T, Paolini AE, Polettini A, Sirini P (1999) Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. J Hazard Mater 70:53–70

    CAS  Google Scholar 

  • Manz OE (1999) Coal fly ash: a retrospective and future look. Fuel 78:133–136

    CAS  Google Scholar 

  • Markad VL, Kodam KM, Ghole VS (2012) Effect of fly ash on biochemical responses and DNA damage in earthworm, dichogaster curgensis. J Hazard Mater 215–216:191–198

    Google Scholar 

  • Maroto-Valer MM, Taulbee DN, Schobert HH, Hower JC, Andersen JM (1999) Use of unburned carbon in fly ash as precursor for the development of activated carbons. In: International ash utilization symposium, paper #19

    Google Scholar 

  • Martirena Hernández JF, Middendorf B, Gehrke M, Budelmann H (1998) Use of wastes of the sugar industry as pozzolana in lime-pozzolana binders: study of the reaction. Cem Concr Res 28:1525–1536

    Google Scholar 

  • Masia AAT, Buhre BJP, Gupta RP, Wall TF (2007) Use of TMA to predict deposition behaviour of biomass fuels. Fuel 86:2446–2456

    Google Scholar 

  • Maslehuddin M (1989) Effect of sand replacement on the early-age strength gain and long-term corrosion-resisting characteristics of fly ash concrete. ACI Mater J 86:58–62

    CAS  Google Scholar 

  • Mathur AK (2000) Ash utilisation in NTPC. In: Proceedings of the workshop on fly ash utilisation: issues and strategies, pp 41–45

    Google Scholar 

  • Matti SS, Mukhopadhyay TM, Gupta SK, Banerjee SK (1990) Evaluation of fly ash as a useful material in agriculture. J Ind Soc Soil Sci 38:342–344

    Google Scholar 

  • McCarthy MJ, Dhir RK (1999) Towards maximising the use of fly ash as a binder. Fuel 78:121–132

    CAS  Google Scholar 

  • McKay G (2002) Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chem Eng J 86:343–368

    CAS  Google Scholar 

  • Mehdinia SM, Latif PA, Abdullah AM, Taghipour H (2011) Synthesize and characterization of rice husk silica to remove the hydrogen sulfide through the physical filtration system. Asian J Sci Res 4:246–254

    CAS  Google Scholar 

  • Mehta PK (2001) Reducing the environmental impact of concrete. Concrete International, October 2001, pp 61–66

    Google Scholar 

  • Mehta PK (2004) High-volume fly ash concrete for sustainable development. In: Wank K (ed) International workshop on sustainable development and concrete technology. Iowa State University Publication, Bei**g

    Google Scholar 

  • Meima JA, Comans RNJ (1999) The leaching of trace elements from municipal solid waste incinerator bottom ash at different stages of weathering. Appl Geochem 14:159–171

    CAS  Google Scholar 

  • Miao Z, Yang H, Wu Y, Zhang H, Zhang X (2012) Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds. Ind Eng Chem Res 51:5419–5423

    CAS  Google Scholar 

  • Mimura H, Yokota K, Akiba K, Onodera Y (2001) Alkali hydrothermal synthesis of zeolites from coal fly ash and their uptake properties of cesium ion. J Nucl Sci Technol 38:766–772

    CAS  Google Scholar 

  • Mininni G, Sbrilli A, Guerriero E, Rotatori M (2004) Dioxins and furans formation in pilot incineration tests of sewage sludge spiked with organic chlorine. Chemosphere 54:1337–1350

    CAS  Google Scholar 

  • Mitoma Y, Uda T, Egashira N, Simion C, Tashiro H, Tashiro M, Fan X (2004) Approach to highly efficient dechlorination of PCDDs, PCDFs, and coplanar PCBs using metallic calcium in ethanol under atmospheric pressure at room temperature. Environ Sci Technol 38:1216–1220

    CAS  Google Scholar 

  • Mittra BN, Karmakar S, Swain DK, Ghosh BC (2005) Fly ash a potential source of soil amendment and a component of integrated plant nutrient supply system. Fuel 84:1447–1451

    CAS  Google Scholar 

  • Miyake M, Tamura C, Matsuda M (2002) Resource recovery of waste incineration fly ash: synthesis of zeolites A and P. J Am Ceram Soc 85:1873–1875

    CAS  Google Scholar 

  • Mohan D, Singh KP, Singh G, Kumar K (2002) Removal of dyes from wastewater using fly ash, a low-cost adsorbent. Ind Eng Chem Res 41:3688–3695

    CAS  Google Scholar 

  • Moreno N, Querol X, Andrés JM, Stanton K, Towler M, Nugteren H, Janssen-Jurkovicová M, Jones R (2005) Physico-chemical characteristics of European pulverized coal combustion fly ashes. Fuel 84:1351–1363

    CAS  Google Scholar 

  • Mozaffari E, O’Farrell M, Kinuthia JM, Wild S (2006) Improving strength development of wastepaper sludge ash by wet-milling. Cem Concr Compos 28:144–152

    CAS  Google Scholar 

  • Mugica J, Aguirre P, Fresnillo P (1995) Vitrification de cenizas volantes con plasma. Ing Quim Abril 137–142

    Google Scholar 

  • Muir MA, Yunusa IAM, Burchett MD, Lawrie R, Chan KY, Manoharan V (2007) Short-term responses of contrasting species of earthworms in an agricultural soil amended with coal fly-ash. Soil Biol Biochem 39:987–992

    CAS  Google Scholar 

  • Mukherjee AB, Zevenhoven R, Bhattacharya P, Sajwan KS, Kikuchi R (2008) Mercury flow via coal and coal utilization by-products: a global perspective. Resour Conserv Recycl 52:571–591

    Google Scholar 

  • Mulder E (1996) Pre-treatment of MSWI fly ash for useful application. Waste Manag 16:181–184

    CAS  Google Scholar 

  • Murayama N, Yoshida S, Takami Y, Yamamoto H, Shibata J (2003) Simultaneous removal of NH4 and PO43- in aqueous solution and its mechanism by using zeolite synthesized from coal fly ash. Sep Sci Technol 38:113–130

    CAS  Google Scholar 

  • Mustafa Al Bakri AM, Kamarudin H, Bnhussain M, Khairul Nizar I, Rafiza AR, Izzat AM (2011) Chemical reactions in the geopolymerisation process using fly ash-based geopolymer: a review. Aust J Basic Appl Sci 5:1199–1203

    Google Scholar 

  • Nagib S, Inoue K (2000) Recovery of lead and zinc from fly ash generated from municipal incineration plants by means of acid and/or alkaline leaching. Hydrometallurgy 56:269–292

    CAS  Google Scholar 

  • Nahmani J, Capowiez Y, Lavelle P (2005) Effects of metal pollution on soil macroinvertebrate burrow systems. Biol Fertil Soils 42:31–39

    CAS  Google Scholar 

  • Naik TR, Tyson SS (2000) Environmental benefits from the use of coal combustion products (CCP). In: Verma CVJ, Rao SV, Kumar V, Krishnamoorthy R (eds) Proceedings of the second international conference on fly ash disposal, utilisation, pp 40–43

    Google Scholar 

  • Naiya TK, Bhattacharya AK, Mandal S, Das SK (2009) The sorption of Lead(II) ions on rice husk ash. J Hazard Mater 163:1254–1264

    CAS  Google Scholar 

  • Nam S, Namkoong W (2012) Irradiation effect on leaching behavior and form of heavy metals in fly ash of municipal solid waste incinerator. J Hazard Mater 199–200:440–447

    Google Scholar 

  • Nam IH, Hong HB, Kim YM, Kim BH, Murugesan K, Chang YS (2005) Biological removal of polychlorinated dibenzo-p-dioxins from incinerator fly ash by Sphingomonas wittichii RW1. Water Res 39:4651–4660

    CAS  Google Scholar 

  • Nam IH, Kim YM, Murugesan K, Jeon JR, Chang YY, Chang YS (2008) Bioremediation of PCDD/Fs-contaminated municipal solid waste incinerator fly ash by a potent microbial biocatalyst. J Hazard Mater 157:114–121

    CAS  Google Scholar 

  • Narayanasamy P, Gnanakumar D (1989) Lignite fly-ash: a nonpolluting substance for tackling pest problems. In: Devaraj KV (ed) Progress in pollution research. University of Agricultural Sciences, Bangalore, pp 201–206

    Google Scholar 

  • Natusch DFS, Wallace JR (1974) Urban aerosol toxicity: the influence of particle size. Science 186:695–699

    CAS  Google Scholar 

  • Ngamcharussrivichai C, Chatratananon C, Nuntang S, Prasassarakich P (2008) Adsorptive removal of thiophene and benzothiophene over zeolites from Mae Moh coal fly ash. Fuel 87:2347–2351

    CAS  Google Scholar 

  • Nimityongskul P, Panichnava S, Hengsadeekul T (2003) Use of vetiver grass ash as cement replacement materials. ICV- Held in Guangzhou, China, pp 6–9

    Google Scholar 

  • Nishida K, Nagayoshi Y, Ota H, Nagasawa H (2001) Melting and stone production using MSW incinerated ash. Waste Manag 21:443–449

    CAS  Google Scholar 

  • Nollet H, Roels M, Lutgen P, Van Der Meeren P, Verstraete W (2003) Removal of PCBs from wastewater using fly ash. Chemosphere 53:655–665

    CAS  Google Scholar 

  • Nomura Y, Fujiwara K, Takada M, Nakai S, Hosomi M (2006) Detoxification of fly ash by mechanochemical treatment with blast furnace slag and the usability of the residues as cement materials. J Jpn Soc Waste Manag Expert 17:355–360

    CAS  Google Scholar 

  • Nomura Y, Fujiwara K, Takada M (2008) Lead immobilization in mechanochemical fly ash recycling. J Mater Cycle Waste Manag 10:14–18

    CAS  Google Scholar 

  • Nomura Y, Fujiwara K, Terada A, Nakai S, Hosomi M (2010) Prevention of lead leaching from fly ashes by mechanochemical treatment. Waste Manag 30:1290–1295

    CAS  Google Scholar 

  • Nowak B, Frías Rocha S, Aschenbrenner P, Rechberger H, Winter F (2012) Heavy metal removal from MSW fly ash by means of chlorination and thermal treatment: influence of the chloride type. Chem Eng J 179:178–185

    CAS  Google Scholar 

  • Nzihou A, Sharrock P (2002) Calcium phosphate stabilization of fly ash with chloride extraction. Waste Manag 22:235–239

    CAS  Google Scholar 

  • Obernberger I, Biedermann F, Widmann W, Riedl R (1997) Concentrations of inorganic elements in biomass fuels and recovery in the different ash fractions. Biomass Bioenerg 12:211–224

    CAS  Google Scholar 

  • Osako M, Kim Y, Lee D (2002) A pilot and field investigation on mobility of PCDDs/ PCDFs in landfill site with municipal solid waste incineration residue. Chemosphere 48:849–856

    CAS  Google Scholar 

  • Page AL, Elseewi AA, Straugham I (1979) Physical and chemical properties of fly- ash from coal fired plants with reference to environmental impacts. Residue Rev 71:83–120

    CAS  Google Scholar 

  • Pan SC, Tseng DH, Lee CC, Lee C (2003) Influence of the fineness of sewage sludge ash on the mortar properties. Cem Concr Res 33:1749–1754

    CAS  Google Scholar 

  • Panday KK, Prasad G, Singh VN (1984) Removal of Cr(VI) from aqueous solutions by adsorption on fly ash-wollastonite. J Chem Technol Biotechnol 34A:367–374

    CAS  Google Scholar 

  • Panday KK, Prasad G, Singh VN (1985) Copper (II) removal from aqueous solutions by fly ash. Water Res 19:869–873

    CAS  Google Scholar 

  • Pandey VC, Singh N (2010) Impact of fly ash incorporation in soil systems. Agric Ecosyst Environ 136:16–27

    Google Scholar 

  • Papachristou E, Vasilikiotis G, Alexiades C (1985) Selective adsorption of heavy metal cations by using fly ash. In: Proceedings of the first international symposium on environmental technology for develo** countries, Istanbul, Turkey

    Google Scholar 

  • Papandreou A, Stournaras CJ, Panias D (2007) Copper and cadmium adsorption on pellets made from fired coal fly ash. J Hazard Mater 148:538–547

    CAS  Google Scholar 

  • Papastefanou C (2008) Radioactivity of coals and fly ashes. J Radioanal Nucl Chem 275:29–35

    CAS  Google Scholar 

  • Park YJ, Heo J (2002) Vitrification of fly ash from municipal solid waste incinerator. J Hazard Mater 91:83–93

    CAS  Google Scholar 

  • Park JS, Taniguchi S, Park YJ (2009) Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 74:320–324

    Google Scholar 

  • Patel M, Karera A, Prasanna P (1987) Effect of thermal and chemical treatments on carbon and silica contents in rice husk. J Mater Sci 22:2457–2464

    CAS  Google Scholar 

  • Pavlish JH, Sondreal EA, Mann MD, Olson ES, Galbreath KICK, Laudal DL (2003) Status review of mercury control options for coal-fired power plants. Fuel Process Technol 82:89–165

    CAS  Google Scholar 

  • Pedersen AJ (2002) Evaluation of assisting agents for electrodialytic removal of Cd, Pb, Zn, Cu and Cr from MSWI fly ash. J Hazard Mater B 95:185–198

    CAS  Google Scholar 

  • Pedersen AJ, Ottosen LM, Villumsen A (2005) Electrodialytic removal of heavy metals from municipal solid waste incineration fly ash using ammonium citrate as assisting agent. J Hazard Mater 122:103–109

    CAS  Google Scholar 

  • Peloso A, Rovatti M, Ferraiolo G (1983) Fly ash as adsorbent material for toluene vapours. Resour Conserv Recycl 10:211–220

    CAS  Google Scholar 

  • Phung HT, Lund LJ, Page AL (1978) In: Adriano DC, Brisbin IL (eds) Potential use of fly-ash as a liming material in environmental chemistry and cycling processes. CONF-760429. U.S. Department of Energy, p 504

    Google Scholar 

  • Piantone P, Bodenan F, Derie R, de Pelsenaire G (2003) Monitoring the stabilisation of municipal solid waste incineration fly ash by phosphation. Waste Manag 23:225–243

    CAS  Google Scholar 

  • Pitchtel JR, Hayes JM (1990) Influence of fly ash on soil microbial activity and populations. J Environ Qual 19:593–597

    Google Scholar 

  • Pitchtel JR (1990) Microbial respiration in fly-ash sewage sludge-amended soils. Environ Pollut 63:225–237

    Google Scholar 

  • Prabhu PVSS, Narayanaswamy MS, Narasa Raju TSS (1981) Adsorption of zinc from aqueous solutions by fly ash. IAWPC Tech Annu 8:46–52

    CAS  Google Scholar 

  • Querol X, Alastuey A, Jose LFT, Angel LS (1995) Synthesis of zeolites by alkaline activation of ferro-aluminous fly ash. Fuel 74:1226–1231

    CAS  Google Scholar 

  • Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A, Plana F (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50:413–423

    CAS  Google Scholar 

  • Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121

    CAS  Google Scholar 

  • Rajamma R, Ball RJ, Tarelho LAC, Allen GC, Labrincha JA, Ferreira VM (2009) Characterisation and use of biomass fly ash in cement-based materials. J Hazard Mater 172:1049–1060

    CAS  Google Scholar 

  • Ramakrishna KR, Viraraghavan T (1997) Dye removal using low cost adsorbents. Water Sci Technol 36:189–196

    CAS  Google Scholar 

  • Rani DA, Boccaccini AR, Deegan D, Cheeseman CR (2008) Air pollution control residues from waste incineration: current UK situation and assessment of alternative technologies. Waste Manag 28:2279–2292

    Google Scholar 

  • Rao VMHG (1980) Utilization of rice husk- a preliminary analysis. J Sci Ind Res 39:495–515

    Google Scholar 

  • Rao M, Parwate AV, Bhole AG (2002) Removal of Cr6þ and Ni2þ from aqueous solution using bagasse and fly ash. Waste Manag 22:821–830

    CAS  Google Scholar 

  • Rao M, Parwate AV, Bhole AG, Kadu PA (2003) Performance of low-cost adsorbents for the removal of copper and lead. J Water Suppl: Res Technol-AQUA 52:49–58

    CAS  Google Scholar 

  • Rattanasak U, Pankhet K, Chindaprasirt P (2011) Effect of chemical admixtures on properties of high-calcium fly ash geopolymer. Int J Miner Metall Material 18:364–369

    CAS  Google Scholar 

  • Rautaray SK, Ghosh BC, Mittra BN (2003) Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice–mustard crop** sequence under acid lateritic soils. Bioresour Technol 90:275–283

    CAS  Google Scholar 

  • Ravina D, Mehta PK (1986) Properties of fresh concrete containing large amounts of fly ash. Cem Concr Res 16:227–238

    CAS  Google Scholar 

  • Rawlings RD, Wu JP, Boccaccini AR (2006) Glass-ceramics: their production from wastes – a review. J Mater Sci 41:733–761

    CAS  Google Scholar 

  • Rayalu SS, Bansiwal AK, Meshram SU, Labhsetwar N, Devotta S (2006) Fly ash based zeolite analogues: versatile materials for energy and environment conservation. Catal Surv Asia 10:74–88

    CAS  Google Scholar 

  • Reijnders L (2005) Disposal, uses and treatments of combustion ashes: a review. Resour Conserv Recycl 43:313–336

    Google Scholar 

  • Reiner M, Rens K (2006) High-volume fly ash concrete: analysis and application. Pract Period Struct Des Constr 11:58–64

    Google Scholar 

  • Rickard WDA, van Riessen A, Walls P (2010) Thermal character of geopolymers synthesized from Class F fly ash containing high concentrations of iron and alpha-quartz. Int J Appl Ceram Technol 7:81–88

    CAS  Google Scholar 

  • Rickard WDA, Williams RP, Temuu** J, van Riessen A (2011) Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications. Mater Sci Eng A 528:3390–3397

    Google Scholar 

  • Rickard WDA, Temuu** J, van Riessen A (2012) Thermal analysis of geopolymer pastes synthesised from five fly ashes of variable composition. J Non-Cryst Solid 385:1830–1839

    Google Scholar 

  • Ricou P, Lecuyer I, Le Cloirec P (1999) Removal of Cu2+, Zn2+ and Pb2+ by adsorption onto fly ash and fly ash/lime mixing. Water Sci Technol 39:239–247

    CAS  Google Scholar 

  • Robertson GP, Paul EA, Harwood RR (2000) Greenhouse gases in intensive agriculture: contributions of individual gases to the radiative forcing of the atmosphere. Science 289:1922–1925

    CAS  Google Scholar 

  • Roes L, Patel MK, Worrell E, Ludwig C (2012) Preliminary evaluation of risks related to waste incineration of polymer nanocomposites. Sci Total Environ 417:76–86

    Google Scholar 

  • Romero M, Rawlings RD, Rincon JM (1999) Development of a new glass-ceramic by means of controlled vitrification and crystallisation of inorganic wastes from urban incineration. J Eur Ceram Soc 19:2049–2058

    CAS  Google Scholar 

  • Rotenberg SJ, Mettzler G, Poliner J, Bechtold WE, Eidson AF, Newton GJ (1991) Adsorption kinetics of vapor-phase m-xylene on coal fly ash. Environ Sci Technol 25:930–935

    Google Scholar 

  • Rovatti M, Peloso A, Ferraiolo G (1988) Susceptibility to regeneration of fly ash as an adsorbent material. Resour Conserv Recycl 1:137–143

    CAS  Google Scholar 

  • Roy A, Eaton HC, Cartledge FK, Tittlebaum ME (1991) Solidification/stabilization of heavy metal sludge by a Portland cement/fly ash binding mixture hazard. Waste Hazard Mater 833–839

    Google Scholar 

  • Ruangtaweep Y, Kaewkhao J, Kedkaew C, Limsuwan P (2011) Investigation of biomass fly ash in Thailand for recycle to glass production. Procedia Eng 8:58–61

    Google Scholar 

  • Rubel A, Andrews R, Gonzalez R, Groppo J, Robl T (2005) Adsorption of Hg and NOx on coal by-products. Fuel 84:911–916

    CAS  Google Scholar 

  • Rubio B, Izquierdo MT, Mayoral MC, Bona MT, Andres JM (2007) Unburnt carbon from coal fly ashes as a precursor of activated carbon for nitric oxide removal. J Hazard Mater 143:561–566

    CAS  Google Scholar 

  • Sabbas T, Polettini A, Pomi R, Astrup T, Hjelmar O, Mostbauer P, Cappai G, Magel G, Salhofer S, Speiser C, Heuss-Assbicher S, Klein R, Lehner P (2003) Management of municipal solid waste incinerator residues. Waste Manag 23:61–88

    CAS  Google Scholar 

  • Safiuddin M (2008) Development of self-consolidating high performance concrete incorporating rice husk ash, a Thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of doctor of philosophy in Civil Engineering, Waterloo, ON, Canada

    Google Scholar 

  • Sajwan KS, Paramasivam S, Alva AK, Adriano DC, Hooda PS (2003) Assessing the feasibility of land application of fly ash, sewage sludge and their mixtures. Adv Environ Res 8:77–91

    CAS  Google Scholar 

  • Sakai S, Hiraoka M (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag 20:249–258

    CAS  Google Scholar 

  • Sakai S, Urano S, Takatsuki H (2000) Leaching behavior of PCBs and PCDDs/DFs from some waste materials. Waste Manag 20:241–247

    CAS  Google Scholar 

  • Sako T, Sugeta T, Otake K, Sato M, Tsugumi M, Hiaki T, Hongo M (1997) Decomposition of dioxins in fly ash with supercritical water oxidation. J Chem Eng Jpn 30:744–747

    CAS  Google Scholar 

  • Sako T, Kawasaki S, Noguchi H, Kimura T, Sato H (2004) Destruction of dioxins and PCBs in solid wastes by supercritical fluid treatment. Organohalog Compd 66:1187–1193

    Google Scholar 

  • Sankari SA, Narayanasamy P (2007) Bio-efficacy of fly-ash based herbal pesticides against pests of rice and vegetables. Curr Sci 92:811–816

    CAS  Google Scholar 

  • Sarabèr A, Overhof R, Green T, Pels J (2012) Artificial lightweight aggregates as utilization for future ashes – a case study. Waste Manag 32:144–152

    Google Scholar 

  • Sarkar A, Rano R, Mishra K, Sinha I (2005) Particle size distribution profile of some Indian fly ash – a comparative study to assess their possible uses. Fuel Process Technol 86:1221–1238

    CAS  Google Scholar 

  • Scharnhorst W, Ludwig C, Wochele J, Jolliet O (2007) Heavy metal partitioning from electronic scrap during thermal end-of-life treatment. Sci Total Environ 373:576–584

    CAS  Google Scholar 

  • Scheetz BE, Earle R (1998) Utilization of fly ash. Curr Opin Solid State Mater Sci 3:510–520

    CAS  Google Scholar 

  • Schmid J, Elser A, Ströbel R, Crowe M (2000) Dangerous substances in waste. European Environment Agency, Copenhagen

    Google Scholar 

  • Sedhom E, Dauerman L, Ibrahim N, Windgasse G (1992) Microwave treatment of hazardous wastes: “fixation” of chromium in soil. J Microw Power Electromagn Energy 27:81–86

    Google Scholar 

  • Sen AK, De AK (1987) Adsorption of mercury (II) by coal fly ash. Water Res 21:885–888

    CAS  Google Scholar 

  • Shao L, Xu ZX, ** W, Yin HL (2009) Rice husk as carbon source and biofilm carrier for water denitrification. Pol J Environ Stud 18:693–699

    CAS  Google Scholar 

  • Sharma S (1989) Fly ash dynamics in soil water systems. Crit Rev Environ Control 19:251–275

    CAS  Google Scholar 

  • Shawabkeh R, Al-Harahsheh A, Hami M, Khlaifat A (2004) Conversion of oil shale ash into zeolite for cadmium and Lead removal from wastewater. Fuel 83:981–985

    CAS  Google Scholar 

  • Shen JF, Zhou XW, Sun DS, Fang JG, Liu ZJ, Li Z (2008) Soil improvement with coal ash and sewage sludge: a field experiment. Environ Geol 53:1777–1785

    CAS  Google Scholar 

  • Shen DK, Gu S, Luo KH, Bridgewater AV, Fang MX (2009) Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88:1024–1030

    CAS  Google Scholar 

  • Shi HS, Kan LL (2009) Characteristics of municipal solid wastes incineration (MSWI) fly ash–cement matrices and effect of mineral admixtures on composite system. Constr Build Mater 23:2160–2166

    Google Scholar 

  • Shi C, Qian J (2003) Increasing coal fly ash use in cement and concrete through chemical activation of reactivity of fly ash. Energy Source 25:617–628

    CAS  Google Scholar 

  • Shulman DM (2007) An aggregate replacement. A power plant byproduct may be ideal for concrete production. Concr Producer 25:41–42

    Google Scholar 

  • Singh BK, Nayak PS (2004) Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash. Adsorpt Sci Technol 22:295–309

    CAS  Google Scholar 

  • Singh BK, Misran NM, Rawatn NS (1994) Sorption characteristics of phenols on fly ash and impregnated fly ash. Ind J Environ Health 36:1–7

    CAS  Google Scholar 

  • Singh NB, Das SS, Singh NP, Dwivedi VN (2007) Hydration of bamboo leaf ash blended Portland cement. Indian J Eng Mater Sci 14:69–76

    CAS  Google Scholar 

  • Siores E, Rego DD (1995) Microwave applications in materials joining. J Mater Process Technol 48:619–625

    Google Scholar 

  • Skillings Mining Review (1999) Penn State researchers study use of coal by-products. Skill Min Rev 88:9

    Google Scholar 

  • Somerset V, Petrik L, Iwuoha E (2008) Alkaline hydrothermal conversion of fly ash precipitates into zeolites 3: the removal of mercury and Lead ions from wastewater. J Environ Manage 87:125–131

    CAS  Google Scholar 

  • Sonderegger JL, Donovan JJ (1984) Laboratory simulation of fly ash as an amendment to pyrite-rich tailings. Ground Water Monit Rev 4:75–80

    CAS  Google Scholar 

  • Song GJ, Kim KH, Seo YC, Kim SC (2004) Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices. Waste Manag 24:99–106

    CAS  Google Scholar 

  • Sorensen MA, Bender-Koch C, Stackpoole MM, Bordia RK, Benjamin MM, Christensen TH (2000) Effects of thermal treatment on mineralogy and heavy metal behaviour in iron oxide stabilised APC residues. Environ Sci Technol 34:4620–4627

    CAS  Google Scholar 

  • Soyama M, Inoue K, Iji M (2007) Flame retardancy of polycarbonate enhanced by adding fly ash. Polym Adv Technol 18:386–391

    CAS  Google Scholar 

  • Speiser C, Baumann T, Niessner R (2000) Morphological and chemical characterisation of calcium-hydrate phases formed in alteration processes of deposited municipal solid waste incinerator bottom ash. Environ Sci Technol 34:5030–5037

    CAS  Google Scholar 

  • Sreekanth MS, Joseph S, Mhaske ST, Mahanwar PA, Bambole VA (2011) Effects of mica and fly ash concentration on the properties of polyester thermoplastic elastomer composites. J Thermoplast Compos Mater 24:317–331

    CAS  Google Scholar 

  • Srivastava K, Farooqui A, Kulshreshtha K, Ahmed KJ (1995) Effect of fly ash amended soil on growth of Lactuca sativa L. J Environ Biol 16:93–96

    Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2006) Modelling individual and competitive adsorption of cadmium(II) and zinc(II) metal ions from aqueous solution onto bagasse fly ash. Sep Sci Technol 41:2685

    CAS  Google Scholar 

  • Srivastava VC, Mall ID, Mishra IM (2008) Removal of cadmium(II) and zinc(II) metal ions from binary aqueous solution by rice husk ash. Colloid Surf A 312:172–184

    CAS  Google Scholar 

  • Struis RPWJ, Ludwig C, Lutz H (2004) Speciation of zinc in municipal solid waste incineration fly ash after heat treatment: an X-ray absorption spectroscopy study. Environ Sci Technol 38:3760–3767

    CAS  Google Scholar 

  • Struis RPWJ, Nachtegaal M, Mattenberger H, Ludwig C (2009) The fate of lead in MSWI-fly ash during heat treatment: an X-ray absorption spectroscopy study. Adv Eng Mater 11:507–512

    CAS  Google Scholar 

  • Stucki S, Jakob A (1997) Thermal treatment of incinerator fly ash: factors influencing the evaporation of ZnCl2. Waste Manag 17:231–236

    CAS  Google Scholar 

  • Suárez-Ruiz I, Parra JB (2007) Relationship between the textural properties, fly ash carbons and Hg capture in fly ashes derived from the combustion of anthracitic pulverized feed blends. Energy Fuel 21:1915–1923

    Google Scholar 

  • Suárez-Ruiz I, Hower JC, Thomas GA (2007) Hg and Se capture and fly ash carbons from combustion of complex pulverized feed blends mainly of anthracitic coal rank in Spanish power plants. Energy Fuel 21:59–70

    Google Scholar 

  • Sumaila SA, Job OF (1999) Properties of SDA-OPC concrete: a preliminary assessment. J Environ Sci 3:155–159

    Google Scholar 

  • Sun RC (2010) Cereal straw as a resource for sustainable biomaterials and biofuels. Elsevier, Amsterdam. ISBN 978-0-444-53234-3

    Google Scholar 

  • Świetlik R, Trojanowska M, Jóźwiak Małgorzata A (2012) Evaluation of the distribution of heavy metals and their chemical forms in ESP-fractions of fly ash. Fuel Process Technol 95:109–118

    Google Scholar 

  • Tadmore J (1986) Radioactivity from coal-fired power plants: a review. J Environ Radioact 4:77–244

    Google Scholar 

  • Takami Y, Murayama N, Ogawa K, Yamamoto H, Shibata JJ (2000) Water purification property of zeolite synthesized from coal fly ash. Min Mater Process Inst Jpn 116:987–991

    Google Scholar 

  • Tame NW, Dlugogorski BZ, Kennedy EM (2003) Increased PCDD/F formation in the bottom ash from fires of CCA-treated wood. Chemosphere 50:1261–1263

    CAS  Google Scholar 

  • Tangchirapat W, Saeting T, Jaturapitakkul C, Kiattikomol K, Siripanichgorn A (2007) Use of waste ash from palm oil industry in concrete. Waste Manag 27:81–88

    CAS  Google Scholar 

  • Tarley CRT, Arruda MAZ (2004) Biosorption of heavy metals using rice milling byproducts, characterization and application for removal of metals from aqueous effluents. Chemosphere 54:987–995

    Google Scholar 

  • Tejasvi A, Kumar S (2012) Impact of fly ash on soil properties. Natl Acad Sci Lett 35:13–16

    CAS  Google Scholar 

  • Tho-in T, Sata V, Chindaprasirt P, Jaturapitakkul C (2012) Pervious high-calcium fly ash geopolymer concrete. Constr Build Mater 30:366–371

    Google Scholar 

  • Thy P, Jenkins BM, Grundvig S, Shiraki R, Lesher CE (2006) High temperature elemental losses and mineralogical changes in common biomass ashes. Fuel 85:783–795

    CAS  Google Scholar 

  • Tietenberg T (2003) Environmental and natural resource economics, 6th edn. Addison Wesley, Boston, pp 404–412

    Google Scholar 

  • Tiwari S, Kumari B, Singh SN (2008) Evaluation of metal mobility/immobility in fly ash induced by bacterial strains isolated from the rhizospheric zone of Typha latifolia growing on fly ash dumps. Bioresour Technol 99:1305–1310

    CAS  Google Scholar 

  • Tolle DA, Arthur MF, Van Voris P (1983) Microcosm/field comparison of trace element uptake in crops grown in fly ash amended soil. Sci Total Environ 31:243–263

    CAS  Google Scholar 

  • Tomeczek J, Palugniok H (2002) Kinetics of mineral matter transformation during coal combustion. Fuel 81:1251–1258

    CAS  Google Scholar 

  • Tulonen T, Arvola L, Strömmer R (2012) Cadmium release from afforested peatlands and accumulation in an aquatic ecosystem after experimental wood ash treatment. Eur J Forest Res 131(5):1529–1536

    CAS  Google Scholar 

  • Twardowska I, Szczepanska J (2002) Solid waste: terminological and long term environmental risk assessment problems exemplified in a power plant fly ash study. Sci Total Environ 285:29–51

    CAS  Google Scholar 

  • Udoeyo FF, Dashibil PU (2002) Sawdust ash as concrete material. J Mater Civ Eng 14:173–177

    Google Scholar 

  • USEPA (1994a) Health assessment document for 2, 3, 7, 8-tertachlorodibenzo-p-dioxin (TCDD) and related compounds. EPA/600/Bp-92/001c estimating exposure to dioxin-like compounds, epa/600/6-88/005cb. Office of Research and Development, Washington, DC

    Google Scholar 

  • USEPA (1994b) Combustion emission technical resource document (CETRED) report no EPA 530-R-94-014. Office of Solid Waste Emergency Response, Washington, DC

    Google Scholar 

  • Usta N (2012) Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter. J Appl Polym Sci 124:3372–3382

    CAS  Google Scholar 

  • van der Bruggen B, Vogels G, Van Herck P, Vandecasteele C (1998) Simulation of acid washing of municipal solid waste incineration fly ashes in order to remove heavy metals. J Hazard Mater 57:127–144

    Google Scholar 

  • Van der Sloot HA, Kosson DS, Hjelmar O (2001) Characteristics, treatment and utilization of residues from municipal waste incineration. Waste Manag 21:753–765

    Google Scholar 

  • van Deventer JS, Provis JL, Duxson P (2012) Technical and commercial progress in the adoption of geopolymer cement. Miner Eng 29:89–104

    Google Scholar 

  • Van Gerven T, Geysen D, Vandercasteele C (2004) Estimation of the contribution of a municipal waste incinerator to the overall emission and human intake of PCBs in Wilrijk, Flanders. Chemosphere 54:1303–1308

    Google Scholar 

  • van Jaarsveld JGS, van Deventer JSJ (1999) Effect of the alkali metal activator on the properties of fly ash-based geopolymers. Ind Eng Chem Res 38:3929–3941

    Google Scholar 

  • van Oss HG, Padovani AC (2003) Cement manufacture and the environment Part II: environmental challenges and opportunities. J Ind Ecol 7:93–126

    Google Scholar 

  • Vangronsveld J, Cunningham SD (1998) Metal-contaminated soils: in situ inactivation and phytorestoration. Springer/R.G. Landes Company, Berlin/Heidelberg/Georgetown

    Google Scholar 

  • Vangronsveld J, Colpaert JV, van Tichelen KK (1996) Reclamation of a bare industrial area contaminated by nonferrous metals: physicochemical and biological evaluation of the durability of soil treatment and revegetation. Environ Pollut 94:131–140

    CAS  Google Scholar 

  • Vassilev SV, Vassileva CG (1996) Mineralogy of combustion wastes from coal-fired power stations. Fuel Process Technol 47:261–280

    CAS  Google Scholar 

  • Vassilev SV, Vassileva CG (2005) Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Energy Fuel 19:1084–1098

    CAS  Google Scholar 

  • Vassilev SV, Vassileva CG (2007) A new approach for the classification of coal fly ashes based on their origin, composition, properties, and behaviour. Fuel 86:1490–1512

    CAS  Google Scholar 

  • Viraraghavan T, Ramakrishna KR (1999) Fly ash for colour removal from synthetic dye solutions. Water Qual Res J Can 34:505–517

    CAS  Google Scholar 

  • Vogg H, Stieglitz L (1986) Thermal-behavior of PCDD/PCDF in fly-ash from municipal incinerators. Chemosphere 15:1373–1378

    CAS  Google Scholar 

  • Volz JS (2012) High-volume fly ash concrete for sustainable construction. Adv Mater Res 512–515:2976–2981

    Google Scholar 

  • Wallander H, Wickman T, Jacks G (1997) Apatite as a P source in mycorrhizal and non-mycorrhizal Pinus sylvestris. Plant Soil 196:123–131

    CAS  Google Scholar 

  • Walser T, Limbach KL, Brogioli R, Erismann E, Flamigni L, Hattendorf B, Juchli M, Krumeich F, Ludwig C, Prikopsky K, Rossier M, Saner D, Stark WJ, Sigg A, Hellweg S, Günther D (2012) Persistence of engineered nanoparticles in a municipal solid-waste incineration plant. Nat Nanotechnol 7:520–524. doi:10.1038/NNANO.2012.64

    CAS  Google Scholar 

  • Wang S (2008) Application of solid ash based catalysts in heterogeneous catalysis. Environ Sci Technol 42:7055–7063

    CAS  Google Scholar 

  • Wang S, Lu GQ (2007) Effect of chemical treatment on Ni/fly-ash catalysts in methane reforming with carbon dioxide. In: Fbio Bellot Noronha MS, Eduardo Falabella S-A (eds) Studies in surface science and catalysis, vol 167. Elsevier, New York, pp 275–280

    Google Scholar 

  • Wang KS, Chiang KY, Perng JK, Sun CJ (1998) The characteristics study on sintering of municipal solid waste incinerator ashes. J Hazard Mater 59:201–219

    CAS  Google Scholar 

  • Wang XK, Sun CQ, Cai HW (1999) Origin of the Chinese cultivated rice (Oryza sativa L.). Chin Sci Bull 44:295–304

    Google Scholar 

  • Wang S, Terdkiatburana T, Tade MO (2008) Single and co-adsorption of heavy metals and humic acid on fly ash. Sep Purif Technol 58:353–358

    CAS  Google Scholar 

  • Wang Q, Yan J, Tu X, Chi Y, Li X, Lu S, Cen K (2009) Thermal treatment of municipal solid waste incinerator fly ash using DC double arc argon plasma. Fuel 88:955–958

    CAS  Google Scholar 

  • Wang Q, Yan JH, Chi Y, Li XD, Lu SY (2010) Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere 78:626–630

    CAS  Google Scholar 

  • Weng CH, Huang CP (1994) Treatment of metal industrial wastewater by fly ash and cement fixation. J Environ Eng 120:1470–1487

    CAS  Google Scholar 

  • Werther J, Saenger M, Hartge EU, Ogada T, Siagi Z (2000) Combustion of agricultural residues. Prog Energy Combust Sci 26:1–27

    CAS  Google Scholar 

  • West TO, McBride AC (2005) The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric Ecosyst Environ 108:145–154

    CAS  Google Scholar 

  • Wey MY, Liu KY, Tsai TH, Chou JT (2006) Thermal treatment of the fly ash from municipal solid waste incinerator with rotary kiln. J Hazard Mater B137:981–989

    Google Scholar 

  • Wheatley AD, Sadhra S (2004) Polycyclic aromatic hydrocarbons in solid residues from waste incineration. Chemosphere 55:743–749

    CAS  Google Scholar 

  • White PJ (2001) Phytoremediation assisted by microorganism. Trends Plant Sci 6:502

    CAS  Google Scholar 

  • Williams RP, van Riessen A (2010) Determination of the reactive component of fly ashes for geopolymer production using XRF and XRD. Fuel 89:3683–3692

    CAS  Google Scholar 

  • Wiselogel AE, Agblevor FA, Johnson DK, Deutch S, Fennell JA, Sanderson MA (1996) Compositional changes during storage of large round switch grass bales. Bioresour Technol 56:103–109

    CAS  Google Scholar 

  • Wong JWC (1995) The production of artificial soil mix from coal fly ash and sewage sludge. Environ Technol 16:741–751

    CAS  Google Scholar 

  • Wong MH, Wong JWC (1986) Effects of fly ash on soil microbial activity. Environ Pollut Ser A 40:127–144

    CAS  Google Scholar 

  • Wong JWC, Wong MH (1990) Effects of fly-ash on yields and elemental composition of two vegetables, Brassica parachinensis and B. chinensis. Agric Ecosyst Environ 30:251–264

    CAS  Google Scholar 

  • Wu C, Tang Y, Tang L (2012) Removal of heavy metal from wastewater using zeolite from fly ash. Adv Mater Res 518–523:2736–2739

    Google Scholar 

  • Xenidis A, Mylona E, Paspaliaris I (2002) Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Manag 22:631–641

    CAS  Google Scholar 

  • **e JL, Hu YY, Chen DZ, Zhou B (2010) Hydrothermal treatment of MSWI fly ash for simultaneous dioxins decomposition and heavy metal stabilization. Front Environ Sci Eng China 4:108–116

    CAS  Google Scholar 

  • Xue J, Wang W, Wang Q, Liu S, Yang J, Wui T (2010) Removal of heavy metals from municipal solid waste incineration (MSWI) fly ash by traditional and microwave acid extraction. J Chem Technol Biotechnol 85:1268–1277

    CAS  Google Scholar 

  • Yamaguchi H, Shibuya E, Kanamaru Y, Uyama K, Nishioka M, Yamasaki M (1996) Hydrothermal decomposition of PCDDs/PCDFs in MSWI fly ash. Chemosphere 32:203–208

    CAS  Google Scholar 

  • Yan JH, Peng Z, Lu SY, Li XD, Ni MJ (2007) Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration. J Hazard Mater 147:652–657

    CAS  Google Scholar 

  • Yang G, Tsai C (1998) A study on heavy metal extractability and subsequent recovery by electrolysis for a municipal incinerator fly ash. J Hazard Mater 58:103–120

    CAS  Google Scholar 

  • Yang GCC, Yang TY (1998) Synthesis of zeolites from municipal incinerator fly ash. J Hazard Mater 62:75–89

    CAS  Google Scholar 

  • Yang Y-F, Gai G-S, Cai Z-F, Chen Q-R (2006) Surface modification of purified fly ash and application in polymer. J Hazard Mater 133:276–282

    CAS  Google Scholar 

  • Yilmaz G (2012) Structural characterization of glass-ceramics made from fly ash containing SiO 2-Al 2O 3-Fe 2O 3-CaO and analysis by FT-IR-XRD-SEM methods. J Mol Struct 1019:37–42

    CAS  Google Scholar 

  • Yin C, Rosendahl LA, Kaer SK (2008) Grate-firing of biomass fort heat and power production. Progr Energy Combust 34:725–754

    Google Scholar 

  • Yoshino H, Urano K (1998) Mutagenic activities of exhaust gas from sludge incineration plants. Sci Total Environ 215:41–49

    CAS  Google Scholar 

  • Youcai Z, Lijie S, Guojian L (2002) Chemical stabilization of MSW incinerator fly ashes. J Hazard Mater 95:47–63

    Google Scholar 

  • Zacco A, Gianoncelli A, Ardesi R, Sacrato S, Guerini L, Bontempi E, Tomasoni G, Alberti M, Depero LE (2012) Use of colloidal silica to obtain a new inert from municipal solid waste incinerator (MSWI) fly ash: first results about reuse. Clean Technol Environ Policy 14:291–297

    CAS  Google Scholar 

  • Zamaow MJ, Schultze LE (1993) In: Zeolite-93, Idaho pp 2200–2211

    Google Scholar 

  • Zeng Z, Liu H, Yu H, Peng Z (2012) Structure and thermal properties of RHA/NR composite. Adv Mater Res 482–484:1275–1280

    Google Scholar 

  • Zevenbergen C, Comans RNJ (1994) Geochemical factors controlling the mabilization of major elements during weathering of MSWIash. In: Goumans JJM, van der Sloot HA, Aalbers TG (eds) Environmental aspects of construction with waste materials, vol 60, Studies in environmental sciences. Elsevier, Amsterdam, pp 179–194

    Google Scholar 

  • Zhang MH, Mohan V (1996) High-performance concrete incorporating rice husk ash as a supplementary cementing material. ACI Mater J 93:629–636

    CAS  Google Scholar 

  • Zhang H, Qi J (2012) Reuse of air pollution control ash. Environ Eng Sci 29:902–906

    CAS  Google Scholar 

  • Zhao YC, Stucki S, Ludwig C, Wochele J (2004) Impact of moisture on volatility of heavy metals in municipal solid waste incinerated in a laboratory scale simulated incinerator. Waste Manag 24:581–587

    CAS  Google Scholar 

  • Zheng L, Wang C, Wang W, Shi Y, Gao X (2011) Immobilization of MSWI fly ash through geopolymerization: effects of water-wash. Waste Manag 31:311–317

    CAS  Google Scholar 

  • Zhijun Y, Chuanhai X, Qing Z, Ji** C, **%2CC&author=**nmiao%2CL"> Google Scholar 

  • Zhou YX, Yan P, Cheng ZX, Nifuku M, Liang XD, Guan ZC (2003) Application of non-thermal plasmas on toxic removal of dioxin-contained fly ash. Powder Technol 135–136:345–353

    Google Scholar 

  • Zhu T, Kuang J, Xu W, Ye M, Guo Y, Liu W (2012) Study on mercury adsorption performance of modified fly ash. Adv Mater Res 343–344:246–249

    Google Scholar 

  • Zielinski RA, Finkelman RB (1997) Radioactive elements in coal and fly ash: abundance, forms and environmental significance. US Geological Survey Fact Sheet FS-163-97

    Google Scholar 

Download references

Acknowledgement

 The authors from the Brescia University (Italy) acknowledge LIFE+ financial instrument of the European Community (LIFE+ 2008 project ENV/IT/434 and LIFE+ 2011 project ENV/IT/256) and RPWJ Struis thanks Prof. Chr. Ludwig (EPFL, Switzerland) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Bontempi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gianoncelli, A., Zacco, A., Struis, R.P.W.J., Borgese, L., Depero, L.E., Bontempi, E. (2013). Fly Ash Pollutants, Treatment and Recycling. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds) Pollutant Diseases, Remediation and Recycling. Environmental Chemistry for a Sustainable World, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-319-02387-8_3

Download citation

Publish with us

Policies and ethics

Navigation