Multithreshold Spectral Phase Transitions for a Class of Jacobi Matrices

  • Conference paper
Recent Advances in Operator Theory

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 124))

Abstract

Consider an arbitrary periodic Jacobi matrix J per ,with periodic weights c n . A class of unbounded Jacobi matrices A + cB is investigated, where B is a diagonal matrix and A is a Jacobi matrix with zero main diagonal and modulated weights λ n (e.g. λ n = c n n α, α > 0). Depending on whether the coupling constant (-c) belongs to the absolutely continuous spectrum of J per or not, the spectrum of A + cB is either pure absolutely continuous or discrete. This gives us a class of examples with multithreshold spectral phase transition phenomena.

Dedicated to Professor Israel Gohberg on the occasion of his seventieth birthday

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. N.I. Akhiezer, The classical moment problem,Hafner, New York, 1965.

    MATH  Google Scholar 

  2. H. Behncke, Absolute Continuity of Hamiltonians with von Neumann-Wigner Potentials II, Manuscripta Math. 71 (1991), 163–181.

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Bentosela, R. Carmona, P. Duclos, B. Simon, B. Souillard and R. Weder, Schrödinger Operators with an Electric Field and Random or Deterministic Potentials, Comm. Math. Phys 88 (1983), 387–397.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev 1965. (Russian)

    MATH  Google Scholar 

  5. M. Christ and A. Kiselev, Absolutely continuous spectrum for one-dimensional Schrödinger operator with slowly decaying potential: some optimal results, J. Amer. Math. Soc 11:4 (1998), 771–797.

    Article  MathSciNet  MATH  Google Scholar 

  6. E.A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, Mc Graw-Hill 1955.

    MATH  Google Scholar 

  7. O. Costin and R. Costin, Rigorous WKB for finite-order linear recurrence relations with smooth coefficients, SIAM J. Math. Anal 27:1 (1996), 110–134.

    Article  MathSciNet  MATH  Google Scholar 

  8. H.L. Cycon, R.G. Froese, W. Kirsch and B. Simon, Schrödinger Operators with Application to Quantum Mechanics and Global Geometry, Springer-Verlag 1987.

    MATH  Google Scholar 

  9. F. Deylon, B. Simon and B. Souillard, From power law localized to extended states in a disordered system, Ann. Inst. Henri Poincare 42 (1985), 283.

    Google Scholar 

  10. F. Deylon and B. Souillard, The rotation number for finite difference operators and its properties, Comm. Math. Phys 89 (1983), 415.

    Article  MathSciNet  Google Scholar 

  11. F. Deylon and B. Souillard, Remark on the continuity of the density of states of ergodic finite difference operators, Comm. Math. Phys 94 (1984), 289.

    Article  MathSciNet  Google Scholar 

  12. J. Dombrowski, Absolutely continuous measures for systems of orthogonal polynomials with unbounded recurrence coefficients, Constr. Approx 8 (1992), 161–167.

    Article  MathSciNet  MATH  Google Scholar 

  13. J. Dombrowski and S. Pedersen, Spectral measures and Jacobi matrices related to Laguerre-type systems of orthogonal polynomials, Constr. Approx 13 (1997), 421–433.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Edward, Spectra of Jacobi matrices differential equations on the circle, and the su (1, 1) Lie algebra, SIAM J. Math. Anal 34:3 (1993), 824–831.

    Article  MathSciNet  Google Scholar 

  15. F. Gesztesy and B. Simon, M-functions and inverse spectral analysis for finite and semi-infinite Jacobi matrices, J. Anal. Math 73 (1997), 267–297.

    Article  MathSciNet  MATH  Google Scholar 

  16. D.J. Gilbert and D.B. Pearson, On subordinacy and analysis of the spectrum one-dimensional Schrödinger operators, J. Math. Anal. Appl 128 (1987), 30–56.

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Gohberg and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert space, Amer. Math. Soc., Providence, R. I 1969.

    Google Scholar 

  18. P. Halmos, A Hilbert space problem book, Van Nostrand, Princeton 1967.

    MATH  Google Scholar 

  19. P. Hartman, Ordinary differential equations, John Wiley 1964.

    MATH  Google Scholar 

  20. H. Heinig, Inversion of periodic Jacobi matrices, Math. Islled., Chisinau 1:27 (1973), 180–200.

    MathSciNet  Google Scholar 

  21. J. Janas and S. Naboko, Jacobi matrices with power like weights-grou** in blocks approach, J. of Func. Anal 166 (1999), 218–243.

    Article  MathSciNet  MATH  Google Scholar 

  22. J. Janas and S. Naboko, Asymptotics of generalized eigenvectors for unbounded Jacobi matrices with power-like weights, Pauli matrices commutation relations and Cesaro averaging, Operator Theory: Advances and Applications,volume dedicated to M.G. Krein, (to appear), 1999.

    Google Scholar 

  23. T. Kato, Perturbation theory for linear operators, 2nd ed., Springer, Berlin, Heidelberg, N.Y. 1980.

    MATH  Google Scholar 

  24. S. Khan and D.B. Pearson, Subordinacy and Spectral Theory for Infinite Matrices, Hely. Phys. Acta 65 (1992), 505–527.

    MathSciNet  Google Scholar 

  25. A. Kiselev, Absolutely continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly decaying potentials, Comm. Math Phys 179 (1996), 377–400.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Kotani, Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrodinger operators, Stochastic Analysis, ed. by K. Ito, North Holland, Amsterdam 225 (1984).

    Google Scholar 

  27. Y. Last and B. Simon, Eigenfunctions, transfer matrices and absolutely continuous spectrum of one-dimensional Schrodinger operators, Invent. Math 135 (1999), 329–367.

    Article  MathSciNet  MATH  Google Scholar 

  28. D. Masson and J. Repka, Spectral theory of Jacobi matrices in l 2(ℤ) and the su (1,1) Lie algebra SIAM J. Math. Anal 22 (1991), 1131–1146.

    Article  MathSciNet  MATH  Google Scholar 

  29. N. Mott, Electrons in disordered structures, Russian Edition: Mir, Moscow 1969.

    Google Scholar 

  30. P.B. Najman, On the theory of periodic and limit-periodic Jacobi matrices, Doklady AN USSR, Russian 143 (1962), 277.

    Google Scholar 

  31. F.W. Olver, Asymptotic and special functions, New York, London, A.P. 1974.

    Google Scholar 

  32. M. Reed and B. Simon, Methods of Modern Math. Phys. III, Scattering Theory, AP 1979.

    Google Scholar 

  33. M. Reed and B. Simon, Methods of Modern Math. Phys. IV, Analysis of Operators, AP 1978.

    Google Scholar 

  34. B. Simon, The classical moment problem as a selfadjoint finite difference operator, Adv. Math 137 (1998), 82–203.

    Article  MathSciNet  MATH  Google Scholar 

  35. B. Simon, Some Jacobi matrices with decaying potential and dense point spectrum, Comm. Math. Phys 87 (1982), 253–258.

    Article  MathSciNet  MATH  Google Scholar 

  36. B. Simon and Y. Zhu, The Lyapunov exponents for Schrödinger operators with slowly oscillating potentials, J. Funct. Anal 140 (1996), 541–556.

    Article  MathSciNet  MATH  Google Scholar 

  37. G. Stolz, Spectral Theory for Slowly Oscillating Potentials I. Jacobi Matrices, Manuscripta Math 84 (1994), 245–260.

    Article  MathSciNet  MATH  Google Scholar 

  38. G. Stolz, Spectral Theory for Slowly Oscillating Potentials II. Schrödinger Operators, Math. Nachr 183 (1997), 275–294.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Basel AG

About this paper

Cite this paper

Janas, J., Naboko, S. (2001). Multithreshold Spectral Phase Transitions for a Class of Jacobi Matrices. In: Dijksma, A., Kaashoek, M.A., Ran, A.C.M. (eds) Recent Advances in Operator Theory. Operator Theory: Advances and Applications, vol 124. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8323-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8323-8_13

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9516-3

  • Online ISBN: 978-3-0348-8323-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation