Three-Dimensional Meshless Modelling of Functionally Graded Piezoelectric Sensor

  • Conference paper
Mechatronics 2013

Abstract

A meshless local Petrov-Galerkin (MLPG) method to analyse the electro-elastic response of functionally graded piezoelectric circular sensor is proposed. In this approach the analysed body is discretized using nodal points only, no finite element mesh is required. The moving least-squares (MLS) scheme is employed for the spatial approximation of unknown physical fields in terms of corresponding nodal quantities. Three-dimensional modelling enables asymmetric loading patterns to be used. The exponential gradation of material properties is proposed in the poling direction of the sensor. The effect of varying gradation coefficients on mechanical displacements and induced electric potential is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Suresh, S., Mortensen, A.: Fundamentals of Functionally Graded Materials. Institute of Materials, London (1998)

    MATH  Google Scholar 

  2. Tiersten, H.F.: Linear Piezoelectric plate vibrations. Plenum Press, New York (1969)

    Book  Google Scholar 

  3. Allik, H., Hughes, T.J.R.: Finite element method for piezoelectric vibration. International Journal for Numerical Methods in Engineering 2, 151–157 (1970)

    Article  Google Scholar 

  4. Hwang, W., Parkt, H.: Finite element modeling of piezoelectric sensors and actuators. Sens. Actuators A 5, 930–937 (1993)

    Google Scholar 

  5. Benjeddou, A.: Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Computers and Structures 76, 347–363 (2000)

    Article  Google Scholar 

  6. Atluri, S.N.: The meshless method (MLPG) for domain & BIE discretizations. Tech Science Press, Forsyth (2004)

    MATH  Google Scholar 

  7. Sladek, J., Sladek, V., Zhang, C., Garcia-Sanchez, F., Wunsche, M.: Meshless Local Petrov-Galerkin Method for Plane Piezoelectricity. CMC: Computers, Materials & Continua 4(2), 109–117 (2006)

    Google Scholar 

  8. Sladek, J., Sladek, V., Stanak, P., Pan, E.: The MLPG for bending of electroelastic plates. CMES – Computer Modeling in Engineering & Sciences 64, 267–298 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Stanak, P., Sladek, J., Sladek, V., Krahulec, S.: Composite circular plate analyzed as a 3-D axisymmetric piezoelectric solid. Building Research Journal 59(3-4), 125–140 (2011)

    Google Scholar 

  10. Sladek, J., Sladek, V., Stanak, P., Wen, P.H., Atluri, S.N.: Laminated elastic plates with piezoelectric sensors and actuators. CMES – Computer Modeling in Engineering and Sciences 85, 543–572 (2012)

    MathSciNet  Google Scholar 

  11. Sladek, J., Sladek, V., Zhang, C.: Stress analysis in anisotropic functionally graded materials by the MLPG method. Eng. Anal. Bound. Elem. 29, 597–609 (2005)

    Article  MATH  Google Scholar 

  12. Sladek, J., Sladek, V., Solek, P.: Elastic analysis in 3D anisotropic functionally graded solids by the MLPG. CMES – Computer Modeling in Engineering & Sciences 43(3), 223–251 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Sladek, J., Sladek, V., Solek, P., Saez, A.: Dynamic 3D axisymmetric problems in continuously nonhomogeneous piezoelectric solids. Int. J. Sol. Struct. 45, 4523–4542 (2008)

    Article  MATH  Google Scholar 

  14. Sladek, J., Sladek, V., Stanak, P., Zhang, C., Wunsche, M.: Analysis of the bending of circular piezoelectric plates with functionally graded material properties by a MLPG method. Engineering Structures 47, 81–89 (2012)

    Article  Google Scholar 

  15. Stanak, P., Sladek, J., Sladek, V., Krahulec, S.: Bending of functionally graded circular plates wih piezoelectric layer by the MLPG method. In: Proc. Engineering Mechanics 2012, CD-rom (2012)

    Google Scholar 

  16. Lancaster, P., Salkauskas, T.: Surfaces generated by moving least-square methods. Math. Comput. 37, 141–158 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Stanak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Stanak, P., Sladek, J., Sladek, V., Tadeu, A. (2014). Three-Dimensional Meshless Modelling of Functionally Graded Piezoelectric Sensor. In: Březina, T., Jabloński, R. (eds) Mechatronics 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-02294-9_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02294-9_54

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02293-2

  • Online ISBN: 978-3-319-02294-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation