Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum

  • Chapter
Mycorrhizal Technology in Agriculture
  • 457 Accesses

Abstract

Research on arbuscular mycorrhizal fungi (AMF) in the 1970s and 1980s was dominated by the search for ‘superstrains’ capable of increasing plant biomass under any environmental and soil conditions. The desire to exploit AMF as natural biofertilizers for the agricultural biotechnology industry was understandable, but it became clear that more knowledge was needed of the fungal biology to allow commercial exploitation. Many inoculant companies have tried to commercialise the use of AMF in the past but with an increasingly environmentally-aware market develo** for mycorrhizal products, greater care is needed in producing inocula which can lead to mycorrhization of plants in most circumstances (a minimum requirement from a commercial mycorrhiza product). Many mycorrhizal fungi inoculants, used in research or sold, comprise the same fungal consortia and aim to mycorrhize plants in all target environments. The problem being, that changing environmental conditions can sometimes reveal the limited adaptation of the fungi used. There is also the problem of where inocula are to be used, in monoculture production (agriculture or horticulture) or in land restoration, where complex communities of plants need to be encouraged to establish in degraded soil conditions. Van der Heijden et al. (1998a, b) showed that belowground diversity of AMF is a major factor in the maintenance of plant biodiversity and to ecosystem stability and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Batkhugyin E, Rydlovã J, Vosãtka M (2000) Effectiveness of indigenous and non-indigenous isolates of arbuscular mycorrhizal fungi in soils from degraded ecosystems and man-made habitats. Applied Soil Ecology 14:201–211

    Article  Google Scholar 

  • Boddington C L, Dodd J C (1998) A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8:149–157

    Article  CAS  Google Scholar 

  • Boddington C L, Dodd J C (1999) Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora may be related to their life-cycle strategies. New Phytologist 142:531–538

    Article  Google Scholar 

  • Carey P D, Fitter A H, Watkinson A R (1982) A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90:550–555

    Article  Google Scholar 

  • Clapp J P, Rodriguez A, Dodd J C (2001) Inter-and intra-isolate rRNA large sub-unit (LSU) variation in spores of Glomus coronatum compared with morphologically similar species of Glomus. New Phytologist (in press).

    Google Scholar 

  • Dodd J C (2000) The role of arbuscular mycorrhizal fungi in agro-and natural ecosystems. Outlook in Agriculture 29:55–62

    Article  Google Scholar 

  • Dodd J C, Arias I, Koomen I, Hayman D S (1990a) The management of vesicular-arbuscular mycorrhizal populations in acid-infertile soils of a savanna ecosystem. I. The effect of pre-crop** and VAMF inoculation on plant growth and nutrition in the field. Plant and Soil 122:229–240

    Article  CAS  Google Scholar 

  • Dodd J C, Arias I, Koomen I, Hayman D S (1990b) The management of vesicular-arbuscular mycorrhizal populations in acid-infertile soils of a savanna ecosystem. II. The effects of inoculation and pre-crops on the native VAMF spore populations. Plant and Soil 122:241–247

    Article  Google Scholar 

  • Dodd J C, Boddington C L, Rodriguez A, Gonzales-Chavez C, Mansur I (2000) Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: form, function and detection. Plant and Soil 226:131–151

    Article  CAS  Google Scholar 

  • Dodd J C, Dougall T A G, Clapp J P, Jeffries P (2001) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK –The reclamation platform created during the building of the Channel Tunnel. Biodiversity and Conservation (in Press).

    Google Scholar 

  • Dodd J C, Thompson B (1994) The screening and selection of inoculant arbuscular-mycorrhizal and ectomycorrhizal fungi. Plant and Soil 59:149–158

    Google Scholar 

  • Gonzalez-Chavez C, D’Haen J, Vangronsveld J, Dodd J C (1999) Copper adsorption and accumulation by the external mycelium of three arbuscular mycorrhizal fungi from polluted soils. In: Abstracts COST 8.38 Meeting, Nancy, France, 1999 p 4

    Google Scholar 

  • Hamel C (1996) Prospects and problems pertaining to the management of arbuscular mycorrhizae in agriculture. Agriculture, Ecosystems and Environment 60:197–210

    Article  Google Scholar 

  • Hetrick B A D, Wilson G W T, Cox T S (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Canadian Journal of Botany 70:512–518

    Article  Google Scholar 

  • Joner E J, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseaelTrifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytologist 135:353–360

    Article  CAS  Google Scholar 

  • Koide R T, Lu X (1992) Mycorrhizal infection of wild oats: maternal effects on offspring growth and reproduction. Oecologia 90:218–226

    Google Scholar 

  • Koide R T (2000) Mycorrhizal symbiosis and plant reproduction. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, The Netherlands pp 19–46

    Google Scholar 

  • Koske R E (1987) Distribution of VA mycorrhizal fungi along a latitudinal temperature gradient. Mycologia 79:55–68

    Article  Google Scholar 

  • Lapopin L, Franken P (2000) Modification of Plant Gene Expression. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, The Netherlands pp 69–84

    Google Scholar 

  • Lu X, Koide R T (1991) Avena fatua L. seed and seedling nutrient dynamics as influenced by mycorrhizal infection of the maternal generation. Plant Cell Environment 14, 931–939.

    Article  CAS  Google Scholar 

  • Malcovã R, Vosãtka M, Albrechtovã J (1999) Influence of arbuscular mycorrhizal fungi and simulated acid rain on the growth and coexistence of the grasses Calamagrostis villosa and Deschampsia flexuosa. Plant and Soil 207:45–57

    Article  Google Scholar 

  • Malcovã R, Albrechtovã J, Vosãtka M (2001) The role of extraradical mycelium of arbuscular mycorrhizal fungi on the establishment and growth of Calamagrostis epigejos in industrial waste substrates. Applied Soil Ecology (in press)

    Book  Google Scholar 

  • Miller R M, Jastrow J D (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: Physiology and function. Kluwer Academic Publishers, The Netherlands pp 3–18

    Google Scholar 

  • Oliveira R S, Dodd J C, Castro P M L (2001) The mycorrhizal status of Phragmites australis in several polluted soils and sediments of an industrialised region of Northern Portugal. Mycorrhiza 10:241–247

    Article  CAS  Google Scholar 

  • Olsen J K, Schaefer J T, Edwards D G, Hunter M N, Galea V J, Muller L M (1999) Effects of mycorrhizae, established from an existing intact hyphal network, on the growth response of capsicum (Capsicum annuum L.) and tomato (Lycopersicon esculentum Mill.) to five rates of applied phosphorus. Australian Journal of Agriculture Research 50:223–237

    Article  Google Scholar 

  • Parke J L, Kaeppler S W (2000) Effects of genetic differences among crop species and cultivars upon the arbuscular mycorrhizal symbiosis. In: Kapulnik Y, Douds D (eds) Arbuscular mycorrhizas: physiology and function. Kluwer Academic Publishers, The Netherlands pp 131–146

    Google Scholar 

  • Sieverding E (1991) Vesicular-Arbuscular Mycorrhizal Management in Tropical Agrosystems, GTZ Publishers, Germany 371 pp

    Google Scholar 

  • Staddon P L, Fitter A H (1998) Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Tree 13:455–458

    PubMed  CAS  Google Scholar 

  • Toth R, Toth D, Stark D, Smith D R (1990) Vesicular-arbuscular mycorrhizal colonisation in Zea mays affected by breeding for resistance to fungal pathogens. Canadian Journal of Botany 68:1039–1044

    Article  Google Scholar 

  • Van der Heijden L (2000) Mycorrhizal symbioses of Salix repens: Diversity and functional significance.Thesis University of Wageningen, The Netherlands pp 89–109

    Google Scholar 

  • Van der Heijden M G A, Boller T, Wiemken A, Sanders I R (1998a) Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79:2082–2091

    Article  Google Scholar 

  • Van der Heijden M G A, Klironomos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders I R (1998b) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Vosatka M (1995) Influence of inoculation with arbuscular mycorrhizal fungi on the growth and myc-orrhizal infection of transplanted onion. Agriculture, Ecosystem and Environment 53:151–159

    Article  Google Scholar 

  • Vosãtka M, Gryndler M (2000) Response of micropropagated potatoes transplanted to peat media to post-vitro inoculation with arbuscular mycorrhizal fungi and soil bacteria. Applied Soil Ecology 15:145–152

    Article  Google Scholar 

  • Vosãtka M, Rydlovã J, Malcovã R (1999) Microbial inoculations of plants for revegetation of disturbed soils in degraded ecosystems. In: Kovãr P (ed) Nature and culture in landscape ecology. The Karolinum Press, Prague pp 303–317

    Google Scholar 

  • Waaland M E, Allen E B (1987) Relationships between VA mycorrhizal fungi and plant cover following surface mining in Wyoming. Journal of Range Management 40:271–276

    Article  Google Scholar 

  • Weissenhorn I, Leyval C, Berthelin J (1993) Cd-tolerant arbuscular-mycorrhizal (AM) fungi from heavy-metal polluted soil. Plant and Soil 157:247–256

    Article  CAS  Google Scholar 

  • Wyss P, Bonfante P (1993) Amplification of genomic DNA of arbuscular mycorrhizal (AM) fungi by PCR using short arbitrary primers. Mycological Research 97:1351–1357

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Vosatka, M., Dodd, J.C. (2002). Ecological considerations for successful application of arbuscular mycorrhizal fungi inoculum. In: Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K. (eds) Mycorrhizal Technology in Agriculture. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8117-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8117-3_19

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9444-9

  • Online ISBN: 978-3-0348-8117-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation