Normal protein folding machinery

  • Chapter
Stress-Inducible Cellular Responses

Part of the book series: EXS ((EXS,volume 77))

Summary

A highly conserved protein folding machine has been maintained in the cytosol of both prokaryotic and eukaryotic organisms and in eukaryotic mitochondria. Homologous components of this machinery have also been identified in other organelles such as the endoplasmic reticulum in which HSP70 and DnaJ-like homologs reside. The high degree of conservation presumably reflects the proficiency with which these molecules have evolved to mediate the folding of proteins to their native functional states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anfinsen, C.B. (1973) Principles that govern the folding of protein chains. Science 182: 223–230.

    Article  Google Scholar 

  • Baneyx, F. and Gatenby, A.A. (1992) A mutation in GroEL interferes with protein folding by reducing the rate of discharge of sequestered polypeptides. J. Biol. Chem. 267: 11637–11644.

    PubMed  CAS  Google Scholar 

  • Beckman, R.P., Mizzen, L.A. and Welch, W.J. (1990) Interaction of hsp70 with newly synthesized proteins: Implications for protein folding and assembly. Science 248: 850–854.

    Article  Google Scholar 

  • Blond-Elguindi, S., Cwirla, S.E. Dower, W.J. Lipshutz, R.J. Sprang, S.R. Sambrook, J.F. and Gething M.J. (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75: 717–728.

    Article  PubMed  CAS  Google Scholar 

  • Bochkareva, E.S. and Girshovich, A.S. (1992) A newly synthesized protein interacts with GroES on the surface of chaperonin GroEL. J. Biol. Chem. 267: 25672–25675.

    PubMed  CAS  Google Scholar 

  • Bochkareva, E.S., Lissen, N.M., Flynn, G.C., Rothman, J.E. and Girshovich, A.S. (1992) Positive cooperativity in the functioning of molecular chaperone GroEL. J. Biol. Chem. 267: 6796–6800.

    PubMed  CAS  Google Scholar 

  • Bolliger, L., Deloche, O., Glick, B.S., Georgopolous, C., Jeno, P., Kronidou, N., Horst, M., Morishima, N. and Schatz, G. (1994) A mitochondrial homolog of bacterial GrpE interacts with mitochondrial hsp70 and is essential for viability. EMBO J. 13: 1998–2006.

    PubMed  CAS  Google Scholar 

  • Braig, K., Otwinowski, Z., Hegde, R., Boisvert, D.C., Joachimiak, A., Horwich, A.L. and Sigler, P.B. (1994) The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 371: 578–586.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, J.L., Goeckeler, J. and Schekman, R. (1995) Sec63 and BiP are required for both co-and post-translational protein translocation into yeast microsomes. Proc. Natl. Acad. Sci. USA 92: 9642–9646.

    Article  Google Scholar 

  • Chen, X., Sullivan, D.S. and Huffaker, T.C. (1994) Two yeast genes with similarity to TCP-1 are required for microtubule and actin function in vivo. Proc. Natl. Acad. Sci. USA 91: 9111–9115.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, M.Y., Hartl, F.-U., Martin, J., Pollock, R.A., Kalousek, F., Neupert, W., Hallberg, E.M., Hallberg, R.L. and Horwich, A.L. (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337: 620–625.

    Article  PubMed  CAS  Google Scholar 

  • Feldheim, D., Rothblatt, J. and Schekman, R. (1992) Topology and functional domains of Sec63p, an endoplasmic reticulum membrane protein required for secretory protein translocation. Mol. Cell Biol. 12: 3288–3296.

    PubMed  CAS  Google Scholar 

  • Fenton, W.A., Kashi, Y., Furtak, K. Horwich, A.L. (1994) Residues in chaperonin GroEL required for polypeptide binding and release. Nature 371: 614–619.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, G.C., Chappell, T.G. and Rothman, J.E. (1989) Peptide binding and release by proteins implicated as catalysts of protein assembly. Science 245: 385–390.

    Article  PubMed  CAS  Google Scholar 

  • Flynn, G.C., Pohl J., Flocco, M.T. and Rothmann. J.E. (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353: 726–730.

    Article  PubMed  CAS  Google Scholar 

  • Fourie, A.M., Sambrook, J.F. and Gething, M.-J.H. (1994) Common and divergent peptide binding specificities of hsp70 molecular chaperones. J. Biol. Chem. 269: 30470–30478.

    PubMed  CAS  Google Scholar 

  • Frydman, J., Nimmesgern, E., Erdjument-Bromage, H., Wall, J.S., Tempst, P. and Hartl, F.-U. (1992) Function in protein folding of TRiC, a cytosolic ring complex containing TCP-1 and structurally related subunits. EMBO J. 11: 4767–4778.

    PubMed  CAS  Google Scholar 

  • Frydman, J., Nimmesgern, E., Ohtsuka, K. and Hartl, F.-U. (1994) Folding of nascent polypeptide chains in a high molecular mass assembly with molecular chaperones. Nature 370: 111–117.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y., Thomas, J.O., Chow, R.L., Lee, G.-H. and Cowan, N.J. (1992) A cytoplasmic chaperonin that catalyzes Ăź-action folding. Cell 69: 1043–1050.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y., Vainberg, I.E., Chow, R.I. and Cowan, N.J. (1993) Two cofactors and cytoplasmic chaperonin are required for the folding of α- and Ăź-tubulin. Mol. Cell Biol. 13: 2478–2485.

    PubMed  CAS  Google Scholar 

  • Gao, Y., Melki, R., Walden, P.D., Lewis, S.A., Ampe, C., Rommelaere, H., Vandekerckhove, J. and Cowan, N.J. (1994) A novel cochaperonin that modulates the ATPase activity of cytoplasmic chaperonin. J. Cell Biol. 125: 989–996.

    Article  PubMed  CAS  Google Scholar 

  • Georgopolous, C.P., Ang, D., Liberek, K. and Zylic, M. (1990) Properties of the Escherichia coli heat shock proteins and their role in bacteriophage lambda growth. In: R.I. Morimoto, A. Tissieres and C. Georgopolous (eds): Stress proteins in biology and medicine. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 191–221.

    Google Scholar 

  • Georgopoulos, C., Liberek, K. Zylicz, M. and Ang. D. (1994) Properties of the heat shock proteins of Escherichia coli and the autoregulation of the heat shock response. In: R.I. Morimoto, A. Tissieres and C. Georgopoulos (eds): The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, NY, pp 209–249.

    Google Scholar 

  • Gething, M.J. and Sambrook. J.F. (1992) Protein folding in the cell. Nature 355: 33–45.

    Article  PubMed  CAS  Google Scholar 

  • Gragerov, A., Nudler, E., Komissarova, N., Gaitanaris, G.A., Gottesman, M.E. and Nikiforov, V (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341–10344.

    Article  PubMed  CAS  Google Scholar 

  • Gragerov, A., Zeng, L. Zhao, X. Burkholder, W. and Gottesman. M.E. (1994) Specificity of DnaK-peptide binding. J. Mol. Biol. 235: 848–854.

    Article  PubMed  CAS  Google Scholar 

  • Hallberg, E.M., Shu, Y. and Hallberg, R.L. (1993) Loss of mitochondrial hsp60 function: Non- equivalent effects on matrix-targeted and intermembrane-targeted proteins. Mol. Cell. Biol. 13: 3050–3057.

    PubMed  CAS  Google Scholar 

  • Hartman, D.J., Hoogenraad, N.J., Condron, R. and Hoj, P.B. (1992) Identification of a mammalian 10-kDa heat shock protein, a mitochondrial chaperonin 10 homolog essential for the assisted folding of trimeric ornithine transcarbamoylase in vitro. Proc. Natl. Acad. Sci. USA 89: 3394–3398.

    Article  PubMed  CAS  Google Scholar 

  • Hayer-Hartl, M.K., Ewbank, J.J., Creighton, T.E. and Hartl, F.U. (1994) Conformational specificity of the chaperonin GroEL for the compact folding intermediates of alpha-lactalbumin. EMBO. J. 13: 3192–3202.

    PubMed  CAS  Google Scholar 

  • Hendrick, J.P, Langer, T., Davis, T.A., Hartl, F.-U. and Wiedmann, M. (1993) Control of folding and membrane translocation by binding of the chaperone DnaJ to nascent polypeptides. Proc. Natl. Acad. Sci. USA 90: 10216–10220.

    Article  PubMed  CAS  Google Scholar 

  • Herman, J., Stuart, R., Craig, E. and Neupert, W. (1994) Mitochondrial heat shock protein 70, a molecular chaperone for proteins encoded by mitochondrial DNA. J. Cell Biol. 127: 893–902.

    Article  Google Scholar 

  • Hightower, L.E., Sadis, S.E. and Takenaka, I.M. (1994) Interactions of vertebrate hsc70 and hsp70 with unfolded proteins and peptides. In: A. Morimoto, A. Tissieres and C. Georgopoulos, (eds): The Biology of Heat Shock Proteins and Molecular Chaperones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor NY, pp 179–207.

    Google Scholar 

  • Hlodan, R., Tempst, P. and Hartl, F.U. (1995) Binding of defined regions of a polypeptide to GroEL and its implications for chaperonin-mediated protein folding. Nature Struct. Biol. 2: 587–595.

    Article  PubMed  CAS  Google Scholar 

  • Hohfeld, J. and Hartl, F.U. (1994) Role of the chaperonin cofactor hsp10 in protein folding and sorting in yeast mitochondria. J. Cell Biol. 126: 305–315.

    Article  PubMed  CAS  Google Scholar 

  • Horwich, A.L. and Willison, K. (1993) Protein folding in the cell: Functions of two families of molecular chaperones, hsp60 and TF55-TCP1. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 339: 313–325.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda, E., Yoshida, S., Mitsuzawa, H., Uno, I. and Toh-e, A. (1994) YGE1 is a yeast homologue of Escherischia coli grpE and is required for the maintenance of mitochondrial function. FEBS LETT. 339: 265–268.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, G.S., Staniforth, R.A., Halsall, D.J., Atkinson, T., Holbrook, J.J., Clarke, A.R. and Burston, S.G. (1993) Binding and hydrolysis of nucleotides in the chaperonin catalytic cycle: implications for the mechanism of assisted protein folding. Biochemistry 32: 2554–2563.

    Article  PubMed  CAS  Google Scholar 

  • Kang, P.-J., Ostermann, J., Shilling, J., Neupert, W., Craig, E.A. and Pfanner, N. (1990) Requirement for hsp70 in the mitochondrial matrix for translocation and folding of precursor proteins. Nature 348: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S., Willison, K.R. and Horwich, A.L. (1994) Cytosolic chapeonin subunits have a conserved ATPase domain but diverged polypeptide-binding domains. Trends Biochem. Sci. 19: 543–548.

    Article  PubMed  CAS  Google Scholar 

  • Kozutsumi, Y., Normington, K., Press, E., Slaughter, C., Sambrook, J. and Gething, M.J. (1989) Identification of immunoglobulin heavy chain binding protein as glucose-regulated protein 78 on the basis of amino acid sequence, immunological cross-reactivity, and functional activity. J. Cell Sci. Suppl. 11: 115–137.

    PubMed  CAS  Google Scholar 

  • Kronidou, N.G., Oppliger, W., Bolliger, L., Hannavy, K., Glick, B., Schatz, G. and Horst, M. (1994) Dynamic interaction between Isp45 and mitochondrial hsp70 in the protein import system of yeast mitochondrial inner membrane. Proc. Natl. Acad. Sci. USA 91: 12818–12822.

    Article  PubMed  CAS  Google Scholar 

  • Kubota, H., Hynes, G. and Willison, K. (1995) The chaperonin containing t-complex polypeptide 1 (TCP-1): Multisubunit machinery assisting in protein folding and assembly in the eukaryotic cytosol. Eur. J. Biochem. 230: 13–16.

    Article  Google Scholar 

  • Kudlicki, W., Odom, O., Kramer, G. and Hardesty, B. (1994 a) Activation and release of enzy- matically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA. J. Biol. Chem. 269: 16549–16553.

    Google Scholar 

  • Kudlicki, W., Odom, O.W., Kramer, G. and Hardesty, B. (1994b) Chaperone-dependent folding and activation of ribosome-bound nascent rhodanese. J. Mol. Biol. 244: 319–331.

    Article  PubMed  CAS  Google Scholar 

  • Laloraya, S., Gambil, B.D. and Craig, E.A. (1994) A role for a eukaryotic GrpE-related protein, Mgel in protein translocation. Proc. Natl. Acad. Sci. USA 91: 6481–6485.

    Article  PubMed  CAS  Google Scholar 

  • Laloraya, S., Dekker, P., Voos, W., Craig, E.A. and Pfanner, N. (1995) Mitochondrial GrpE modulates the function of matrix Hsp70 in translocation and maturation of proteins. Mol. Cell Biol. 15: 7098–7105.

    PubMed  CAS  Google Scholar 

  • Landry, S.J., Jordan, R., McMacken, R. and Gierasch, L.M. (1992) Different conformations for the same polypeptide bound to chaperones DnaK and GroEL. Nature 355: 455–457.

    Article  PubMed  CAS  Google Scholar 

  • Landry, S.J., Zeilstra-Ryalls, J., Fayet, O., Georgopoulos, C. and Gierasch, L.M. (1993) Characterization of a functionally important mobile domain of GroES. Nature 364: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Langer, T., Lu, C., Echols, H., Flanagen, J., Hayer, M. and Hartl, F.-U. (1992a) Successive action of DnaK, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature 356: 2683–689.

    Article  Google Scholar 

  • Langer, T., Pfeifer, G., Martin, J., Baumeister, W. and Hartl, F.-U. (1992b) Chaperonin-mediated protein folding: GroES binds to one end of the GroEL cylinder, which accommodates the protein substrate within its central cavity. EMBO J. 11: 4757–4765.

    PubMed  CAS  Google Scholar 

  • Levy, E., McCarty, J., Bukau, B. and Chirico, W. (1995) Conserved ATPase and luciferase refolding activities between bacteria and yeast Hsp70 chaperones and modulators. FEBS Lett. 368: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Liberek, K., Skowyra, D, and Zylicz, M. (1991 a) The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J. Biol. Chem. 266: 14491–14496.

    Google Scholar 

  • Liberek, K., Marszalek, J., Ang, D. and Georgopolous, C. (1991b) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. USA 88: 2874–2878.

    Article  PubMed  CAS  Google Scholar 

  • Lingappa, J.R., Martin, R.L., Wong, M.L., Gamen, D., Welch, W.J. and Lingappa, VR. (1994) A eukaryotic cytosolic chaperonin is associated with a high molecular weight intermediate in the assembly of hepatitis B virus capsid, a multimeric particle. J. Cell Biol. 125: 99–111.

    Article  PubMed  CAS  Google Scholar 

  • Lubben, T.H., Gatenby, A.A., Donaldson, G.K., Lorimer, G.H. and Viitanen, P.V (1990) Identification of a groES-like chaperonin in mitochondria that facilitates protein folding. Proc. Natl. Acad. Sci. USA 87: 7683–7687.

    Article  PubMed  CAS  Google Scholar 

  • Manning-Krieg, U.C., Scherer, PE. and Schatz, G. (1991) Sequential action of mitochondrial chaperones in protein import into the matrix. EMBO J. 10: 3273–3280.

    PubMed  CAS  Google Scholar 

  • Martin, J., Langer, T., Boteva, R., Schramel, A., Horwich, A.L. and Hartl, F.-U. (1991) Chaperonin-mediated protein folding at the surface of GroEL through a “molten globule”-like intermediate. Nature 352: 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Horwich, A.L. and Hartl, F.-U. (1992) Prevention of protein denaturation under heat stress by the chaperonin hsp60. Science 258: 995–998.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Mayhew, M., Langer, T. and Hartl, F.U. (1993) The reaction cycle of GroEL and GroES in chaperonin-assisted protein folding. Nature 366: 228–233.

    Article  PubMed  CAS  Google Scholar 

  • Melki, R. and Cowan, N.J. (1994) Facilitated folding of actins and tubulins occurs via a nucleotide-dependent interaction between cytoplasmic chaperonin and distinctive folding intermediates. Mol. Cell Biol. 14: 2895–2904.

    PubMed  CAS  Google Scholar 

  • Miklos, D., Caplan, S., Martens, D., Hynes, G., Pitluk, Z., Brown, C., Barrell, B., Horwich, A.L. and Willison, K. (1994) Primary structure and function of a second essential member of heterooligomeric TCP1 chaperonin complex of yeast. Proc. Natl. Acad. Sci. USA 91: 2743–2747.

    Article  PubMed  CAS  Google Scholar 

  • Munro, S. and Pelham. H.R.B. (1986) An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell 46: 291–300.

    Article  PubMed  CAS  Google Scholar 

  • Nakai, M., Kato, Y., Ikeda, E., Toh-e, A. and Endo, T. (1994) YGElp, a eukaryotic GrpE homologue, is localized in the mitochondrial matrix and interacts with mitochondrial hsp70. Biochem. Biophys. Res. Comm. 200: 435–441.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R.J., Ziegelhoffer, T., Nicolet, C., Werner-Washburne, M. and Craig, E.A. (1992) The translation machinery and 70 kDa heat shock protein cooperate in protein synthesis. Cell 71: 97–105.

    Article  PubMed  CAS  Google Scholar 

  • Normington, K., Kohno, K., Kozutsumi, Y., Gething, M.J. and Sambrook, J. (1989) S. cerevisiae encodes an essential protein homologous in sequence and function to mammalian BiP. Cell 57: 1223–1236.

    Article  PubMed  CAS  Google Scholar 

  • Ostermann, J., Horwich, A.L., Neupert, W. and Hartl, F.-U. (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341: 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Palleros, D.R., Reid, K., Shi, L., Welch, W.J. and Fink, A.L. (1993) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature 365: 664–666.

    Article  PubMed  CAS  Google Scholar 

  • Pfanner, N. and Meijer, M. (1995) Protein pulling: Pulling in the proteins. Curr. Biol. 5: 132–135.

    Article  PubMed  CAS  Google Scholar 

  • Rassow, J., Maarse, A., Krainer, E., Kubrich, M., Muller, H., Meijer, M., Craig, E. and Pfanner, N. (1994) Mitochondrial protein import: Biochemical and genetic evidence for interaction of matrix hsp70 and the inner membrane protein MIM44. J. Cell Biol. 127: 1547–1556.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, C.V, Grob, M., Eyles, S.J., Ewbank, J.J., Mayhew, M., Hartl, F.-U., Dobson, C.M. and Radford, S.E. (1994) Conformation of GroEL-bound α-lactalbumin probed by mass spectrometry. Nature 372: 646–651.

    Article  PubMed  CAS  Google Scholar 

  • Roobol, A. and Carden, M.J. (1993) Identification of chaperonin particles in mammalian brain cytosol and t-complex polypeptide 1 as one of their components. J. Neurochem. 60: 2327–2330.

    Article  PubMed  CAS  Google Scholar 

  • Rose, M.D., Misra, L.M. and Vogel, J.P. (1989) KAR2, a karyogamy gene, is the yeast homologue of the mammalian BiP/GRP78 gene. Cell 57: 1211–1221.

    Article  PubMed  CAS  Google Scholar 

  • Rospert, S., Junne, T., Glick, B.S. and Schatz, G. (1993) Cloning and disruption of the gene encoding yeast mitochondrial chaperonin 10, the homolog of E. coli groES. FEBS Lett. 335: 358–360.

    Article  PubMed  CAS  Google Scholar 

  • Rowley, N., Prip-Buus, C., Westermann, B., Brown, C., Schwarz, E., Barrell, B. and Neupert, W. (1994) Mdjlp, a novel chaperone of the DnaJ family, is involved in mitochondrial biogenesis and protein folding. Cell 77: 249–259.

    Article  PubMed  CAS  Google Scholar 

  • Sadler, I., Chiang, A., Kurihara, T., Rothblatt, J., Way, J. and Silver, P. (1989) A yeast gene important for protein assembly into the endoplasmic reticulum and the nucleus has homology to DnaJ, an Escherichia coli heat shock protein. J. Cell Biol. 109: 2665–1675.

    Article  PubMed  CAS  Google Scholar 

  • Schlenstedt, G., Harris, S., Risse, B., Lill, R. and Silver, P. (1995) A yeast homolog, Scjlp, can function in the endoplasmic reticulum with BiP/Kar2p via a conserved domain that specifies interactions with hsp70s. J. Cell Biol. 129: 979–988.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, P., Kreig, U., Hwang, S., Vestweber, D. and Schatz, G. (1990) A precursor protein partially translocated into yeast mitochondria is bound to a 70kd mitochondrial stress protein. EMBO J. 9: 4315–4322.

    PubMed  CAS  Google Scholar 

  • Schmidt, M. and Buchner, J. (1992) Interaction of GroE with an all-Ăź-protein. J. Biol Chem. 267: 16829–16833.

    PubMed  CAS  Google Scholar 

  • Schmidt, M., Bucheler, U., Kaluza, B. and Buchner, J. (1994a) Correlation between the stability of the GroEL-protein ligand complex and the release mechanism. J. Biol. Chem. 269: 27964–27972.

    PubMed  CAS  Google Scholar 

  • Schmidt, M., Buchner, J., Todd, M.J., Lorimer, G.H. and Viitanen, P.V (1994b) On the role of groES in the chaperonin-assisted folding reaction. J. Biol. Chem. 269: 10304–10311.

    PubMed  CAS  Google Scholar 

  • Schneider, H.-C., Berthold, J., Bauer, M.F., Dietmeier, K., Guiard, B., Brunner, M. and Neupert, W. (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371: 768–774.

    Article  PubMed  CAS  Google Scholar 

  • Schroder, H., Langer, T., Hartl, F.-U. and Bukau, B. (1993) DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage. EMBO J. 12: 4137–4144.

    PubMed  CAS  Google Scholar 

  • Schonfeld, H.-J., Schmidt, D., Schroder, H. and Bukau, B. (1995) The DnaK chaperone system of Escherichia coli: Quaternary structures and interactions of the DnaK and DnaJ components. J. Biol. Chem. 270: 2183–2189.

    Article  PubMed  CAS  Google Scholar 

  • Scidmore, M., Okamura, H.H. and Rose, M.D. (1993) Genetic interactions between Kar2 and Sec63, encoding eukaryotic homologues of DnaK and DnaJ in the endoplasmic reticulum. Mol. Biol. Cell 4: 1145–1159.

    PubMed  CAS  Google Scholar 

  • Silver, P. and Way, J.C. (1993) Eukaryotic DnaJ homologues and the specificity of Hsp70 activity. Cell 74: 5–6.

    Article  PubMed  CAS  Google Scholar 

  • Simons, J.F., Ferro-Novick, S., Rose, M.D. and Helenius, A. (1995) Bip/Kar2p serves as a molecular chaperone during carboxypeptidase Y folding in yeast. J. Cell Biol. 130: 41–49.

    Article  PubMed  CAS  Google Scholar 

  • Skowyra, D., Georgopoulos, C. and Zylicz, M. (1990) The E. coli DnaK gene product, the hsp70 homolog, can reactivate heat-inactivated RNA polymerase in an ATP-hydrolysis-dependent manner. Cell 62: 939–944.

    Article  PubMed  CAS  Google Scholar 

  • Sternlicht, H., Farr, G.W., Sternlicht, M.L., Driscoll, J.K., Willison, K. and Yaffe, M.B. (1993) The t-complex polypeptide 1 complex is a chaperonin for tubulin and actin in vivo. Proc. Natl. Acad. Sci. USA 90: 9422–9426.

    Article  PubMed  CAS  Google Scholar 

  • Szabo, A., Langer, T., Schroder, H., Flanagan, J., Bukau, B. and Hartl, F.U. (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345–10349.

    Article  PubMed  CAS  Google Scholar 

  • Todd, M.J., Viitanen, P.V and Lorimer, G.H. (1994) Dynamics of the chaperonin ATPase cycle: Implications for facilitated protein folding. Science 265: 659–666.

    Article  PubMed  CAS  Google Scholar 

  • Ursic, D. and Culbertson, M.R. (1991) The yeast homolog to mouse Tcp-1 affects microtubule- related processes. Mol. Cell Biol. 11: 2629–2640.

    PubMed  CAS  Google Scholar 

  • Ursic, D., Sedbrook, J.C., Himmel, K.L. and Culbertson, M.R. (1994) The essential yeast Tcpl protein affects actin and microtubules. Mol. Biol. Cell 5: 1065–1080.

    PubMed  CAS  Google Scholar 

  • Viitanen, P.V, Gatenby, A.A. and Lorimer, G.H. (1992 a) Purified chaperonin 60 (groEL) interacts with the nonnative states of a multitude of Escherichia coli proteins. Protein Sci. 1: 363–369.

    Google Scholar 

  • Viitanen, P.V, Lorimer, G.H., Seetharam, R., Gupta, R.S., Oppenheim, J., Thomas, J.O. and Cowan, N.J. (1992 b) Mammalian mitochondrial chaperonin 60 functions as a single toroidal ring. J. Biol. Chem. 267: 695–698.

    Google Scholar 

  • Vinh, D.B.-N. and Drubin, D.G. (1994) A yeast TCP-1 like protein is required for actin function in vivo. Proc. Natl. Acad. Sci USA 91: 9116–9120.

    Article  PubMed  CAS  Google Scholar 

  • Voos, W., Gambill, B.D., Guiard, B., Pfanner, N. and Craig, E.A. (1993) Presequence and mature parts of preproteins strongly influence the dependence of mitochondrial protein import on heat shock protein 70 in the matrix. J. Cell Biol. 129: 119–123.

    Article  Google Scholar 

  • Voos, W., Gambill, B.D., Laloraya, S., Ang, D., Craig, E. and Pfanner, N. (1994) Mitochondrial GrpE is present in a complex with hsp70 and preproteins in transit across membranes. Mol. Cell Biol. 14: 6627–6634.

    PubMed  CAS  Google Scholar 

  • Wall, D., Zylicz, M. and Georgopoulos, C. (1994) The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J. Biol. Chem. 269: 5446–5451.

    PubMed  CAS  Google Scholar 

  • Wall, D., Zylicz, M. and Georgopoulos, C. (1995) The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. 270: 2139–2144.

    Article  PubMed  CAS  Google Scholar 

  • Weissman, J., Kashi, Y., Fenton, W.A. and Horwich, A.L. (1994) GroEL-mediated protein folding proceeds by multiple rounds of binding and release of nonnative forms. Cell 78: 693–702.

    Article  PubMed  CAS  Google Scholar 

  • Westerman, B., Prip-Buus, C., Neupert, W. and Schwarz, E. (1995) The role of the GrpE homologue, Mgelp, in mediating protein import and protein folding in mitochondria. EMBO J. 13: 1998–2006.

    Google Scholar 

  • Yaffe, M.B., Farr, G.W., Miklos, D., Horwich, A.L., Sternlicht, A.L. and Sternlicht, H. (1992) TCP1 complex is a molecular chaperone in tubulin biogenesis. Nature 358: 245–248.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, R., Spitzfaden, C., Ottiger, M., Wuthrich, K. and Pluckthun, A. (1994) Destabilisation of the complete protein secondary structure on binding to the chaperone GroEL. Nature 368: 261–265.

    Article  PubMed  CAS  Google Scholar 

  • Ziemienowicz, A., Skowyra, D., Zeilstra-Ryalls, J., Fayet, O. and Georgopoluos, C. (1993) Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/GrpE, can reactivate heat-treated RNA polymerase. Different mechanisms for the same activity. J. Biol. Chem. 268: 25425–25431.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Hartman, D., Gething, M.J. (1996). Normal protein folding machinery. In: Feige, U., Yahara, I., Morimoto, R.I., Polla, B.S. (eds) Stress-Inducible Cellular Responses. EXS, vol 77. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-9088-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-9088-5_2

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-9901-7

  • Online ISBN: 978-3-0348-9088-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation