The rate of DNA damage and aging

  • Chapter
Free Radicals and Aging

Part of the book series: EXS ((EXS,volume 62))

Summary

A new theory of aging based on the rate of DNA damage is presented, and the relationship between the rate of oxidative DNA damage and maximum life span (MLS) of mammalian species is explored. In humans the level of oxidative DNA damage, as measured by urinary biomarkers, can be modulated by caloric restriction and dietary composition. Consequently, longevity may depend not only on the basal metabolic rate but also on dietary caloric intake and the type of diet. The theory may provide the basis for a practical approach for reduction of degenerative diseases in-general, extension of life expectancy, and optimization of individual lifestyles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ames, B. N. (1989) Mutagenesis and carcinogenesis: Endogenous and exogenous factors. Environ. Mol. Mutagen. 14: 16, 66–77.

    Article  PubMed  CAS  Google Scholar 

  • Basu, A. K., Loechler, E. L., Leadon, S. A., and Essigman, J. M. (1989) Genetic effects of thymine glycol: Site-specific mutagenesis and molecular modeUng studies. Proc. Natl. Acad. Sci. USA 86: 7677–7681.

    Article  PubMed  CAS  Google Scholar 

  • Bergtold, D. S., Simic, M. G., Alessio, H., and Cutler, R. G. (1988) Urine biomarkers for oxidative DNA damage, in: Oxygen Radicals in Biology and Medicine, pp. 483–490. Eds M. G. Simic, K. A. Taylor, J. F. Ward and C. von Sonntag. Plenum Press, New York.

    Google Scholar 

  • Bergtold, D. S., and Simic, M. G. (1991) Hydroxy radical in radiation dosimetry and metabolism: Dietary caloric effect, in: Trends in Biological Dosimetry, pp. 21–32. Eds B. Gledhill and F. Mauro. J. Wiley & Sons, New York.

    Google Scholar 

  • Bergtold, D. S., Cutler, R. G., and Simic, M. G. (1992) to be published.

    Google Scholar 

  • Cathcart, R., Schwiers, E., Saul, R. L., and Ames, B. N. (1984) Thymine glycol and thymidine glycol in human and rat urine: A possible assay for oxidative DNA damage. Proc. Natl. Acad. Sci. (USA) 81: 5633–5637.

    Article  CAS  Google Scholar 

  • Chance, B., Sies, H., and Boveris, A. (1979) Hydroperoxide metabohsm in manamalian organs. Physiol. Rev. 59: 527–605.

    PubMed  CAS  Google Scholar 

  • Chevion, M. (1988) A site-specific mechanism for free radical induced biological damage: The essential role of redox-active transition metals. Free Radical Biol. Med. 5: 27–37.

    Article  CAS  Google Scholar 

  • Cutler, R. G. (1985) Antioxidants and longevity of mammalian species, in: Molecular Biology of Aging, pp. 15–73. Eds A. D. Woodhead, A. D. Blackett and A. Hollaender. Plenum Press, New York.

    Google Scholar 

  • Dizdaroglu, M., and Bergtold, D. S. (1986) Characterization of free radical-induced base damage in DNA at biologically relevant levels. Analyt. Biochem. 156: 182–188.

    Article  PubMed  CAS  Google Scholar 

  • Dizdaroglu, M. (1991) Chemical determination of free radical-induced damage to DNA. Free Radical Biol. Med. 10: 225–242.

    Article  CAS  Google Scholar 

  • Emerit, I., Packer, L., and Auclair, C. (1990) Antioxidants in therapy and Preventive Medicine. Plenum Press, New York.

    Book  Google Scholar 

  • Fishbein, L. (Ed.) (1991) Biological Effects of Dietary Restrictions. Springer-Verlag, New York.

    Google Scholar 

  • Fraga, C. G., Shigenaga, M. K., Park, J. W., Degan, P., and Ames, B. N. (1990) Oxidative damage to DNA during aging. Proc. Natl. Acad. Sci. 87: 4533–4537.

    Article  PubMed  CAS  Google Scholar 

  • Friedberg, E. C. (1985) DNA Repair. W. H. Freeman & Co., New York.

    Google Scholar 

  • Harman, D. (1981) The aging process. Proc. Natl. Acad. Sci. USA 78: 7124–7128.

    Article  PubMed  CAS  Google Scholar 

  • Imlay, J. A., Chin, S. M., and Lynn, S. (1988) Toxic DNA damage by hydrogen peroxide through the Fenton reaction in vivo and in vitro. Science 240: 640–642.

    Article  PubMed  CAS  Google Scholar 

  • Karam, L. R., Bergtold, D. S., and Simic, M. G. (1991) Biomarkers of OH radical damage in vivo. Free Rad. Res. Comms. 12–13: 11–16.

    Article  Google Scholar 

  • Lindahl, T., Sedgwick, B., Sekiguchi, M., and Nakabeppu, Y. (1988) Regulation and expression of the adaptive response to alkylating agents. Ann. Rev. Biochem. 57: 133–157.

    Article  PubMed  CAS  Google Scholar 

  • Masoro, E. J., Yu, B. P., and Bertrand, H. A. (1982) Action of food restriction in delaying the aging process. Proc. Natl. Acad. Sci. (USA) 79: 4239–4241.

    Article  CAS  Google Scholar 

  • McCay, C. M., Crowell, M. F., and Maynard, L. A. (1935) The effect of retarded growth upon the length of the life span and upon the ultimate body size. J. Nutr. 10: 3.

    Google Scholar 

  • McCay, C. M., Sperling, G., and Barnes, L. L. (1943) Growth, aging, chronic diseases and life span in rats. Arch. Biochem. Biophys. 2: 469.

    Google Scholar 

  • McCord, J. M., and Fridovich, I. (1969) Superoxide dismutase. J. Biol. Chem. 244: 6049–6055.

    PubMed  CAS  Google Scholar 

  • Moraes, E., Keyse, S., and Tyrell, R. (1990) Mutagenesis by hydrogen peroxide treatment of mammalian cells: A molecular analysis. Carcinogenesis 11: 283–293.

    Article  PubMed  CAS  Google Scholar 

  • Nohl, H., and Jordan, W. (1986) The mitochondrial site of superoxide formation. Biochem. Biophys. Res. Comm. 138: 533–539.

    Article  PubMed  CAS  Google Scholar 

  • Peari, R. (1928) The Rate of Living. Alfred Knopf, New York.

    Google Scholar 

  • Richter, C., Park, J. W., and Ames, B. N. (1988) Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85: 6465–6467.

    Article  PubMed  CAS  Google Scholar 

  • Rubner, M. (1908) Das Problem der Lebensdauer und Seine Beziehungen Zun Wachstum und Ernährung, Oldenbourg, Munich.

    Google Scholar 

  • Sacher, G. A. (1977) Life table modification and life prolongation, in: Handbook of the Biology of Aging, pp. 582–638. Eds C. E. Finch and L. Hayfiick. Van Nostrand Reinhold, New York.

    Google Scholar 

  • Shibutani, S., Takeshita, M., and Grollman, A. P. (1991) Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature 349: 431–434.

    Article  PubMed  CAS  Google Scholar 

  • Shigenaga, M. K., and Ames, B. N. (1991) Assays for 8-hydroxy-2’-deoxyguanosine: A biomarker of in vivo oxidative DNA damage. Free Radical Biol. Med. 10: 211–216.

    Article  CAS  Google Scholar 

  • Simic, M. G., Taylor, K. A., Ward, J. F., and von Sonntag, C. (Eds.) (1988) Oxygen Radicals in Biology and Medicine. Plenum Press, New York.

    Google Scholar 

  • Simic, M. G., and Bergtold, D. S. (1991a) Dietary modulation of DNA damage in humans. Mutat. Res. 250: 17–24.

    Article  PubMed  CAS  Google Scholar 

  • Simic, M. G., and Bergtold, D. S. (1991b) Urinary biomarkers of oxidative DNA base damage and human caloric intake, in: Biological Effects of Dietary Restriction, pp. 217–225. Ed. L. Fishbein. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Simic, M. G. (1992) Urinary biomarkers and the rate of DNA damage in carcinogenesis and anticarcinogenesis. Mutat. Res. (in press).

    Google Scholar 

  • Szatrowski, T. P., and Nathan, C. F. (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51: 794–798.

    PubMed  CAS  Google Scholar 

  • Turturro, A., and Hart, R. W. (1991) Caloric restriction and its effects on molecular parameters especially DNA repair, in: Biological Effects of Dietary Restriction, pp. 185–190. Ed. L. Fishbein. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Vijg, J. (1990) DNA sequence changes in aging: How frequent, how important? Aging 2: 105–123.

    PubMed  CAS  Google Scholar 

  • von Sonntag, C. (1987) The Chemical Basis of Radiation Biology. Taylor and Francis, New York.

    Google Scholar 

  • Weindruch, R., and Walford, R. L. (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas Publishers, Springfield, Illinois.

    Google Scholar 

  • Yu, B. P. (1991) Free radicals and modulation by dietary restriction. Age & Nutrition 2: 84–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Birkhäuser Verlag Basel/Switzerland

About this chapter

Cite this chapter

Simic, M.G. (1992). The rate of DNA damage and aging. In: Emerit, I., Chance, B. (eds) Free Radicals and Aging. EXS, vol 62. Birkhäuser Basel. https://doi.org/10.1007/978-3-0348-7460-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-7460-1_3

  • Publisher Name: Birkhäuser Basel

  • Print ISBN: 978-3-0348-7462-5

  • Online ISBN: 978-3-0348-7460-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation