Modulators of free radical activity in diabetes mellitus: Role of ascorbic acid

  • Chapter
Free Radicals and Aging

Part of the book series: EXS ((EXS,volume 62))

Summary

Free radical mechanisms are increasingly being implicated in the pathogenesis of tissue damage in diabetes. Various sources of free radicals may modulate oxidative stress in diabetes, including non-enzymatic glycosylation of proteins and monosaccharide autooxidation, polyol pathway activity, indirect production of free radicals through cell damage from other causes, and reduced antioxidant reserve. Ascorbic acid, which may be a principal modulator of free radical activity in diabetes, is shown to be consumed, presumably through free radical scavenging, thus preserving levels of other antioxidants such as glutathione.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arai, K., lizuka, S., Tada, Y., Oikawa, K., and Taniguchi, N. (1987) Increase in the glycosylated form of erythrocyte Cu-Zn-SOD in diabetes and close association of non-en- zymic glycosylation with enzyme activity. Biochim. Biophys. Acta. 924: 292–296.

    Article  PubMed  CAS  Google Scholar 

  • Asayama, K., Kooy, N. W., and Burr, I. M. (1986) Effect of vitamin E deficiency and selenium deficiency on insulin secretory reserve and free radical scavenging systems in islets: decrease of islet manganosuperoxide dismutase. J. Lab. Qin. Med. 107: 459–464.

    CAS  Google Scholar 

  • Awadalla, R., El-Dessoukey, E. A., Doss, H., and Klalifa, K. (1978) Blood-reduced glutathione, serum caeruloplasmin and mineral changes in juvenile diabetes. Z. Er- nahrungsweiss. 17: 72–78.

    Google Scholar 

  • Banjerjee, A. (1982) Blood dehydroascorbic acid and diabetes mellitus in human beings. Ann. Clin. Biochem. 19: 65–70.

    Google Scholar 

  • Barnes, M. J. (1976) Function of ascorbic acid in collagen metabolism. Ann. N. Y. Acad. Sci. 258: 264–275.

    Article  Google Scholar 

  • Betteridge, D. J. (1989) Diabetes, Lipoprotein metabolism and atherosclerosis. Br. Med. Bull. 45: 285–311.

    PubMed  CAS  Google Scholar 

  • Bradley, B., Prowse, S. J., Bauling, P., and Lafferty, K. J. (1986) Desferrioxamine treatment prevents chronic islet allograft damage. Diabetes 35: 550–555.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee, M., Cerami, A., and Vlassara, H. (1988) Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N. Engl. J. Med 318: 1315–1321.

    Article  PubMed  CAS  Google Scholar 

  • Caird, F. I. (1982) Complications of diabetes in old age, in: Advanced Geriatric Medicine. Evans, J. G. and Caird, F. I. eds. Pitman, London, pp. 3–9.

    Google Scholar 

  • Cerami, A. (1986) Ageing of proteins and nuclei acids. What is the role of glucose? Trends Biol. Sci. 11: 311–314.

    Article  CAS  Google Scholar 

  • Chari, S. W., Nath, N., and Rathi, A. B. (1984) Glutathione and its redox system in diabetic polymorphonuclear leucocytes. Am. J. Med. Sci. 287: 14–15.

    Article  PubMed  CAS  Google Scholar 

  • Cogan, D. G. (1984) Aldose reductase and complications of diabetes. Ann. Intern. Med. 101: 82–91.

    PubMed  CAS  Google Scholar 

  • Collier, A., Jackson, M., Dawkes, R. M., Bell, D., and Clarke, B. F. (1988) Reduced free radical activity detected by decreased diene conjugates in insulin-dependent diabetic patients. Diabetic Med. 5: 747–749.

    Article  PubMed  CAS  Google Scholar 

  • Collier, A., Wilson, R., Bradley, H., Thomson, J. A., and Small, M. (1989) Free radical activity in type 2 diabetes. Diabetic Med. 7: 27–30.

    Article  Google Scholar 

  • Collier, A., and Small, M. (1991) The role of the polypol pathway in diabetes mellitus. Br. J. Hosp. Med. 45: 38–40.

    PubMed  CAS  Google Scholar 

  • Cox B. D., and Butterfield, W. J. H. (1975) Vitamin C supplements and diabetic cutaneous capillary fragihty. Br. Med. J. 3: 205.

    Article  PubMed  CAS  Google Scholar 

  • Crary, E. J., and McCarty, M. F. (1984) Potential clinical applications for high dose nutritional antioxidants. Med. Hypothesis. 13: 77–98.

    Article  CAS  Google Scholar 

  • Davis, K. A., Lee, W. Y. L., and Labbe, R. F. (1983) Energy dependent transport of ascorbic acid into lymphocytes. Fed Proc. 42: 2011.

    Google Scholar 

  • Dinarello, C. A. (1986) Interleuken-l:amino acid sequences, multiple biological activities and comparison with tumor necrosis factor (cachetin). Year Immunol. 2: 68–89.

    PubMed  CAS  Google Scholar 

  • Greene, D. A., Lattimer, S. A., and Sima, A. A. F. (1987) Sorbitol, phosphoinositides, and sodium-potassium-ATPase in the pathogenesis of diabetic comphcations. N. Engl. J. Med. 316: 599–606.

    Article  PubMed  CAS  Google Scholar 

  • Halliewll, B., and Gutteridge, J. M. C. (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet, I: 1396–1397.

    Article  Google Scholar 

  • Herman, J. B., Medalie, J. H., and Goldbourt, U. (1976) Diabetes, prediabetes and uricaemia. Diabetolagra 12: 47–52.

    Article  CAS  Google Scholar 

  • Hunt, J. v., and Wolff, S. P. (1991) Oxidative glycation and free radical production: a causal mechanism of diabetic complications. Free Rad. Res. Comms. 12/13: 115–123.

    Article  Google Scholar 

  • Ilhng, E. K., Gray, C. H., and Lawrence, R. D. (1951) Blood glutathione and non-glucose substances in diabetes. Biochem. J. 48: 637–640.

    Google Scholar 

  • Jones, A. F., Winkles, J. W., Jennings, P. E., Florkowski, C. M., Lunec, J., and Bamett, A. H. (1988) Serum antioxidant activity in diabetes meUitus. Diabetes Res. 7: 89–92.

    PubMed  CAS  Google Scholar 

  • Karpen, C. W., Cataland, S., and O’Dorisio, T. M. (1985) Production of 12 HETE and vitamin E status in platelets from type 1 human diabetic subjects. Diabetes 34: 526–531.

    Article  PubMed  CAS  Google Scholar 

  • Kirstein, M., Brett, J., Radoff, S., Ogawa, S., Stem, D., and Vlassara, H. (1990) Advanced protein glycosylation induces transendothehal human monocyte chemotaxis and secretion of platelet-derived growth factor: role in vascular disease of diabetes and ageing. Proc. Natl. Acad. Sci. 87: 9010–9014.

    Article  PubMed  CAS  Google Scholar 

  • Levine, M. (1986) New concepts in the biology and biochemistry of ascorbic acid. N. Eng. J. Med. 314: 892–902.

    Article  CAS  Google Scholar 

  • Makita, Z., Radoff, S., Rayiield, E. J., Yang, Z., Skolnik, E., Delaney, V., Friedman, E. A., Cerami, A., and Vlassara, H. Advanced glycosylation end products in patients with diabetic nephropathy. New Engl. J. Med. 325: 836–842.

    Google Scholar 

  • Malaisse, W. J. (1982) Alloxan toxicity to the pancreatic beta-cell: a new hypothesis. Biochem. Pharmacol. 31: 3527–3534.

    Article  PubMed  CAS  Google Scholar 

  • Matkovics, B., Varga, S., and Seabo, L. (1982) The effect of diabetes on the activity of the peroxide metabohsing enzymes. Horm. Metab. Res. 14: 77–79.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara, T., and Ziff, M. (1986) Increased superoxide anion from human endothehal cells in response to cytokines, J. Immunol. 137: 3295–3298.

    PubMed  CAS  Google Scholar 

  • McLennan, S., Yue, D. K., Fisher, E., Capogreco, C., Heffernan, S., Ross, G. R., and Turtle, J. R. (1988) Deficiency of ascorbic acid in experimental diabetes: relationship with collagen and polyol pathway abnormahties. Diabetes 37: 359–361.

    Article  PubMed  CAS  Google Scholar 

  • Monnier, V. M., Kohn, R. R., and Cerami, A. (1984) Accelerated age-related browning of human collagen in diabetes melhtus. Proc. Natl. Acad. Sci. 81: 583–587.

    Article  PubMed  CAS  Google Scholar 

  • Neale, R. J., Lim, H., Turner, J., and Freeman, J. R. (1988) The excretion of large vitamin C loads in young and elderly subjects: an ascorbic acid tolerance test. Age and Ageing 17: 35–41.

    Article  PubMed  CAS  Google Scholar 

  • Nerup, J., Mandrup-Poulson, T., Molvig, J., Helqvist, S., Wogensen, L., and Egeberg, J. (1988) Mechanisms of pancreatic beta-cell destruction in type 1 diabetes. Diabetes Care 11: 16–23.

    PubMed  Google Scholar 

  • Nishigaki, L, Hagihara, M., Tsunekawa, H., Maseki, M., and Yagi, K. (1981) Lipid peroxide levels of serum hpoprotein fractions of diabetic patients. Biochem. Med. 25: 373–378.

    Article  PubMed  CAS  Google Scholar 

  • Nomikos, I. N., Prowse, S. J., Carotenuto, P., and Lafferty, K. J. (1986) Combined treatment with nicotinamide and desferrioxamine prevents islet aUograft destruction in NOD mice. Diabetes 35: 1302–1304.

    Article  PubMed  CAS  Google Scholar 

  • Pincus, S. H., Whitcomb, E. A., and Dinarelio, C. A. (1986) Interaction of IL-1 and TPA in modulation of eosinophil function. J. Immunol. 137: 3509–3514.

    PubMed  CAS  Google Scholar 

  • Procter, P. H., and Reynolds, E. S. (1984) Free radicals and disease in man. Physiol. Chem. Phys. 16: 175–195.

    Google Scholar 

  • Rikans, L. E. (1981) Effect of alloxan diabetes on rat ascorbic acid. Horm. Metab. Res. 13: 123.

    Article  PubMed  CAS  Google Scholar 

  • Sacks, T., Moldow, C. F., Craddock, P. R., Bowers, T. K., and Jacob, H. S. (1978) Oxygen radicals mediate endothehal ceh damage by complement-stimulated granulocytes. J. Chn. Invest. 61: 1161–1167.

    Article  CAS  Google Scholar 

  • Salonen, J. T., Salonen, R., Ihanainen, M., Parviainen, M., Seppanen, R., Kantola, M., Seppanen, K., and Rauramaa, R. (1988) Blood pressure, dietary fats, and antioxidants. Am. J. Chn. Nutr. 48: 1226–1232.

    CAS  Google Scholar 

  • Sato, Y., Hotta, N., Sakamoto, N., Matsuoka, S., Ohishi, N., and Yagi, K. (1979) Lipid peroxide level in plasma of diabetic patients. Biochem. Med. 21: 104–107.

    Article  PubMed  CAS  Google Scholar 

  • Seltzer, H. S. (1957) Blood glutathione in mild diabetes melUtus before treatment and during sulphonylurea-induced hypoglycaemia. Proc. Soc. Exp. Biol. Med. 95: 74–76.

    PubMed  CAS  Google Scholar 

  • Selwign, A. P. (1983) The cardiovascular system and radiation. Lancet 2: 152–154.

    Article  Google Scholar 

  • Siperstein, M. D., Unger, R. H., and Madison, L. L. (1968) Studies of muscle capillary basement membranes in normal subjects, diabetic and pre-diabetic patients. J. Clin. Invest. 47: 1973–1999.

    Article  PubMed  CAS  Google Scholar 

  • Som, S., Basu, S., Mukherjee, D., Deb S., Choudary, R., Mukherjee, S., Chatterjee, S. N., and Chatterjee, L B. (1981) Ascorbic acid metabolism in diabetes mellitus. Metabolism 30: 572–577.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, A. J., Lunec, J., and Barnett, A. H. (1989). Diene conjugates and microangiopathy. Diabetic Med. 6: 458.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, A. J., Girling, A. J., Gray, L., Le Guen, C., Lunec, J., and Barnett, A. H. (1991) Disturbed handling of ascorbic acid in diabetic patients with and without microangiopathy during high dose ascorbate supplementation. Diabetologia 34: 171–175.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, A. J., Girling, A. J., Gray, L., Lunec, J., and Barnett, A. H. (1992) An investigation of the relationship between free radical activity and vitamin C metaboUsm in elderly diabetic subjects with retinopathy. Gerontology (in press).

    Google Scholar 

  • Steinbrecher, U. P., Parthasarathy, S., Leake, D. S., Witztum, J. L., and Steinberg, D. (1984) Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc. Natl. Acad. Sci. 81: 3883–3887.

    Article  PubMed  CAS  Google Scholar 

  • Stringer, M. D., Gorog, P. G., Freeman, A., and Kakkar, V. V. (1989) Lipid peroxides and atherosclerosis. Br. Med. J. 298: 281–284.

    Article  CAS  Google Scholar 

  • Thomas, G., Skrinska, V., Lucas, F. V., and Schumacher, O. P. (1985) Platelet glutathione and thromboxane synthesis in diabetes. Diabetes 34: 951–954.

    Article  PubMed  CAS  Google Scholar 

  • Trabser, M. G., and Kayden, H. J. (1980) Low density lipoprotein receptor activity in human monocyte-derived macrophages and its relation to atheromatous lesions. Proc. Natl Acad. Sci. 77: 5466–5470.

    Article  Google Scholar 

  • Vlassara, H., Brownlee, M., Manogue, K., Dinarello, C., and Pasagian, A. (1988) Cachectin/ TNF and IL-1 induced by glucose-modified proteins: role in normal tissue remodelling. Science 204: 1546–1548.

    Article  Google Scholar 

  • Ward, P. A., Till, G. O., Kunkel, R., and Beauchamp, G. (1983) Evidence for role of hydroxyl radical in complement and neutrophil-dependent tissue injury. J. Clin. Invest. 72: 789–801.

    Article  PubMed  CAS  Google Scholar 

  • Yamada, K., Nonaka, K., Hanafusa, T., Miyazaki, A., Toyoshima, H., and Tarui, S. (1982) Preventive and therapeutic effects of large-dose nicotinamide injections on diabetes associated with insuHtis: an observation in nonobese diabetic (NOD) mice. Diabetes 31: 749–753.

    Article  PubMed  CAS  Google Scholar 

  • Yew, M. S. (1983) Effect of streptozocin diabetes on tissue absorbic acid and dehydroascorbic acid. Horm. Metab. Res. 15: 158.

    Article  PubMed  CAS  Google Scholar 

  • Yue, D. K., McLennan, S., Fischer, E., Heffernan, S., Capogreco, C., Ross, G. R., and Turtle, J. R. (1989) Ascorbic acid metabolism and the polyol pathway. Diabetes 38: 257–261.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Sinclair, A.J., Lunec, J., Girling, A.J., Barnett, A.H. (1992). Modulators of free radical activity in diabetes mellitus: Role of ascorbic acid. In: Emerit, I., Chance, B. (eds) Free Radicals and Aging. EXS, vol 62. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7460-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7460-1_34

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7462-5

  • Online ISBN: 978-3-0348-7460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation