Fluorescence Techniques

  • Chapter
Analytical Biotechnology

Part of the book series: Methods and Tools in Biosciences and Medicine ((MTBM))

  • 437 Accesses

Abstract

Fluorescence is a spectrochemical analysis method in which the molecules of the analyte are excited by irradiation at a certain wavelength and the emitted radiation at a longer wavelength is measured. This analysis method is widely accepted and is a powerful technique that is used for a variety of medical, pharmaceutical, environmental and biotechnological applications. The fields are diverse, e.g., detection of oil in water, oil sample fingerprinting, bacterial viability tests, chlorophyll measurement, monitoring of algae, membrane structure analysis, proliferation assays, DNA/RNA quantification, fluorescent tracers, brightening agents, protein quantification, enzyme assays, protein conformation studies, vitamins, toxin analysis, fluorescent proteins (e.g., GFP, YFP, and RFP), antibiotic testing, and many more.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brand L, Johnson ML (eds) (1997) Fluorescence spectroscopy (Methods in enzymology, Volume 278), Academic Press, New York

    Google Scholar 

  2. Cantor CR, Schimmel PR (1980) Biophysical chemistry Part 2. WH Freeman, New York, 433–465

    Google Scholar 

  3. Dewey TG, (ed) (1991) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Publishing, New York

    Google Scholar 

  4. Lakowicz JR (ed) (1999) Principles of fluorescence spectroscopy,2nd Ed. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  5. Lewis GN, Kasha M (1944) Phosphorescence and the triplet state J Am Chem Soc, 66: 2100–2116

    Article  CAS  Google Scholar 

  6. Hochstrasser RM, Weisman RB (1980) In: Radiationless transitions. SH Lin (ed), Academic Press, New York, 317

    Google Scholar 

  7. Shin DM, Whitten DG (1988) Solvatochromic behavior of intramolecular charge-transfer diphenylpolyenes in homogeneous solution and microheterogeneous media. J Phys Chem 92: 2945

    Article  CAS  Google Scholar 

  8. Rosen CG, Weber G (1969) Dimer formation from 1-anilino-8-naphthalene sulfonate catalyzed by bovine serum albumin - A new fluorescent molecule with exceptional binding properties. Biochemistry 8: 3915–3920

    Article  CAS  Google Scholar 

  9. Hirayama F (1965) Intramolecular excimer formation. I. Diphenyl and Triphenyl Alkanes. J Chem Phys 42: 3163–3171

    Article  CAS  Google Scholar 

  10. MacColl R (1991) Fluorescence studies on r-phycoerythrin and c-phycoerythrin. J Fluorescence 1: 135

    Article  CAS  Google Scholar 

  11. Mathies RA, Stryer L (1986) Single-molecule fluorescence detection: a feasibility study using phycoerythrin. D. L. Taylor, (ed) In: Applications of fluorescence in the biomedical sciences. Alan R. Liss, Inc, New York, NY 129–140

    Google Scholar 

  12. Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, et al. (1999) Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photo-stable conjugates. J Histochem Cytochem 47: 1179–1188

    Article  CAS  Google Scholar 

  13. Song L, Hennink EJ, Young IT, Tanke HJ (1995) Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys J 68: 2588–2600

    Article  CAS  Google Scholar 

  14. Song L, Varma CA, Verhoeven JW, Tanke HJ (1996) Influence of the triplet excited state on the photobleaching kinetics of fluorescein in microscopy. Biophys J 70: 2959–2968

    Article  CAS  Google Scholar 

  15. Brakenhoff GJ, Visscher K, Gijsbers EJ (1994) Fluorescence bleach rate imaging. J Microscopy 175: 154–161

    Article  Google Scholar 

  16. Ried T, Baldini A, Rand TC, Ward DC (1992) Simultaneous visualization of seven different DNA Probes by in situ hybridization using combinatorial fluorescence and digital imaging microscopy. Proc Natl Acad Sci 98: 1388–1392

    Article  Google Scholar 

  17. Oefner PJ, Huber CG, Umlauft F et al. (1994) High-resolution liquid chromatography of fluorescent dye-labeled nucleic acids. Anal Biochem 223: 39–46

    Article  CAS  Google Scholar 

  18. Dahan M, Deniz AA, Ha T et al.(1999) Ratiometric measurement and identification of single diffusing molecules. Chemical Physics 247: 85–106

    Article  CAS  Google Scholar 

  19. Grant RL, Acosta D (1997) Ratiometric measurement of intracellular pH of cultured cells with BCECF in a fluorescence multi-well plate reader. In vitro Cellular & Developmental Biology 33: 256–260

    Article  CAS  Google Scholar 

  20. Atsumi T, Sugita K, Kohno M et al. (1996) Simultaneous measurement of Ca2+ and pH by laser cytometry using fluo-3 and SNARF-1. Cytometry 24: 99–105

    Article  CAS  Google Scholar 

  21. Cody SH, Dubbin PN, Beischer AD et al. (1993) Intracellular pH map** with SNARF-1 and confocal microscopy. I: A quantitative technique for living tissues and isolated cells. Micron 24: 573–580

    Article  Google Scholar 

  22. Martinez-Zaguilan R, Martinez GM, Lattanzio F, Gillies RJ (1991). Simultaneous measurement of intracellular pH and Ca2+ using the fluorescence of SNARF1 and fura-2. Am J Physiol 260: 297–307

    Google Scholar 

  23. Haugland RP, Bhalgat MK (1998) Preperation of avidin conjugates. Methods Mol Biol 80: 185–196

    Article  CAS  Google Scholar 

  24. Haugland RP (1995) Coupling of monoclonal antibodies with enzymes. Methods Mol Biol 45: 223

    CAS  Google Scholar 

  25. Parks DR, Lanier LL, Herzenberg LA. (1986) Flow cytometry and fluorescence activated cell sorting (FACS). In: Weir DM, Herzenberg LA, Blackwell C (eds): Handbook of experimental immunology. Blackwell Scientific Publications, Oxford, UK 1986

    Google Scholar 

  26. Jackson AL, Warner NL (1986) Preparation, staining, and analysis by flow cytometry of peripheral blood leukocytes. In: Rose NR, Friedman H, Fahey JL, (eds): Manual of clinical laboratory immunology 3rd ed. American Society for Microbiology, Washington, DC 226–235

    Google Scholar 

  27. Lakowicz JR, (ed) (1997) Nonlinear and two-photon induced fluorescence,Vol 5. Plenum Publishing, New York

    Google Scholar 

  28. Sako Y (1998) Multi-photon excitation fluorescence microscopy and its application to the studies of intracellular signal transduction, Tanpakushitsu Kakusan Koso. Protein, Nucleic Acid, Enzyme 43: 1927–1930

    CAS  Google Scholar 

  29. Garrett WR, Yifei Z, Lu D, Payne MG (1996) Multi-photon excitation through a resonant intermediate state: unique separation of coherent and incoherent contributions. Optics Communications 128: 66–72

    Article  CAS  Google Scholar 

  30. LĂłpez Arbeloa F (1989) Influence of the molecular structure and the nature of the solvent on the absorption and fluorescence characteristics of rhodamines. Chem Phys 130: 371

    Article  Google Scholar 

  31. Krasnowska EK, Bagatolli LA, Gratton E, Parasassi T (2001) Surface properties of cholesterol-containing membranes detected by Prodan fluorescence. Biochim Biophys Acta 1511: 330–340

    Article  CAS  Google Scholar 

  32. Prendergast FG, Meyer M, Carlson GL et al. (1983) Synthesis, spectral properties, and use of 6-acryloyl-2-dimethylaminonaphthalene (Acrylodan). A thiol-selective, polarity-sensitive fluorescent probe. J Biol Chem 258: 7541–7544

    CAS  Google Scholar 

  33. Macgregor RB, Weber G (1986) Estimation of the polarity of the protein interior by optical spectroscopy. Nature 319: 70–73

    Article  CAS  Google Scholar 

  34. Bushueva TL, Busel EP, Burstein EA (1978) Relationship of thermal quenching of protein fluorescence to intramolecular structural mobility. Biochim Biophys Acta 534: 141–152

    Article  CAS  Google Scholar 

  35. Colucci WJ, Tilstra L, Sattler MC et al. (1990) Conformational studies of a con-stained tryptophan derivative: implications for the fluorescence quenching mechanism. J Am Chem Soc 11: 2

    Google Scholar 

  36. Eftink MR (1991) Fluorescence quenching: theory and applications. In: Topics in fluorescence spectroscopy: volume 2 - Principles, J.R. Lakowicz (ed), Plenum Press, New York, 53–126

    Google Scholar 

  37. F. LĂłpez Arbeloa (1989) Fluorescence self-quenching of the molecular forms of rhodamine B in aqueous and ethanolic solutions J Lumin 44: 105

    Article  Google Scholar 

  38. Jones LJ, Upson RH, Haugland RP et al. (1997) Quenched BODIPY dye-labeled casein substrates for the assay of protease activity by direct fluorescence measurement. Anal Bioch 251: 144–152

    Article  CAS  Google Scholar 

  39. Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Current Opinion in Structural Biology 11: 573–578

    Article  CAS  Google Scholar 

  40. Van Der Meer BW, Coker G, Chen, SY (1994) Resonance energy transfer theory and data, VCH, New York

    Google Scholar 

  41. Perrin F (1926) Polarization de la lumiere de fluorescence. Vie moyenne de molecules dans l’etat excite. J Phys Radium 7: 390

    Article  CAS  Google Scholar 

  42. Weber G (1953) Rotational Brownian motion and polarization of the fluorescence of solutions. Adv Protein Chem 8: 415

    Article  CAS  Google Scholar 

  43. Collett E (1993) Polarized light: fundamentals and applications. Marcel Dekker, New York

    Google Scholar 

  44. Singh KK, Rücker T, Hanne A et al. (2000) Fluorescence polarization for monitoring ribozyme reactions in real time. BioTechniques 29: 344–348, 350–351

    CAS  Google Scholar 

  45. Dandliker WB, Hsu ML, Levin J, Rao BR (1981) Equilibrium based assays based upon fluorescence polarization. Meth Enzym 74: 3–28

    Article  CAS  Google Scholar 

  46. Murakami A, Nakaura M, Nakatsuji Yet al. (1991) Fluorescent-labeled oligonucleotide probes: detection of hybrid formation in solution by fluorescence polarization spectroscopy. Nucleic Acids Research 19: 4097–4102

    Article  CAS  Google Scholar 

  47. Elson EL, Magde D (1974) Fluorescence correlation spectroscopy I: Conceptual basis and theory. Biopolymers 13: 1

    Article  CAS  Google Scholar 

  48. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy II: An experimental realization. Biopolymers 13: 29

    Article  CAS  Google Scholar 

  49. Schwille P, Oehlenschlager F, Walter N (1996) Analysis of RNA-DNA hybridization kinetics by fluorescence correlation spectroscopy. Biochemistry 35: 10182

    Article  CAS  Google Scholar 

  50. Fries JR, Brand L, Eggeling C et al. (1998) Quantitative identification of different single-molecules by selective time-resolved confocal fluorescence spectroscopy. J Phys Chem A 102: 6601–6613

    Article  CAS  Google Scholar 

  51. Nie S, Chiu DT; Zare RN (1994) Probing individual molecules with confocal fluorescence microscopy. Science 266: 1018–1021

    Article  CAS  Google Scholar 

  52. Cubitt A, Heim R, Adams S et al. (1995) Understanding, improving and using green fluorescent proteins. TIBS 20: 448–455

    CAS  Google Scholar 

  53. Cody CW, Prasher DC, Westler WM et al. (1993) Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein. Biochemistry 32: 1212–1218

    Article  CAS  Google Scholar 

  54. Ward W, Prentice H, Roth A et al. (1982) Spectral perturbations of the Aequoria green fluorescent protein. Photochem Photobiol 35: 803–808

    Article  CAS  Google Scholar 

  55. Chalfie M, Tu Y, Euskirchen G et al. (1994) Green fluorescent protein as a marker for gene expression. Science. 263: 802–805

    Article  CAS  Google Scholar 

  56. Kahana J, Schapp B, Silver P (1995) Kinetics of spindle pole body separation in budding yeast. Proc Natl Acad Sci USA 92: 9707–9711

    Article  CAS  Google Scholar 

  57. Ludin B, Doll T, Meill R et al. (1996) Application of novel vectors for GFP-tagging of proteins to study microtubuleassociated proteins. Gene 173: 107–111

    Article  CAS  Google Scholar 

  58. Casper S, Holt C (1996) Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene 173: 69–73

    Article  CAS  Google Scholar 

  59. Wang S, Hazelrigg T (1994) Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400–403

    Article  CAS  Google Scholar 

  60. Mitra R, Silva C, Youvan D (1996) Fluorescence resonance energy transfer between blue-emitting and red-shifted excitation derivatives of the green fluorescnet protein. Gene. 173: 13–17

    Article  CAS  Google Scholar 

  61. Heim R, Cubitt A, Tsien R (1995) Improved green fluorescence. Nature 373: 663–664

    Article  CAS  Google Scholar 

  62. Ehrig T, O’Kane D, Prendergast F (1995) Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett 367: 163–166

    Article  CAS  Google Scholar 

  63. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluorescence upon hybridization. Nat Biotech 14: 303–308

    Article  CAS  Google Scholar 

  64. Tyagi S, Bratu DP, Kramer, FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotech 16: 49–53

    Article  CAS  Google Scholar 

  65. Leone G, van Schijndel H, van Gemen B et al. (1998) Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 26: 2150–2155

    Article  CAS  Google Scholar 

  66. Matsuo T (1998) BBA-Gen. Subjects 1379 (2): 178–184

    Article  CAS  Google Scholar 

  67. Sokol DL, Zhang XL, Lu PZ, Gewitz AM (1998) Real time detection of DNA RNA hybridization in living cells. Proc Natl Acad Sci USA 95: 11538–11543

    Article  CAS  Google Scholar 

  68. Li J, Fang X, Schuster S, Tan W (2000) Molecular beacons: detecting protein-nucleic acid interactions. Angew Chem, Int Ed 39: 1049–1052

    Article  CAS  Google Scholar 

  69. Liu X, Farmerie W, Schuster S, Tan,W (2000) Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. Bioanal Chem 283: 56–63

    CAS  Google Scholar 

  70. Steemers FJ, Ferguson JA, Walt DR (2000) Screening unlabeled DNA targets with randomly ordered fiber-optic gene arrays. Nat Biotech 18: 91–94

    Article  CAS  Google Scholar 

  71. Fang X, Liu X, Tan W (1999) Single and multiple molecular beacon probes for DNA hybridization studies on a silica glas surface. Proc SPIE-Int Soc Opt Eng 3602: 149–155

    CAS  Google Scholar 

  72. Marras SA, Kramer FR, Tyagi S (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal 14: 151–156

    Article  CAS  Google Scholar 

  73. Piatek AS (1998) Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotech 16: 359–363

    Article  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Basel AG

About this chapter

Cite this chapter

Mayer, C., Schalkhammer, T.G.M. (2002). Fluorescence Techniques. In: Schalkhammer, T.G.M. (eds) Analytical Biotechnology. Methods and Tools in Biosciences and Medicine. Birkhäuser, Basel. https://doi.org/10.1007/978-3-0348-8101-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-8101-2_2

  • Publisher Name: Birkhäuser, Basel

  • Print ISBN: 978-3-7643-6589-9

  • Online ISBN: 978-3-0348-8101-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation