The rhizosphere of mycorrhizal plants

  • Chapter
Mycorrhizal Technology in Agriculture

Abstract

Providing that appropriate carbon substrates are available, microbial communities are able to develop a range of activities which are crucial in maintaining a biological balance in soil (Bowen and Rovira 1999), a key issue for the sustainability of either natural ecosystems or agroecosystems (Kennedy and Smith 1995). Soil-borne microbes have a particular microhabitat in which to flourish. In particular, they are bound to the surface of soil particles or found in soil aggregates, while others interact specifically with the plant root system (Glick 1995). The root-soil interface is actually a dynamic changing environment, a microcosm where microorganisms, plant roots and soil constituents interact (Lynch 1990; Azcón-Aguilar and B area 1992; Linderman 1992; B area 1997, 2000, Kennedy 1998; Bowen and Rovira 1999; Gryndler 2000), to develop what is known as the rhizosphere (Hiltner 1904). The rhizosphere, therefore, is the zone of influence of plant roots on the associated microbiota and soil components, and is clearly a different physical, chemical and biological environment from the bulk soil (Bowen and Rovira 1999), where an altered microbial diversity and increased activity and number of microorganisms is characteristic (Kennedy 1998).Actually, the structure and diversity of populations of fluorescent pseudomonads associated with roots were shown to differ significantly from those of soil populations. Rhizosphere and non-rhizosphere populations could be discriminated on the basis of their ability to use specific organic compounds (Lemanceau et al. 1995; Latour et al. 1996), to mobilize ferric iron (Lemanceau et al. 1988) or to reduce nitrogen oxides (Clays-Josserand et al. 1995).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alabouvette C, Lemanceau P (1997) Joint action of microbials for disease control. In Hall F R, Menn J J (eds) Biopesticides: use and delivery. The Humana Press inc, Totowa, NJ, US, pp 117–135

    Google Scholar 

  • Alabouvette C, Schippers B, Lemanceau P, Bakker PA HM (1997) Biological control of fusarium-wilts: towards development of commercial product. In: Boland G J, Kuykendall L D (eds) Plant microbe interactions and biological control. Marcel Dekker, Inc., New York, US, pp 15–36

    Google Scholar 

  • Amora-Lazcano E, Vázquez M M, Azcón R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fertil Soil 27:65–70

    Article  CAS  Google Scholar 

  • Andrade G, Azcón R, Bethlenfalvay G J (1995a) A Rhizobacterium modifies plant and soil responses to the mycorrhizal fungus Glomus mosseae. Appl Soil Ecol 2:195–202

    Article  Google Scholar 

  • Andrade G, Linderman R G, Bethlenfalvay G J (1998b) Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus Glomus mosseae. Plant Soil 202:79–87

    Article  CAS  Google Scholar 

  • Andrade G, Mihara K L, Linderman R G, Bethlenfalvay G J (1997) Bacteria from rhizosphere and hyphosphere soils of different arbuscular mycorrhizal fungi. Plant Soil 192:71–79

    Article  CAS  Google Scholar 

  • Andrade G, Mihara K L, Linderman R G, Bethlenfalvay G J (1998) Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil 202:89–96

    Article  CAS  Google Scholar 

  • Atkinson S, Berta G, Hooker J E (1994) Impact of mycorrhizal colonisation on root architecture, root longevity and the formation of growth regulators. In: Gianinazzi S, Schiiepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser Verlag, Basel, Switzerland, pp 47–60

    Google Scholar 

  • Azcón R (1989) Selective interaction between free-living rhizosphere bacteria and vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 21:639–644

    Article  Google Scholar 

  • Azcón R (1993) Growth and nutrition of nodulated mycorrhizal and non-mycorrhizal Hedysarum coronarium as a results of treatments with fractions from a plant growth-promoting rhizobacteria. Soil Biol Biochem 25:1037–1042

    Article  Google Scholar 

  • Azcón R, Barea J M (1997) Mycorrhizal dependency of a representative plant species in mediterranean shrublands (Lavandula spica L) as a key factor to its use for revegetation strategies in desertification-threatened areas. Appl Soil Ecol 7:83–92

    Article  Google Scholar 

  • Azcón R, El-Atrash F (1997) Influence of arbuscular mycorrhizae and phosphorus fertilization on growth, nodulation and N2 fixation (15N) in Medicago sativa at four salinity levels. Biol Fen Soil 24:81–86

    Article  Google Scholar 

  • Azcón R, Rubio R, Barea J M (1991) Selective interactions between different species of mycorrhizal fungi and Rhizobium meliloti strains, and their effects on growth, N2-fixation (15N) and nutrition of Medicago sativa L. New Phytol 117:399–404

    Article  Google Scholar 

  • Azcón-Aguilar C, Azcón R, Barea J M (1979) Endomycorrhizal fungi and Rhizobium as biological fertilizers for Medicago sativa in normal cultivation. Nature 27:235–237

    Google Scholar 

  • Azcón-Aguilar C, Bago B (1994) Physiological characteristics of the host plant promoting an undisturbed functioning of the mycorrhizal symbiosis. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser Verlag, Basel, Switzerland, pp 47–60

    Chapter  Google Scholar 

  • Azcón-Aguilar C, Barea J M (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen M J (ed) Mycorrhizal functioning. an integrative plant-fungal process. Routledge, Chapman & Hall Inc., New York, pp 163–198

    Google Scholar 

  • Azcón-Aguilar C, Barea J M (1995) Saprophytic growth of arbuscular-mycorrhizal fungi. In: Hock B, Varma A (eds) Mycorrhiza structure function, molecular biology and biotechnology. Springer-Verlag, Heidelberg, pp 391–407

    Google Scholar 

  • Azcón-Aguilar C, Barea J M (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens. An overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Barea JM (1997) Mycorrhiza/bacteria interactions on plant growth promotion. In: Ogoshi A, Kobayashi L, Homma Y, Kodama F, Kondon N, Akino S (eds) Plant growth-promoting rhizobacteria, present status and future prospects. OECD, Paris, pp 150–158

    Google Scholar 

  • Barea J M (2000) Rhizosphere and mycorrhiza of field crops. In: Toutant J P, Balazs E, Galante E, Lynch J M, Schepers J S, Werner D, Werry P A (eds) Biological resource management: connecting science and policy (OECD). INRA, Editions and Springer, pp 110–125

    Google Scholar 

  • Barea J M, Andrade G, Bianciotto V, Dowling D, Lohrke S, Bonfante P, O’Gara F, Azcón-Aguilar C (1998) Impact on arbuscular mycorrhiza formation of Pseudomonas strains used as inoculants for the biocontrol of soil-borne plant fungal pathogens. Appl Environ Microbial 64:2304–2307

    CAS  Google Scholar 

  • Barea J M, Azcón R, Azcón-Aguilar C (1992) Vesicular-arbuscular mycorrhizal fungi in nitrogen-fixing systems. In: Norris J R, Read D J, Varma A K (eds) Methods in microbiology. Academic Press, London, pp 391–416

    Google Scholar 

  • Barea J M, Azcón-Aguilar C, Azcón R (1997) Interactions between mycorrhizal fungi and rhizosphere microorganisms within the context of sustainable soil-plant systems. In: Gange A C, Brown V K (eds) Multitrophic interactions in terrestrial systems. Blackwell Science, Oxford, pp 65–77

    Google Scholar 

  • Barea J M, Jeffries P (1995) Arbuscular mycorrhizas in sustainable soil plant systems. In: Hock B, Varma A (eds) Mycorrhiza structure function, molecular biology and biotechnology. Springer-Verlag, Heidelberg, pp 521–559

    Google Scholar 

  • Barea J M, Tobar R M, Azcón-Aguilar C (1996) Effect of a genetically-modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa L. New Phytol 134:361–369

    Article  Google Scholar 

  • Barea J M, Toro M, Orozco M O, Campos E, Azcón R (2001) The application of isotopic dilution techniques to evaluate the interactive effect of phosphate-solubilizing rhizobacteria, mycorrhizal fungi and Rhizobium to improve the agronomic efficiency of rock phosphate for legume crops. Nutrient Cycling Agroecosys (In press)

    Google Scholar 

  • Bashan Y (1999) Interactions of Azospirillum spp. in soils: a review. Biol Fertil Soils 29:246–256 Bashan Y, Holguin G (1998) Proposal for the division of plant growth-promoting rhizobacteria into two classifications: biocontrol-PGPB (plant growth-promoting bacteria) and PGPB. Soil Biol Biochem 30:1225–1228

    Article  Google Scholar 

  • Belimov A A, Serebrennikova N V, Stepanok V V (1999) Interaction of associative bacteria and an endomycorrhizal fungus with barley upon dual inoculation. Microbiology 68:104–108

    CAS  Google Scholar 

  • Berta G, Trotta A, Fusconi A, Hooker J E, Munro M, Arkinson D, Giovannetti M, Morini S, Fortuna P, Tisserant B, Gianinazzi-Pearson V, Gianinazzi S (1995) Arbuscular mycorrhizal induced changes to plant growth and root system morphology in Prunus cerasifera. Tree Physiol 15:281–293

    Article  PubMed  Google Scholar 

  • Bethlenfalvay G J, Cantrell I C, Mihara K L, Schreiner R P (1999) Relationships between soil aggregation and mycorrhizae as influenced by soil biota and nitrogen nutrition. Biol Fertil Soils 28:356–363

    Article  Google Scholar 

  • Bethlenfalvay G J, Linderman R G (eds) (1992) Mycorrhizae in Sustainable Agriculture. ASA Special publication No. 54, Madison, Wisconsin

    Google Scholar 

  • Bethlenfalvay G J, Schuepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel, pp 117–131

    Chapter  Google Scholar 

  • Bianciotto V, Lumini E, Lanfranco L, Minerdi D, Bonfante P, Perotto S (2000) Detection and identification of bacterial endosymbionts in arbuscular mycorrhizal fungi belonging to the family Gigasporaceae. Appl Environ Microbiol 66:4503–4509

    Article  PubMed  CAS  Google Scholar 

  • Bowen G D, Rovira A D (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102

    Article  Google Scholar 

  • Bowen G D, Theodorou C (1979) Interactions between bacterial and ectomycorrhizal fungi. Soil Biol Biochem 11:119–126

    Article  Google Scholar 

  • Broek A V, Vanderleyden J (1995) Genetics of the Azospirillum-plant root association. Crit Reviews Plant Sci 14:445–466

    Article  Google Scholar 

  • Budi S W, Van Tuinen D, Martinotti G, Gianinazzi S (1999) Isolation from Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorriza development and antagonistic towards soilborne fungal pathogens. Appl. Environ. Microbiol. 65:5148–5150

    CAS  Google Scholar 

  • Calvet C, Pera J, Barea J M (1993) Growth response of marigold (Tagetes erecta L) to inoculation with Glomus mosseae Trichoderma aureoviride and Phythium ultimum in a peat-perlite mixture. Plant Soil 148:1–6

    Article  Google Scholar 

  • Caron M (1989) Potential use of mycorrhizae in control of soilbome diseases. Can J Plant Pathol 11:177–179

    Article  Google Scholar 

  • Christensen H, Jacobsen I (1993) Reduction of bacterial growth by a vesicular-arbuscular mycorrhizal fungus in the rhizosphere of cucumber (Cucunis sativus L). Biol Fertil Soils 15:253–258

    Article  Google Scholar 

  • Cook R J, Baker K F (1983) The nature and practice of biological control of plant pathogens.American Phytopathological Society, St. Paul p 539

    Google Scholar 

  • Cook R J, Thomashow L S, Weller D M, Fujimoto D, Mazzola M, Bangera G, Kim D S (1995) Molecular mechanisms of defense by rhizobacteria againsts root disease. Proc Nalt Acad Sci USA 92:4197–4201

    Article  CAS  Google Scholar 

  • Chanway C P (1996) Endophytes: they’re not just fungi!. Can J Bot 74:321–322

    Article  Google Scholar 

  • Chanway C P, Radley R A, Holl F B (1991) Inoculation of conifer seed with plant growth promoting Bacillus strains causes increased seedling emergence and biomass. Soil Biol Biochem 23:575–580

    Article  Google Scholar 

  • Chen J, Jacobson L M, Handelsman J, Goodman R M (1996) Compatiility of systemic acquired resistance and microbial biocontrol for suppression of plant disease in a laboratory assay. Mol Ecol 5:73–80

    Article  CAS  Google Scholar 

  • Clays-Josserand A, Lemanceau P, Philippot L, Lensi R (1995) Influence of two plant species (flax and tomato) on the distribution of nitrogen dissimilative abilities within fluorescent Pseudomonas spp. Appl. Environ. Microbiol. 61:1745–1749

    PubMed  CAS  Google Scholar 

  • Cordier C, Lemoine M C, Lemanceau P, Gianinazzi-Pearson V, Gianinazzi S (1999) The beneficial rhizosphere: a necessary strategy for microplant production. Acta Horticulturae 530:259–265

    Google Scholar 

  • Duijff B J, Gianinazzi-Pearson V, Lemanceau P (1997) Involvement of the outermembranelipopolysaccharides in the endophytic root colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r. New Phytol. 135:325–334

    Article  CAS  Google Scholar 

  • Duijff B J, air D, Olivain C, Alabouvette C, Lemanceau P (1998) Implication of systemic induced resistance in the suppression of fusarium wilt of tomato by Pseudomonas fluorescens WCS417r and nonpathogenic Fusarium oxysporum Fo47. Eur J Plant Pathol 104:903–910

    Article  Google Scholar 

  • Edwards S G, Young J P W, Fitter A H (1998) Interactions between Pseudomonas fluorescens biocontrol agents and Glomus mosseae an arbuscular mycorrhizal fungus, within the rhizosphere. FEMS Microbiol Letters 116:297–303

    Article  Google Scholar 

  • Filippi C, Bagnoli G, Citemesi A S, Giovannetti M (1998) Ultrastructural spatial distribution of bacteria associated with sporocarps of Glomus mosseae. Symbiosis 24:1–12

    Google Scholar 

  • Fitter A H, Heinemeyer A, Staddon P L (2000) The impact of elevated CO2and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol 147:179–187

    Article  CAS  Google Scholar 

  • Frey-Klett P, Garbaye J, Berge O, Heulin T (1997) Metabolic and genotypic fingerprinting of fluorescent Pseudomonads associated with the Douglas Fir-Laccaria biocolor mycorrhizosphere. Appl Environ Microbiol 63:1852–1860

    PubMed  Google Scholar 

  • Garbaye J (1994) Helper bacteria: A new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Article  Google Scholar 

  • Garbaye J, Bowen G D (1987) Effect of different microflora on the success of ectomycorrhizal inoculation of Pinus radiata. Can J Fores Res 17:941–943

    Article  Google Scholar 

  • Germida J J, Walley F L (1996) Plant growth-promoting rhizobacteria alter rooting patterns and arbuscular mycorrhizal fungi colonization of field-grown spring wheat. Biol Fertil Soils 23:113–120

    Article  CAS  Google Scholar 

  • Gianinazzi S, Schüepp H (eds) (1994) Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems. ALS, Birkhäuser Verlag, Basel

    Google Scholar 

  • Glick B R (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolín M C, Strnad M, Sánchez-Díaz M (1996) Root cytokinins, acid phosphatase and nodule activity in drought-stressed mycorrhizal or nitrogen-fixing alfalfa plants. J Experiment Bot 47:683–686

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolín M C, Sánchez-Díaz M (1997) Influence of arbuscular mycorrhizae and Rhizobium on nutrient content and water relations in drought stressed alfalfa. Plant Soil 192:261–268

    Article  CAS  Google Scholar 

  • Goicoechea N, Doléza K, Antolín M C, Stmad M, Sánchez-Díaz M (1995) Influence of mycorrhizae and Rhizobium on cytokinin content in drought-stressed alfalfa. J Experiment Bot 46:1543–1549

    Article  CAS  Google Scholar 

  • Goicoechea N, Szalai G, Antolín M C, Sánchez-Díaz M, Paldi E (1998) Influence of arbuscular mycorrhizae and Rhizobium on free polyamines and proline levels in water-stressed alfalfa. J Plant Physiol 153:706–711

    Article  CAS  Google Scholar 

  • Gryndler M, Hrselova H (1998) Effect of diazotrophic bacteria isolated from a mycelium of arbuscular mycorrhizal fungi on colonization of maize roots by Glomus fistulosum. Biol Plant 41:617–621

    Article  Google Scholar 

  • Gryndler M, Hrselová H, Strfteská D (2000) Effect of soil bacteria on growth of hyphae of the arbuscular mycorrhizal (AM) fungus Glomus claroideum. Folia Microbiologica 45: (In press)

    Google Scholar 

  • Haas D, Keel C, Laville J, Maurhofer M, Oberliansli T, Schnider U, Voisard C, Wüthrich B, Defago G. (1991) Secondary metabolites of Pseudomonas fluorescens strain CHAO involved in the suppresion of root diseases. In: Hennecke H, Verma D P S (eds) Advances in molecular genetics of plant-microbe interactions. Kluwer Academic publisher, Dordrecht, pp 450–456

    Google Scholar 

  • Halverson L J, Handelsman J (1991) Enhacement of soybean nodulation by Bacillus ceresus UW95 in the field and in a growth chambers. Appl Environ Microbiol 57:2767–2770

    PubMed  CAS  Google Scholar 

  • Harley J L, Smith S E (eds) (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Herrera M A, Salamanca C P, Barea J M (1993) Inoculation of woody legumes with selected arbuscular mycorrhizal fungi and rhizobia to recover desertified mediterranean ecosystems. Appl Environ Microbiol 59:129–133

    PubMed  CAS  Google Scholar 

  • Hiltner L (1904) Über neuere Erfahrungen and Probleme auf dem Gebiet der Bodenbakteriologie and unter besonderer Berücksichtigung der Gründüngung and Brache. Arb Dtsch Landwirtsch Ges 98:59–78

    Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and extemal hyphae from roots of mycorrhizal cucumber plants. New Phytol 115:77–83

    Article  Google Scholar 

  • Jeffries P (1997) Mycoparasitism. In: Wicklow Södertröm (eds) The mycota IV environmental and microbial relationships. Springer-Verlag, Berlin, Heidelberg, pp 149–164

    Google Scholar 

  • Jeffries P, Barea J M, Dodd J C (2000) Restoration of environmental diversity by effective ecosymbiont monitoring (‘REDEEM’). In: Balabanis P, Peter D, Ghazi A, Tsogas M (eds) Mediterranean desertification research results and policy implications. Eruropean Communities, Luxenburgo, pp 487–495

    Google Scholar 

  • Kennedy A C (1998) The rhizosphere and spermosphere In: Sylvia D M, Fuhrmann J J, Hartel P G, Zuberer D A (eds) Principles and applications of soil microbiology. Prentice Hall, Upper Saddle River, New Jersey, pp 389–407

    Google Scholar 

  • Kennedy A C, Smith K L (1995) Soil microbial diversity and the sustainability of agricultural soils. Plant Soil 170:75–86

    Article  CAS  Google Scholar 

  • Kim K Y, Jordan D, McDonald G A (1998) Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biol Fertil Soils 26:79–87

    Article  CAS  Google Scholar 

  • Kloepper J W (1994) Plant growth-promoting rhizobacteria (other systems) In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118

    Google Scholar 

  • Kloepper J W (1996) Host specificity in microbe-microbe interactions. Bio Science 46:406–409

    Google Scholar 

  • Kloepper J W, Zablotowick R M, Tip** E M, Lifshitz R (1991) Plant growth promotion mediated by bacterial rhizosphere colonizers. In: Keister D L, Cregan P B (eds) The rhizosphere and plant growth. Kluwer Academic Publishers, Dordrecht, pp 315–326

    Google Scholar 

  • Latour X, Corberand T, Laguerre G, Allard F, Lemanceau P (1996) The composition of fluorescent pseudomonad population associated with roots is influenced by plant and soil type. Appl. Environ. Microbiol. 62:2449–2556

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Alabouvette C (1991) Biological control of fusarium diseases by fluorescent Pseudomonas and non-pathogenic Fusarium. Crop Protect. 10:279–286

    Article  Google Scholar 

  • Lemanceau P, Alabouvette C (1993). Suppression of fusarium-wilts by fluorescent pseudomonads: mechanisms and applications. Biocontrol Science and Technology 3:219–234

    Article  Google Scholar 

  • Lemanceau P, Samson R, Alabouvette C (1988). Recherches sur la résistance des sols aux maladies. XV. Comparaison des populations de Pseudomonas fluorescents dans un sol résistant et un sol sensible aux fusarioses vasculaires. Agronomie 8:243–249

    Article  Google Scholar 

  • Lemanceau P, Bakker P A H M, De Kogel W J, Alabouvette C, Schippers B (1992) Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl. Environ. Microbiol. 58:2978–2982.

    PubMed  CAS  Google Scholar 

  • Lemanceau P, Corberand T, Gardan L, Latour X, Laguerre G, Boeufgras J M, Alabouvette C (1995) Effect of two plant species flax (Linum usitatissinum L.) and tomato (Lycopersicon esculentum Mill.) on the diversity of soilborne populations of fluorescent pseudomonads. Appl. Environ. Microbiol. 61: 1004–1012

    PubMed  CAS  Google Scholar 

  • Linderman R G (1992) Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Bethlenfalvay G J, Linderman R G (eds) Mycorrhizae in sustainable agriculture. ASA Spec. Publ., Madison, Wisconsin, pp 45–70

    Google Scholar 

  • Linderman R G (1994) Role of VAM fungi in biocontrol. In: Pfleger F L, Linderman R G (eds) Mycorrhizae and plant health. APS Press, St Paul, pp 1–26

    Google Scholar 

  • Lugtenberg B J J, Weger de L A, Bennett J W (1991) Microbial stimulation of plant growth and protection from disease. Current Opinion Microbiol 2:457–464

    CAS  Google Scholar 

  • Lynch J M (ed) (1990) The rhizosphere. John Wiley, New York

    Google Scholar 

  • Miller R M, Jastrow J D (1994) Vesicular-arbuscular mycorrhizae and biogeochemical cycling. In: Pfleger F L, Linderman R G (eds) Mycorhizae and plant health. APS Press, St. Paul, MN, pp 189–212

    Google Scholar 

  • Monzón A, Azcón R (1996) Relevance of mycorrhizal fungal origin and host plant genotype to inducing growth and nutrient uptake in Medicago species. Agric Ecosyst Environm 60:9–15

    Article  Google Scholar 

  • Nehl D B, Allen S J, Brown J F (1996) Deleterious rhizosphere bacteria: An integrating perspective. Appl Soil Ecol 5:1–20

    Article  Google Scholar 

  • Nemec S (1997) Longevity of microbial biocontrol agents in a planting mix amended with Glomus intraradices. Biocontrol Sci Technol 7:183–192

    Article  Google Scholar 

  • Norby R J, Jackson R B, (2000) Root dynamics and global change: seeking an ecosystem perspective. New Phytol 147:3–12

    Article  CAS  Google Scholar 

  • O’Gara F, Dowling D N, Boesten B (eds) (1994) Molecular Ecology of Rhizosphere Microorganisms. VCH, Weinheim, Germany

    Book  Google Scholar 

  • Okon Y (eds) (1994) Azospirillum /plant associations. CRC Press, Boca Raton

    Google Scholar 

  • Puppi G, Azcón R, Höflich G (1994) Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. ALS, Birkhäuser Verlag, Basel Switzerland, pp 201–215

    Chapter  Google Scholar 

  • Ravnskov S, Nybroe O, Jakobsen I (1999) Influence of an arbuscular mycorrhizal fungus on Pseudomonas fluorescens DF57 in rhizosphere and hyphosphere soil. New Phytol 142:113–122

    Article  Google Scholar 

  • Requena N, Jimenez I, Toro M, Barea J M (1997) Interactions between plant-growth-promoting rhizobacteria (PGPR), arbuscular mycorrhizal fungi and Rhizobium spp. in the rhizosphere of Anthyllis cytisoides a model legume for revegetation in mediterranean semi-arid ecosystems. New Phytol 136:667–677

    Article  Google Scholar 

  • Requena N, Perez-Solis E, Azcón-Aguilar C, Jeffries P, Barea J M (2001) Management of indigenous plant-microbe symbioses aids restoration of desertified. Appl Environ Microbiol 67:000–000

    Article  CAS  Google Scholar 

  • Rodriguez R, Vassilev N, Azcón R (1998) Increases in growth and nutrient uptake of alfalfa grown in soil amended with microbially-treated sugar beet waste. Appl Soil Ecol 330:1–7

    Google Scholar 

  • Ruiz-Lozano J M, Azcón R (1993) Specificity and functional compatibility of VA mycorrhizal endo-phytes in association with Bradyrhizobium strains in Cicer arietinum. Symbiosis 15:217–226

    Google Scholar 

  • Ruiz-Lozano J M, Bonfante P (2000) A Burkholderia strain living inside the arbuscular mycorrhizal fungus Gigaspora margarita possesses the vacB gene, which is involved in host cell colonization by bacteria. Microbial Ecol 39:137–144

    Article  CAS  Google Scholar 

  • Ruiz-Lozano J M, Collados C, Barea J M, Azcón R (2001) Arbuscular mycorrhizal symbiosis can alleviate drought-induced nodule senescence in soybean plants. New Phytol 15:493–502

    Article  Google Scholar 

  • Sanjuan J, Olivares J (1991) Multicopy plasmids carrying the Klebsiella pneumoniae nifA gene enhance Rhizobium meliloti nodulation competitiveness on alfalfa. Mol Plant Micr Interac 4:365–369

    Article  CAS  Google Scholar 

  • Schloter M, Wiehe W, Assmus B, Steindl H, Becke H, Höflich G, Hartmann A (1997) Root colonization of different plants by plant-growth-promoting Rhizobium leguminosarum by. trifolii R39 studied with monospecific polyclonal antisera. Appl Environ Microbiol 63:2038–2046

    PubMed  CAS  Google Scholar 

  • Schreiner R P, Mihara KL, McDaniel H, Bethlenfalvay G J (1997) Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188:199–209

    Article  CAS  Google Scholar 

  • Siddiqui Z A, Mahmood I (1998) Effect of a plant growth promoting bacterium, an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl Soil Ecol 8:77–84

    Article  Google Scholar 

  • Smith S E, Gianinazzi-Pearson V, Koide R, Cairney J W G (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. In: Robson A D, Abbott L K, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer Academic Publishers, Dordrecht, pp 103–113

    Google Scholar 

  • Smith M D, Hartnett D C, Rice C W (2000) Effects of long-term fungicide applications on microbial properties in tallgrass prairie soil. Soil Biol Biochem 32:935–946

    Article  CAS  Google Scholar 

  • Staley T W, Lawrence E G, Nance E L (1992) Influence of a plant growth-promoting pseudomonad and vesicular-arbuscular mycorhizal fungus on alfalfa and birdsfoot trefoil growth and nodulation. Biol Fertil Soils 14:175–180

    Article  Google Scholar 

  • Sturz A V, Christie B R, Nowak J (2000) Bacterial endophytes: potential role in develo** sustainable systems of crop production. Crit Rev Plant Sci 19:1–30

    Article  Google Scholar 

  • Sturz A V, Nowak J (2000) Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. Appl Soil Ecol 15:183–190

    Article  Google Scholar 

  • Stutz E W, Défago G, Kern H (1986) Naturally occuring fluorescent Pseudomonads in suppression of black root rot of tobacco. Phytopathology 76:181–185

    Article  Google Scholar 

  • Toal M E, Yeomans C, Killham K, Meharg A A (2000) A review of rhizosphere carbon flow modelling. Plant Soil 222:263–281

    Article  CAS  Google Scholar 

  • Tobar R M, Azcón-Aguilar C, Sanjuán J, Barea J M (1996) Impact of a genetically modified Rhizobium strain with improved nodulation competitiveness on the early stages of arbuscular mycorrhiza formation. Appl Soil Ecol 4:15–21

    Article  Google Scholar 

  • Toro M, Azcón R, Barea J M (1997) Improvement of arbuscular mycorrhizal development by inoculation with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability (32P) and nutrient cycling. Appl Environ Microbiol 63:4408–4412

    PubMed  CAS  Google Scholar 

  • Toro M, Azcón R, Barea J M (1998) The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138:265–273

    Article  CAS  Google Scholar 

  • Van Loon L C, Bakker P A H M, Pieterse C M J (1998) Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483

    Article  Google Scholar 

  • Vázquez M M, Cesar S, Azcón R, Barea J M (2000) Interactions between arbuscular mycorrhizal fungi and other microbial inoculants (Azospirillum PseudomonasTrichoderma) and their effects on microbial population and enzyme activities in the rhizosphere of maize plants. Appl Soil Ecol 15:261–272

    Article  Google Scholar 

  • Volpin H, Kapulnik Y (1994) Interaction of Azospirillum with beneficial soil microorganisms. In: Okon Y (ed) Azospirillum/plant associations. CRC Press, Boca Raton, pp 111–118

    Google Scholar 

  • Vosátka M (1996) Soil bacteria - a component of plant, soil and arbuscular mycorrhizal fungal interactions. In: Azcon-Aguilar C, Barea J M, (eds) Mycorrhizas in integrated systems - from genes to plant development. European Commission Report EUR 16728, Brussels, Luxembourg, pp 613–618

    Google Scholar 

  • Vosátka M, Gryndler M (1999) Treatment with culture fractions from Pseudomonas pulida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl Soil Ecol 11:245–251

    Article  Google Scholar 

  • Vosátka M, Gryndler M (2000) Response of micropropagated potatoes transplanted to peat media to post-vitro inoculation with arbuscular mycorrhizal fungi and soil bacteria. Appl Soil Ecol 15:145–152

    Article  Google Scholar 

  • Weller D M, Howie W J, Cook RJ (1998) Relationship between in vitro inhibition of Geaumannomyces graminis var. tritici and suppression of take-all of wheat by fluoresent pseudomonads. Phytopathology 78:1094–1100

    Article  Google Scholar 

  • Weller D M, Thomashow L S (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling D N, Boesten B, Weinheim V C H (eds) Molecular ecology of rhizosphere microorganisms biotechnology and the release of GMOs. Germany, pp 1–18

    Chapter  Google Scholar 

  • Werner D (1998) Organic signals between plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interfaces. Marcel Dekker Inc., New York

    Google Scholar 

  • Whitelaw M A (2000) Growth promotion of plants inoculated with phosphate-solubilizing fungi. Adv Agron 69:99–151

    Article  CAS  Google Scholar 

  • Wright S F, Upadhyaya A (1998) A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198:97–107

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Barea, J.M., Gryndler, M., Lemanceau, P., Schüepp, H., Azcón, R. (2002). The rhizosphere of mycorrhizal plants. In: Gianinazzi, S., Schüepp, H., Barea, J.M., Haselwandter, K. (eds) Mycorrhizal Technology in Agriculture. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8117-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8117-3_1

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-0348-9444-9

  • Online ISBN: 978-3-0348-8117-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation